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Abstract

The Gompertz distribution is widely used to describe the distribution of adult
deaths. Previous works concentrated on formulating approximate relationships to char-
acterize it. However, using the generalized integro-exponential function Milgram (1985)
exact formulas can be derived for its moment-generating function and central moments.
Based on the exact central moments, higher accuracy approximations can be defined
for them. In demographic or actuarial applications, maximum-likelihood estimation is
often used to determine the parameters of the Gompertz distribution. By solving the
maximum-likelihood estimates analytically, the dimension of the optimization problem
can be reduced to one both in the case of discrete and continuous data.

Keywords: Gompertz distribution, moment-generating function,
expected value, variance, skewness, kurtosis, maximum-likelihood
estimation

1 Introduction

The Gompertz distribution is important in describing the pattern of adult deaths (Wet-
terstrand 1981; Gavrilov and Gavrilova 1991). For low levels of infant (and young adult)
mortality, the Gompertz force of mortality extends to the whole life span (Vaupel 1986) of
populations with no observed mortality deceleration.

The Gompertz distribution has received considerable attention from demographers and ac-
tuaries. Pollard and Valkovics (1992) were the first to study the Gompertz distribution
thoroughly. However, their results are true only in the case when the initial level of mortal-
ity is very close to 0. Kunimura (1998) arrived at similar conclusions. They both defined
the moment generating function of the Gompertz distribution in terms of the incomplete
or complete gamma function and their results are either approximate or left in an integral
form. Willemse and Koppelaar (2000) reformulated the Gompertz force of mortality and
derived relationships for this new formulation. Later, Marshall and Olkin (2007) described
the negative Gompertz distribution; a Gompertz distribution with a negative rate of aging
parameter. Willekens (2002) provided connections between the Gompertz, the Weibull and
other Type I extreme value distributions. In this paper, I will keep the most often used
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formulation of the Gompertz’ law of mortality (Gompertz 1825) in demography (Preston
et al. 2001:9.1). The Gompertz force of mortality at age x, x ≥ 0, is

µ(x) = aebx a, b > 0 , (1)

where a denotes the level of the force of mortality at age 0 and b the rate of aging. The
moments of the Gompertz distribution can be explicitly given by the generalized integro-
exponential function (Milgram 1985), that offers exact power series representation of them.

2 The Gompertz distribution

The Gompertz distribution has a continuous probability density function with location pa-
rameter a and shape parameter b,

f(x) = aebx−
a
b (ebx−1) , (2)

with support on (−∞,∞). In actuarial or demographic applications, x usually denotes age
which cannot be negative, leading to bounded support on [0,∞). The truncated distribution
yields a proper density function by rescaling the a parameter to correspond to x = 0 (Garg
et al. 1970). The distribution function is

F (x) = 1− e−
a
b (ebx−1) .

The moment generating function of the Gompertz distribution is given by its Laplace trans-
form.

Proposition 1. The Laplace transform of the Gompertz distribution is

L(s) =
a

b
e

a
bE s

b

(a
b

)
a, b > 0 , (3)

where En(z) =
∞∫
1

e−zt

tn
dt (Abramowitz and Stegun 1965:5.1.4).

Proof. The Laplace transform of the Gompetz pdf of (2) is

L(s) =

∞∫
0

aebx−
a
b (ebx−1)e−sx dx . (4)

By substituting q = ebx in (4)

L(s) =
a

b
e

a
b

∞∫
1

e−
a
b
qq−

s
b dq
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Note that the exponential integral, En(z), is defined as (Abramowitz and Stegun 1965:5.1.4)

En(z) =

∞∫
1

e−zt

tn
dt n > 0, Re(z) > 0 ,

therefore

L(s) =
a

b
e

a
bE s

b

(a
b

)

The moments of the Gompertz distribution are expressed as the derivatives of its Laplace
transform that can be expressed in a general formula by using the generalized integro-
exponential function (Milgram 1985).

Proposition 2. The nth moment of a Gompertz distributed random variable X is

E [Xn] =
n!

bn
e

a
bEn−1

1

(a
b

)
, (5)

where En
s (z) = 1

n!

∞∫
1

(lnx)nx−se−zx dz is the generalized integro-exponential function (Milgram

1985).

