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Assessment of cross-sectional and longitudinal components of a difference with 
an algorithm of contour replacement  

Dmitri Jdanov and Vladimir M. Shkolnikov 

Abstract 

This study proposes a new decomposition method which permits a difference in an aggregate measure 
at a final time point to be split into additive components corresponding to the initial differences in the 
event-rates of the measure and differences in trends in these underlying event-rates. The method is an 
extension of the existing algorithm of stepwise replacement. We provide a full description of the 
method and two examples of its application with mortality and fertility data. The outcome of these 
two decompositions are: 1) age-specific contributions of initial conditions and trends to the Japan-USA 
life expectancy gap in 2009 with a reference time point at 1970; and 2) age-specific contributions of 
initial conditions and trends to the difference in Czech-Russian age variations in fertility for the 1970 
female birth cohorts with reference to the 1955 cohorts.  

Keywords 
Decomposition, demographic change, stepwise replacement, mortality, fertility, aggregate 
demographic measure. 

Background 

Decomposition analysis provides insight into the reasons for a difference in an aggregate 
demographic index. This difference can be either the difference in the index between two 
populations at a given time, or a temporal change in the index for one population measured 
over two time periods.  A number of techniques have been developed to split these 
differences into additive components produced by differences (or changes) in the elementary 
event-rates according to age or other dimensions such as cause of death, birth order, sub-
population, etc.  (Andreev, Shkolnikov, Begun, 2002; Horiuchi, Wilmoth, Pletcher, 2008; 
Beltran-Sanchez, Preston, Canudas-Romo, 2008; Nau and Firebaugh 2012; Caswell 2001; van 
Raalte and Caswell 2013; Andreev 1982; Arriaga 1984; Pressat 1985). In this way the relative 
importance of different ages, causes of death, birth orders or other factors to changes or 
differences in the aggregate index can be directly determined. In many cases there are good 
reasons to present decomposition results in a brief manner by summing the numerous 
elementary components into broader categories.         

The present study proposes a general decomposition method that can be used to split an 
inter-population difference not only by a demographic dimension (e.g. age1), but also 
according to the impact of 1) initial conditions and 2) time trends. The proposed discrete 
method for decomposition is an extension of the earlier general algorithm of stepwise 
replacement (Andreev, Shkolnikov, Begun, 2002).      

Imagine that an aggregate measure (say, life expectancy) of two populations is measured at 
two time points (Figure 1). In order to understand the reasons for the inter-population 
difference at time T, one might want to assess the contributions of different ages to the total 
between-population difference at this later time point. This is a conventional decomposition 

                                                           
1 We refer to age as the most common and natural dimension. But it can be any state (birth order, cause of death 
or other) that makes up the vector of rates. 
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that can be done with any number of the above-mentioned techniques. Yet it is also clear that 
every age component depends on initial differences between respective event rates (initial 
conditions) and on the temporal changes in these rates in the two populations (trends) going 
back to some earlier time period, t.  

At first glance, it would seem natural to disentangle the initial conditions and trend 
components by summing: 1) an age decomposition of the between-population difference 
∆𝑎𝑎 at the first time point; and 2) an age decomposition of the temporal changes 𝛿𝐴𝑎, 𝛿𝐴𝑎 
between the two time points within each of the two populations. It appears, however, that 
the sum of the initial between-population x-component and the difference between the two 
trend x-components is not equal to the cross-sectional x-component of the total between-
population difference at the final time point.    

Let us define the decomposition problem in a more formal way. Assume that the demographic 
measure of interest for a population A is a function of a vector of age-specific event rates: 

𝐸 = 𝑓(𝒎𝐴) , 

𝒎𝐴 = [𝑚𝐴(𝑥1), … 𝑚𝐴(𝑥𝑖) … ,𝑚𝐴(𝑥𝑛)] 2 

For the two populations A and B at time T measure E has values  𝑓(𝒎𝐴) and 𝑓(𝒎𝐴), 
respectively (Figure 1). The final between-population difference is   

Δ𝐴𝐴 = 𝑓(𝒎𝐴) − 𝑓(𝒎𝐴). 

This final difference is being considered as resulting from initial differences between age-
specific event rates in the two populations 𝒎𝑎 and 𝒎𝑎 and temporal changes in the age-
specific rates (from 𝒎𝑎 to 𝒎𝐴 and from 𝒎𝑎 to 𝒎𝐴 ). 

Thus, the decomposition task is to split the final difference Δ𝐴𝐴 into age-specific contributions 
due to initial differences in age-specific mortality and age-specific contributions due to 
different (within country) age-specific mortality trends. 