Proof. The moments of random variable X of a Gompertz distribution can be calculated
with the aid of the Laplace transform. From (3),

E [X] = − d

ds
L(s)

∣∣∣∣
s=0

=
a

b
e

a
b

∞∫
1

1

b
e−

a
b
x ln(x) dx

E
[
X2
]

=
d2

ds2
L(s)

∣∣∣∣
s=0

=
a

b
e

a
b

∞∫
1

1

b2
e−

a
b
x[ln(x)]2 dx

...

E [Xn] = (−1)n+1 d
n

dsn
L(s)

∣∣∣∣
s=0

=
a

b
e

a
b

∞∫
1

1

bn
e−

a
b
x[ln(x)]n dx

By integration by parts

E [Xn] = e
a
b

∞∫
1

n

bn
x−1e−

a
b
x[ln(x)]n−1 dx
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Note that the intergral representation of the generalized integro-exponential function (Mil-
gram 1985) is

Ej
s(z) =

1

Γ(j + 1)

∞∫
1

[lnx]jx−se−zx dx

or by definition:

Ej
s(z) =

(−1)j

j!

∂j

∂sj
Es(z) , (6)

and

E0
s (z) ≡ Es(z).

Therefore, E [Xn] can be represented by (6):

E [Xn] =
n!

bn
e

a
bEn−1

1

(a
b

)
or by the more widely used Meijer G-function (Milgram 1985):

E [Xn] =
n!

bn
e

a
bGn+1,0

n,n+1

(
a

b

∣∣∣∣ ; 1, . . . , 1
0, . . . , 0;

)
, (7)

where the Meijer G-function is a generalized hypergeometric function. It is defined by the
contour integral

Gm,n
p,q

[
z

∣∣∣∣ a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

]
=

1

2πi

∫
C

m∏
j=1

Γ(bj − s)
n∏
j=1

Γ (1− aj + s)

q∏
j=m+1

Γ(1− bj + s)

p∏
j=n+1

Γ (aj − s)
zs ds

along contour C (Erdélyi 1953).

Series expansion of the integral form offers a simpler, but lengthier, representation of the mo-
ments of the Gompertz distribution. The power series expansion of the generalized integro-
exponential function (Milgram 1985:2.10) in the Gompertz case, ie. for s = 1 and z = a

b

is,

En−1
1

(a
b

)
=

[
∞∑
j=1

1

(−j)n
(−a

b
)j

j!

]
+

(−1)n

n!

n∑
j=0

(
n

j

)
ln
(a
b

)n−j
Ψj , (8)

where

Ψj = lim
t→0

dj

dtj
Γ(1− t) . (9)

4



For j ∈ (0, 1, 2, 3, 4)

Ψ0 = 1 ;

Ψ1 = γ ;

Ψ2 = γ2 +
π2

6
;

Ψ3 = γ3 + γ
π2

2
+ 2ζ(3) ;

Ψ4 = γ4 + γ2π2 + 8γζ(3) +
3

20
π4 ,

where γ ≈ 0.57722 is the Euler-Mascheroni constant and ζ(s) =
∞∑
n=1

n−s is the Riemann

zeta function (Abramowitz and Stegun 1965:23.2.18). Note that π2

6
= ζ(2) and π4

90
= ζ(4).

Also note that ζ(3) ≈ 1.2021 is known as Apéry’s constant (Apéry 1979). Please refer to
Appendix A.1 for derivation of the values of the Ψ function.

2.1 Expected value, variance, skewness and kurtosis

Corollary 1. The expected value of random variable X of a Gompertz distribution is

E [X] =
1

b
e

a
bE1

(a
b

)
(10)

≈ 1

b
e

a
b

(a
b
− ln

(a
b

)
− γ
)
.

The precision of the approximate result depends on the ratio of a to b. For low values of

1
b
e

a
b

(a
b )

2

4
, the approximation is precise.

Proof.