In the next part we show how the general algorithm of stepwise replacement can be extended 
for completing this decomposition task.     

 

                                                           
2 For simplicity, the elementary age interval [xi , xi+1) is designated by its  beginning age xi in this and later 
formulae.  
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Figure 1. Cross-sectional differences and longitudinal changes in an aggregate demographic 
measure. 

Method 

The vector of age-specific rates in a population B after replacement of i first elements of this 
vector by corresponding age-specific rates from vector A is  

  𝒎𝐴𝐴
[𝑖 ] = [𝑚𝐴(𝑥1), … ,𝑚𝐴(𝑥𝑖),𝑚𝐴(𝑥𝑖+1), … ,𝑚𝐴(𝑥𝑛)]  with  𝒎𝐴𝐴

[0] = 𝒎𝐴 

According to Andreev et al. (2002), the component of the total difference Δ𝐴𝐴 produced by 
the elementary difference between A and B in event rates at age [xi , xi+1) is  

Δ𝐴𝐴𝑖 = 𝑓 �𝒎𝐴𝐴
[𝑖] � − 𝑓 �𝒎𝐴𝐴

[𝑖−1]� , 𝑖 = 1, … 𝑖 … , 𝑛.     (1) 

The basic equation of the stepwise replacement algorithm for a conventional decomposition 
of a between population difference Δ𝐴𝐴 is  

𝑓(𝒎𝐴) − 𝑓(𝒎𝐴) = ∑ �𝑓 �𝒎𝐴𝐴
[𝑖] � − 𝑓 �𝒎𝐴𝐴

[𝑖−1]��𝑛
𝑖=1 = ∑ Δ𝐴𝐴𝑖  𝑛

𝑖=1      (2) 

Equation (2) reflects the process of replacement of elements of vector mB by elements of 
vector mA. Because there is no preference for the direction of the replacement, the final age-
specific components should be calculated as an average 

  ∆𝐴𝐴= ∑ 1
2

 (Δ𝐴𝐴𝑖 − Δ𝐴𝐴𝑖 )𝑛
𝑖=1           (3) 

In earlier studies (Andreev, Shkolnikov, Begun, 2002; Shkolnikov, Valkonen, Andreev, Begun, 
2001) we showed that in the case of life expectancy the stepwise replacement decomposition 
(1)-(3) is equivalent to the age decompositions by well-known formulae, which were 
independently derived in the 1980s by Andreev (1982), Arriaga (1984), and Pressat (1985). 

Equations similar to (1), (2), and (3) for the trend decomposition of change 𝛿𝐴𝑎 from a to A 
(Figure 1) are 

δ𝐴𝑎𝑖 = 𝑓 �𝒎𝐴𝑎
[𝑖] � − 𝑓 �𝒎𝐴𝑎

[𝑖−1]� , 𝑖 = 1, … , 𝑛   ,     (1a) 

Δ𝐴𝐴 
Δ𝑎𝑎 

time T t 

f(mA) 

f(ma) 

f 

b 
B 

A 

a 

δ𝐴𝐴 

δ𝐵𝐵 f(mB) 

f(mb) 



4 
 

𝛿𝐴𝑎 = 𝑓(𝒎𝐴) − 𝑓(𝒎𝑎) = ∑ �𝑓 �𝒎𝐴𝑎
[𝑖] � − 𝑓 �𝒎𝐴𝑎

[𝑖−1]��𝑛
𝑖=1 = ∑ δ𝐴𝑎𝑖  𝑛

𝑖=1     (2a) 

 𝛿𝐴𝑎 = ∑ 1
2

 (δ𝐴𝑎𝑖 − δ𝑎𝐴𝑖 )𝑛
𝑖=1           (3a) 

As mentioned in the previous section, in general, the final between-population elementary x-
components ∆𝐴𝐴𝑖  cannot be expressed via the conventional x-components: 

∆𝐴𝐴𝑖 ≠  ∆𝑎𝑎𝑖 + �𝛿𝐴𝑎𝑖 − 𝛿𝐴𝑎𝑖 �,   𝑖 = 1,2, … , 𝑛 .  

This is related to the path-dependence of decomposition outcomes (for more details see 
Andreev, Shkolnikov, Begun, 2002 and Horiuchi, Wilmoth, Pletcher, 2008).    

Our present decomposition task implies a decomposition of the difference between states A 
and B conditioned on the past difference between a and b and the temporal changes from a 
to A and from b to B. To implement it, we propose an algorithm of contour replacement.  

Figures 2a and 2b present graphically the contour replacement. Within each elementary age 
group i, the procedure includes a sequence of replacements over the contours B→b→a→A 
(Figure 2a) and A→a→b→B (Figure 2b). Let us consider the former direction of replacement, 
which transforms vector mB into vector mA. The replacement starts from the youngest age 
group (𝑖 = 1). Following (1), the youngest age component of the cross-sectional difference at 
the second time point T is 

Δ𝐴𝐴1 = 𝑓 �𝒎𝐴𝐴
[1]� − 𝑓(𝒎𝐴) = 𝑓 �𝒎𝐴𝐴

[1]� − 𝑓 �𝒎𝐴𝐴
[0]�.             (4) 

 
Figure 2a. The i-th step of the contour decomposition trough transformation of vector B into 
vector A.    

 

Δ𝐴𝐴𝑖  
Δ𝑎𝑎|𝐵
𝑖

 

time T t 

f(A) 

f(a) 

f(B) 

f(b) 

f 

𝒎𝑏𝑏
[𝑖]  

𝒎𝐴𝐴
[𝑖−1] 

𝒎𝐴𝐴
[𝑖]  

𝒎𝑎𝑎
[𝑖]  

𝛿𝐴𝐴|𝐵
𝑖  

𝛿𝑏𝑏|𝐵
𝑖  
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Figure 2b. The i-th step of the contour decomposition through transformation of vector A into 
vector B.    

Using a simple algebraic trick, it is possible to express the component ∆𝐴𝐴1  differently: 

Δ𝐴𝐴1 = �𝑓 �𝒎𝑎𝐴
[1]� − 𝑓(𝒎𝐴)� + �𝑓 �𝒎𝑎𝐴

[1]� − 𝑓 �𝒎𝑎𝐴
[1]�� + �𝑓 �𝒎𝐴𝐴

[1]� − 𝑓 �𝒎𝑎𝐴
[1]��      (5) 

The second step begins from the vector B with its first element replaced by the first element 
of vector A. In general, for the i-th step equation (5) can be written as follows:  

Δ𝐴𝐴𝑖 = �𝑓 �𝒎𝑎𝐴
[𝑖] � − 𝑓 �𝒎𝐴𝐴

[𝑖−1]�� + �𝑓 �𝒎𝑎𝐴
[𝑖] � − 𝑓 �𝒎𝑎𝐴

[𝑖] �� + �𝑓 �𝒎𝐴𝐴
[𝑖] � − 𝑓 �𝒎𝑎𝐴

[𝑖] ��,        (6) 
  𝑖 = 2,3, …𝑛 .  

The latter equation corresponds to the sequence depicted in Figure 2a. Figure 3 further 
explains the sequence of replacements at the level of vectors’ elements. Instead of the direct 
replacement of the first element of vector B by the first element of vector A as we do it 
conventionally (dashed arrow in Figure 3), we pass through vectors a and b (solid arrows).  At 
the second step, the replacement sequence is repeated for the second elements of all vectors 
and so on. 

In equation (6), the first and the third additive terms are the trend (within-country) 
components of the change. They are produced by mortality changes in populations B (former 
b) and A (former a) and are defined as   

δ𝑎𝐴|𝐴
𝑖 = 𝑓 �𝒎𝑎𝐴

[𝑖] � − 𝑓 �𝒎𝐴𝐴
[𝑖−1]� , 𝑖 = 1, … , 𝑛, 𝑚𝐴𝐴

[0] = 𝑚𝐴         (7) 

δ𝐴𝑎|𝐴
𝑖 = 𝑓 �𝒎𝐴𝐴

[𝑖] � − 𝑓 �𝒎𝑎𝐴
[𝑖] � ,     𝑖 = 1, … , 𝑛                      (8) 

The second additive term in (6) is an initial conditions (between-country) component of the 
change 

Δ𝑎𝑎|𝐴
𝑖 = 𝑓 �𝒎𝑎𝐴

[𝑖] � − 𝑓 �𝒎𝑎𝐴
[𝑖] � ,   𝑖 = 1, … , 𝑛          (9) 

 

 

Δ𝐵𝐵𝑖  
Δ𝑏𝑏|𝐴
𝑖

 

time T t 

f(A) 

f(a) 

f(B) 

f(b) 

f 

𝒎𝑏𝑏
[𝑖]  

𝒎𝐵𝐵
[𝑖]  

𝒎𝐵𝐵
[𝑖−1] 

𝒎𝑎𝑎
[𝑖]  

𝛿𝑎𝑎|𝐴
𝑖  

𝛿𝐵𝐵|𝐴
𝑖  
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Figure 3. The sequence of element replacement in the four vectors in the direction 
B→b→a→A .  
 