Exact From (5), the expected value of random variable X of a Gompertz distribution, or
life expectancy, is given by

E [X] =
1

b
e

a
b

∞∫
1

x−1e−
a
b
x dx

=
1

b
e

a
bE1

(a
b

)
This result has already been shown by Missov and Lenart (2011).
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Approximate The approximate result for the expected value in a Gompertz model is also
well-known, when a is close to 0, by Abramowitz and Stegun (1965:5.1.11) the exponential
integral, E1(z), can be approximated by −γ − ln(z), and (10) appears as 1

b
e

a
b

(
−γ − ln a

b

)
,

where γ = 0.57722 denotes the Euler-Mascheroni constant (see e.g. Pollard and Valkovics
1992; Kunimura 1998; Missov and Lenart 2011). However, the precision of the previous
approximations can be improved by adding new terms to it.

From (8) the power series expansion of the expected value is

E [X] =
1

b
e

a
b

(
−
∞∑
j=1

(−a
b
)j

j!
−

1∑
j=0

(
1

j

)
ln
(a
b

)1−j
Ψj

)
,

and by (24)

E [X] =
1

b
e

a
b

(
−
∞∑
j=1

(−a
b
)j

j!
− ln

(a
b

)
− γ

)
.

As a is usually close to 0, a
b
≈ −

∞∑
j=1

(−a
b
)j

j!
and

E [X] ≈ 1

b
e

a
b

(a
b
− ln

(a
b

)
− γ
)
. (11)

Note that because the sign of −
∞∑
j=1

(−a
b
)j

j!
changes, (11) will be slightly overestimated for

relatively large a but by adding new terms of the sum, the expected value, or life expectancy
at birth, can be approximated by arbitrary precision. For the error of the approximation,
please see Fig. 5 in the Appendix.

Corollary 2. The variance of random variable X of a Gompertz distribution is

V ar [X] =
2

b2
e

a
b

{
−a
b

3F3

[
1, 1, 1
2, 2, 2;

;
a

b

]
+

1

2

[
π2

6
+
(
γ + ln

(a
b

))2
]}
−
[

1

b
e

a
bE1

(a
b

)]2

(12)

≈ 1

b2
π2

6
− 2

a

b3
.

The approximate result holds for a ≈ 0. pFq

[
a1, . . . , ap
b1, . . . , bq;

; z

]
denotes the generalized hyper-

geometric function (e.g. Askey and Daalhuis 2010).

Proof.

Exact The variance of a random variable X is

V ar [X] = E
[
X2
]
− E [X]2 .
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Concentrating on E [X2], if X is Gompertz distributed, from (5):

E
[
X2
]

=
2

b2
e

a
bE1

1

(a
b

)
(13)

An exact representation of (13) can be reached by the G function by (7):

E
[
X2
]

=
2

b2
e

a
bG3,0

2,3

(
a

b

∣∣∣∣ ; 1, 1
0, 0, 0;

)
.

Power series expansion of Ej
s yields (Milgram 1985:2.10),

Ej
1(z) =

∞∑
l=1

1

(−l)j+1

(−z)l

l!
+

(−1)j+1

(j + 1)!

j+1∑
l=0

(
j + 1

l

)
ln(z)1+j−lΨl , (14)

where

Ψl = lim
t→0

dl

dtl
Γ(1− t) .

Note that

∞∑
l=1

1

(−l)j+1

(−z)l

l!
= (−1)jz j+2Fj+2

[
11, . . . , 1j+2

21, . . . , 2j+2;
; z

]
,

where pFq

[
a1, . . . , ap
b1, . . . , bq;

; z

]
=
∞∑
k=0

(a1)k···(ap)k

(b1)k···(bp)k

zk

k!
denotes the generalized hypergeometric func-

tion (Askey and Daalhuis 2010).

Therefore

E
[
X2
]

=
2

b2

{
−a
b

3F3

[
1, 1, 1
2, 2, 2;

;
a

b

]
+

1

2

[
π2

6
+
(
γ + ln

(a
b

))2
]}

(15)

and

V ar[X] =
2

b2
e

a
b

{
−a
b

3F3

[
1, 1, 1
2, 2, 2;

;
a

b

]
+

1

2

[
π2

6
+
(
γ + ln

(a
b

))2
]}
−
[

1

b
e

a
bE1

(a
b

)]2

Approximate By juxtaposing (11) with (15), it is easy to see possible approximations.
Pollard and Valkovics (1992) derived that the variance of the Gompertz distribution is 1

b2
π2

6
.

This result only holds when a is very close to 0. However, from (12), it is clear that the
variance depends on the parameter a, i.e. for fixed b, as a increases, the variance decreases.

When a ≈ 0, by (11)

E
[
X2
]
≈ 1

b2
e

a
b
π2

6
− e−

a
bE [X]2
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and for e
a
b = 1

V ar (X) ≈ 1

b2
π2

6
. (16)

Note that (16) crudely overestimates the variance for relatively larger a. The value of

3F3

[
1, 1, 1
2, 2, 2;

; a
b

]
for a ≈ 0 is 1 and for any higher likely values for human force of mortality

(ie. a ≈ 0.1 about age 90), it is equal to about 0.9, or approximately 1. However, −2 a
b3

can
be significantly large and is the only term that reduces the overestimated variance of (16) in
(12). Therefore,

V ar (X) ≈ 1

b2
π2

6
− 2

a

b3

always gives a better approximation to the variance than (16). For the error of the approxi-
mation, please see Fig. 5 in the Appendix.

Corollary 3. The skewness, γ1 of the probability distribution of random variable X of a
Gompertz distribution is

γ1 =

6
b3
e

a
bG4,0

3,4

(
a
b

∣∣∣∣ ; 1, 1, 1
0, 0, 0, 0;

)
− 3m1

2
b2
e

a
bG3,0

2,3

(
a
b

∣∣∣∣ ; 1, 1
0, 0, 0;

)
+ 2(m1)

3

(
2
b2
e

a
b

{
−a
b 3F3

[
1, 1, 1
2, 2, 2;

; a
b

]
+ 1

2

[
π2

6
+
(
γ + ln

(
a
b

))2]}− [1
b
e

a
bE1

(
a
b

)]2) 3
2

≈

{
4.15a0.3 − 5b0.49 − 1.48a+ 4.31b− 4.96ab, if a > 0
−12
√

6
π3 ζ(3), if a ≈ 0

,

where m1 denotes the expected value of the distribution.

Proof.

Exact Skewness is given as the third standardized moment,

γ1 =
E [X3]− 3E [X]E [X2] + 2E [X]3

V ar [X]
3
2

.

From (7) and (12) the exact result is immediately given. An equivalent power series repre-
sentation can be easily acquired from (8) and (9).

Approximate The approximate result is given by the limit of the power series expansion
of the third central moment, m3, when a goes to 0

m3|a=0 = lim
a→0

m3 = − 2

b3
ζ(3)
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and from (16)

γ1|a=0 = lim
a→0

m3

V ar [X]
3
2

=
−12
√

6

π3
ζ(3) (17)

and for the other cases in the 0 < a, b ≤ 0.2 surface, the approximation is the result of fitting
the

γ1|a>0 ≈ c1a
c2 + c3b

c4 + c5a+ c6b+ c7ab

expression by using (unweighted) non-linear least squares. For the error of the approxima-
tion, please see Fig. 5 in the Appendix.

Note that (17) also yields the lowest value, γ1 = −1.13955 for the skewness of the Gompertz
distribution.

Corollary 4. The excess kurtosis, γ2 of the probability distribution of random variable X of
a Gompertz distribution is

γ2 =

{
24

b4
e

a
bG5,0

4,5

(
a

b

∣∣∣∣ ; 1, 1, 1, 1
0, 0, 0, 0, 0;

)
− 4m1

6

b3
e

a
bG4,0

3,4

(
a

b

∣∣∣∣ ; 1, 1, 1
0, 0, 0, 0;

)
+6(m1)

2 2

b2
e

a
bG3,0

2,3

(
a

b

∣∣∣∣ ; 1, 1
0, 0, 0;

)
+ 3(m1)

4

}/{
2

b2
e

a
b

{
−a
b

3F3

[
1, 1, 1
2, 2, 2;

;
a

b

]
+

1

2

[
π2

6
+
(
γ + ln

(a
b

))2
]}
−
[

1

b
e

a
bE1

(a
b

)]2
}2

− 3

≈

{
−0.75 + 34.13a0.253 + 20b0.311 − 53.51(ab)0.14, if a > 0
12
5
, if a ≈ 0

,

Proof.

Exact Excess kurtosis is given as the difference between the fourth standardized moment
and the kurtosis of the normal distribution; 3,

γ2 =
E [X4]− 4E [X]E [X3] + 6E [X]2E [X2]− 3E [X]4

V ar [X]2
− 3 .

From (7) and (12) the exact result is immediately given. An equivalent power series repre-
sentation can be easily acquired from (8) and (9). Note that the excess kurtosis reaches a
minimal value about -0.75.
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Approximate The approximate result is given by the limit of the power series expansion
of the fourth central moment, m4, when a goes to 0

m4|a=0 = lim
a→0

m4 =
3π4

20b4

and from (16)

γ2|a=0 = lim
a→0

m4

V ar [X]2
− 3 =

12

5
.

and for the other cases in the 0 < a, b ≤ 0.2 surface, the approximation is the result of fitting
the

γ2|a>0 ≈ −0.75 + c1a
c2 + c3b

c4 + c5(ab)
c6

expression by using (unweighted) non-linear least squares. For the error of the approxima-
tion, please see Fig. 5 in the Appendix.
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Figure 1: Expected value, variance, skewness and kurtosis of the Gompertz distribution

The Gompertz probability density function can be reformulated into a distribution with
location and scale parameters. By noting that the mode, M

M =
1

b
ln

(
b

a

)
,
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(2) can be expressed as

f(x) = bee
−bM−eb(x−M)+b(x−M)

3 Maximum Likelihood Estimation

3.1 Discrete age

Often, only discrete data is available and (1) cannot be directly estimated. However, if
the number of deaths and the number of person-years exposed to the risk of dying can be
observed, we can assume that the number of deaths in a given age interval follows a Poisson
distribution.

Let D denote the number of deaths and λ the rate parameter of the Poisson distribution

f(D;λ) =
1

D!
θDe−λ . (18)

The rate parameter, λ, of the Poisson distribution is consistent with µ(x) as both λ, µ(x) > 0.
The rate of occurrence of a Poisson process assumes equal observation window for each unit
of observation. When applying the Poisson distribution to death-exposure data, the unit
of observation is the number of deaths at each age group, Dx and the observation window
is the number of people (or person-years) who are exposed to the risk of death. Clearly,
the number of people at the risk of dying differs from age group to age group. Therefore,
θ has to be weighted by the number of person-years exposed to death, Ex at age x. After
substituting λ = λEx in (18) and taking the log of it and eliminating the additive constants,
the log-likelihood function of deaths D will be

l(θ|D) ∝
∑
x

Dx ln θ − Exθ . (19)

If we substitute µ(x) for θ, we assume that we have n independent draws (for each age) from
a Poisson distribution with a rate parameter that sheds light on the previously hidden (in
(19)) functional relationship between rate λ and age x.

Using data for US females in 2007, aged 35-100 from the Human Mortality Database, pa-
rameters a and b can be readily estimated.

From Fig. 3, we can see that the maximal likelihood value lies somewhere in the middle of
the range of plotted a’s and b’s (â = 0.0006, b̂ = 0.095, log-L = −4963073).

The maximum likelihood estimator for a is (Appendix B.1)

â =

∑
x

Dx∑
x

Exebx
. (20)
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Figure 2: Observed force of mortality.
USA 2007, ages 35-100, females.

ab

logL

Figure 3: Log-likelihood values of a and b
for USA 2007, ages 35-100 data

(20) can be immediately used to reduce the dimension of the optimization problem from two
to one. Applying it to the US data from 2007, from Fig. 4 the optimal b, b̂ that has the
associated maximal log likelihood value can easily be seen and both â, b̂ and the maximal
likelihood value is the same as in the two dimensional optimization case.
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00
00
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51
50

00
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50

00
00

0
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d

Figure 4: Log-likelihood values of b given optimal a for each b for US 2007, ages 35-100,
females data

If â is the maximum likelihood estimator for a, then the maximum likelihood estimator for
b has to satisfy (see Appendix B.1)

1∑
x

Dx

∑
x

Dxx =
1∑

x

Exeb̂x

∑
x

Exe
b̂xx . (21)

As b̂ is the only unknown in (21), it can be numerically solved and afterward, b̂ can be
substituted in the expression of â which reduces the problem of two-dimensional optimization
to equation solving.
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3.1.1 Example for solving b

The Newton-Raphson method is commonly used to solve (systems of) equations numerically.
This method uses an iterative process to approximate the root of a function. If r denotes
the root and n the number of iterations,

rn+1 = rn −
f(rn)

f ′(rn)
,

rn+1 will give a dr = rn+1 − rn better approximation to the root of function f(·) than rn.

In the case of discrete Gompertz mortality models, f(b) is (21), and

f ′(b) =


∑
x

Exe
bxx∑

x

Exebx

2

−

∑
x

Exe
bxx2∑

x

Exebx
.

For the US 2007, females aged 35-100 data, by taking a reasonable initial guess of b = 0.12
for any human population,

n bn f(bn) f ′(bn) bn+1 db
0 0.12 -3.738 -131.264 0.0915218 -0.0284782
1 0.0915218 0.7091 -182.8819 0.0953989 3.87× 10−3

2 0.0953989 0.01468335 -175.3180 0.09548266 8.38× 10−5

Table 1: Newton-Raphson solution for b in case of US 2007, ages 35-100, females data

the solution of b̂ = 0.095 is reached after the second iteration. If higher than 8.38 × 10−5

precision is required, the iterations can be continued up to infinity. (Table 1)

3.1.2 Remarks

Please note that by letting wD and wE be

wD = Dx∑
x
Dx

and wE = Exeb̂x∑
x
Exeb̂x

and by denoting the respective vectors as wD, wE and x, (21) can be rewritten as

wD
Tx = wE

Tx .

At the optimal b, b̂, the two weighted averages of ages (x); one weighted by the number of
deaths (wD) and the other, weighted by the exposures (wE) are equal to each other. The
weights of the exposures are themselves also weighted. Their weights correspond to the rate
of aging, each consecutive age has eb̂ times higher importance than the previous one.
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3.2 Continuous age

In the case when fully observed, or right-censored continuous data for the distribution of
deaths is available, the Gompertz distribution can provide the likelihood function.1 Let Xi

denote the observed or right-censored lifetimes and let δi = 1 if time of death of individual
i is observed and δi = 0 if the individual lifetime is right-censored. In this case, the joint
density and the log likelihood function of the Gompertz distribution will be (Garg et al.
1970)

p(Xi|a, b) =
(
aebXi

)δi
e−

a
b (ebXi−1)

and

l(a, b|X) =
∑
i

δi (ln a+ bXi)−
a

b

(
ebXi − 1

)
respectively.

The score functions in the continuous case will be(
Sa
Sb

)
=

 ∑
i

δi
a
− ebXi−1

b∑
i

a
b2

(
ebXi − 1

)
+ δiXi − a

b
ebXiXi


and therefore

â =
Db

1
n

∑
i

ebXi − 1
,

where n is the number of observations and D = 1
n

∑
i

δi is the proportion of deaths out of all

observations.

The MLE of b is the solution to

∑
i

DebXiXi

1
n

∑
i

ebXi − 1
=
∑
i

D (ebXi − 1
)

b
n

∑
i

ebXi − b
+ δiXi

 .

Note that Garg et al. (1970) used the discretized version of this likelihood to provide max-
imum likelihood estimates and when the step size of the discretization is sufficiently small,
it would give the same results as the continuous form shown here.

1However, Pollard and Valkovics (1997) showed that an approximate likelihood for discrete data can be
found using the truncated Gompertz distribution.
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3.2.1 Remarks

If all Xi are observed times of death, by denoting the average force of mortality of the
population by µ̄ and noting that µ̄ =

∑
i

a
n
ebXi :

µ̄ = â+ b .

If b = b̂ and the data come from a Gompertz distribution, the observed average force of
mortality is equal to â+ b̂.
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A Appendix

A.1 Values of the Ψ function

Note that (Abramowitz and Stegun 1965:6.3.1,6.3.2)

∞∫
0

e−u lnu du = ψ(1) = −γ , (22)

where ψ(z) = d
dz

ln Γ(z) denotes the digamma function and let ψ(n)(z) = dn

dznψ(z) denote the
polygamma function (Abramowitz and Stegun 1965:6.4.1).

As a special case of ψ(n)(z), when z = 1 (Abramowitz and Stegun 1965:6.4.2),

ψ(n)(1) = (−1)n+1n!ζ(n+ 1) . (23)
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From (9), (22) and (23),

Ψ0 = lim
t→0
−Γ(1− t) = 1 ;

Ψ1 = lim
t→0
−Γ(1− t)ψ(1− t) = −ψ(1) = γ ;

Ψ2 = lim
t→0
−Γ(1− t) [ψ(1− t)]2 + Γ(1− t)ψ(1)(1− t) = γ2 + ζ(2) ;

...

Ψn = lim
t→0

dn−1

dtn−1
[−Γ(1− t)ψ(1− t)] = lim

t→0

n−1∑
k=0

(
n− 1

k

)
Γ(1− t)(n−1−k)ψ(n−1)(1− t)

(24)

Any values of Ψn can be derived by using relationships (22), (23), d
dz

Γ(z) = ψ(z)Γ(z) and
Γ(1) = 1.2

A.2 Central moments as Meijer-G functions

Meijer-G functions offer the most succinct way to represent the central moments of the
Gompertz distribution. The nth order central moment, mn is given as

mn =
n∑
j=0

(
n

j

)
(−1)n−jE

[
Xj
]
E [X]n−j

and from (7)

m1 =
1

b
e

a
bG2,0

1,2

(
a

b

∣∣∣∣ ; 1
0, 0;

)
m2 =

2

b2
e

a
bG3,0

2,3

(
a

b

∣∣∣∣ ; 1, 1
0, 0, 0;

)
− (m1)

2

m3 =
6

b3
e

a
bG4,0

3,4

(
a

b

∣∣∣∣ ; 1, 1, 1
0, 0, 0, 0;

)
− 3m1

2

b2
e

a
bG3,0

2,3

(
a

b

∣∣∣∣ ; 1, 1
0, 0, 0;

)
+ 2(m1)

3

m4 =
24

b4
e

a
bG5,0

4,5

(
a

b

∣∣∣∣ ; 1, 1, 1, 1
0, 0, 0, 0, 0;

)
− 4m1

6

b3
e

a
bG4,0

3,4

(
a

b

∣∣∣∣ ; 1, 1, 1
0, 0, 0, 0;

)
+ 6(m1)

2 2

b2
e

a
bG3,0

2,3

(
a

b

∣∣∣∣ ; 1, 1
0, 0, 0;

)
+ 3(m1)

4 .

2For an alternative derivation (and also for alternative power series expansion of En
1 (z)) please see the

Appendix of Gussmann (1967), especially equations (A.39)− (A.41).
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A.3 Error of the approximations

Expected value
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Figure 5: Approximation error for the expected value, variance, skewness and kurtosis of the
Gompertz distribution

B Appendix

B.1 Maximum Likelihood Estimation

To solve the maximum likelihood estimators analytically, let S denote the scores of the
likelihood function and be defined by

S =
∂l(θ|D)

∂θ
.

Maximizing the likelihood function implies that at the optimal parameters, θ̂ the system of
equations defined by the score function is homogeneous,

S = 0 ,

and the Hessian matrix

H =
∂2l(θ̂|D)

∂θ̂2
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is negative definite.

The s score functions, i . . . s, in the Poisson likelihood case appear as

Si =
∑
x

Dx

∂f(θi,x)
∂θi

f(θi, x)
− Ex

∂f(θi, x)

∂θi
, (25)

where f(·) is some function of θ and x.

Substituting (1) in (25) yields3

S =

 ∑
x

Dx

a
−
∑
x

Exe
bx∑

x

Dxx−
∑
x

Exxae
bx

 .

By setting

S =

(
0
0

)
,

Sa can be solved for â:

â =

∑
x

Dx∑
x

Exebx

Substituting â in Sb gives

Sb =
∑
x

Dxx−
∑
x

Ex

∑
x

Dx∑
xExe

bx
xebx ,

or

1∑
x

Dx

∑
x

Dxx =
1∑

x

Exeb̂x

∑
x

Exe
b̂xx .

3S will be an s × n (Jacobian) matrix
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