An alternative sequence of replacements A→a→b→B can be expressed by  

Δ𝐴𝐴𝑖 = �𝑓 �𝒎𝑎𝐴
[𝑖] � − 𝑓 �𝒎𝐴𝐴

[𝑖−1]�� + �𝑓 �𝒎𝑎𝐴
[𝑖] � − 𝑓 �𝒎𝑎𝐴

[𝑖] �� + �𝑓 �𝒎𝐴𝐴
[𝑖] � − 𝑓 �𝒎𝑎𝐴

[𝑖] ��,        (6a) 
  𝑖 = 1,2, …𝑛 .  

The corresponding trend and initial conditions components of the change are  

𝛿𝑎𝐴|𝐴
𝑖 = 𝑓 �𝒎𝑎𝐴

[𝑖] � − 𝑓 �𝒎𝐴𝐴
[𝑖−1]� , 𝑖 = 1, … , 𝑛, 𝒎𝐴𝐴

[0] = 𝒎𝐴 ,        (7a) 

𝛿𝐴𝑎|𝐴
𝑖 = 𝑓 �𝒎𝐴𝐴

[𝑖] � − 𝑓 �𝒎𝑎𝐴
[𝑖] � , 𝑖 = 1, … , 𝑛 ,          (8a) 

Δ𝑎𝑎|𝐴
𝑖 = 𝑓 �𝒎𝑎𝐴

[𝑖] � − 𝑓 �𝒎𝑎𝐴
[𝑖] � , 𝑖 = 1, … , 𝑛 .         (9a) 

The final trend components are determined by averaging the two equally possible sequences  

𝛿𝐴𝑎|𝐴𝐴
𝑖 = 1

2
 �𝛿𝐴𝑎|𝐴

𝑖 − 𝛿𝑎𝐴|𝐴
𝑖 � ,             (10) 

𝛿𝐴𝑎|𝐴𝐴
𝑖 = 1

2
 �𝛿𝐴𝑎|𝐴

𝑖 − 𝛿𝑎𝐴|𝐴
𝑖 �             (11) 

The initial conditions component is the average of corresponding age-specific components  

Δ𝑎𝑎|𝐴𝐴
𝑖 = 1

2
 �Δ𝑎𝑎|𝐴

𝑖 − Δ𝑎𝑎|𝐴
𝑖 �           (12) 

Equations (6)-(9), (6a)-(9a), and (10)-(12) fully determine the algorithm of contour 
replacement.  

Equations (6), (6a) and (10)-(12) ensure that the equation  

∆𝐴𝐴𝑖 =  Δ𝑎𝑎|𝐴𝐴
𝑖 + �𝛿𝐴𝑎|𝐴𝐴

𝑖 − 𝛿𝐴𝑎|𝐴𝐴
𝑖 �,   𝑖 = 1,2, … , 𝑛   

is true. 

R-program 

𝛿𝑎𝐴|𝐴
1

𝛿𝐴𝑎|𝐴
1

Δ𝑎𝑎|𝐴
1

…𝛿𝑎𝐴|𝐴
2

𝛿𝐴𝑎|𝐴
2

Δ𝑎𝑎|𝐴
2

𝛿𝑎𝐴|𝐴
𝑛

𝛿𝐴𝑎|𝐴
𝑛

Δ𝑎𝑎|𝐴
𝑛

Initial stage i = 1 i = 2 i = n

A B
a b

Δ𝐴𝐴1 Δ𝐴𝐴2 Δ𝐴𝐴𝑛
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R code to  implement the decomposition of an inter-population difference in an aggregate 
demographic measure by age, initial conditions, and trend will be available as a Max Planck 
Institute for Demographic Research Technical Report.   

Empirical examples 

Example 1. Life expectancy gap between Japan and the USA in 2009 with a reference to 1970.  

Using the Human Mortality Database (HMD, 2014) data, one can see an important increase in 
the difference in life expectancy between Japan and the USA from 1970 to 2009. Respective 
values of life expectancy at birth for men and women are shown in Table 1. While for men the 
initial difference of 2.3 years increased to 3.5 years, for women the negligible initial difference 
of 0.02 rose to 5.4 years. 

Table 1. Life expectancy in the USA and Japan in 1970 and 2009 

 

Males Females 

 

USA Japan Diff. USA Japan Diff. 

1970 67.02 69.32 2.30 74.65 74.67 0.02 

2009 76.13 79.61 3.48 81.04 86.42 5.38 

Change 9.11 10.29 1.18 6.39 11.75 5.36 

 
For each sex, the contour replacement algorithm was applied to decompose the life 
expectancy difference between Japan and the USA in 2009 into age-specific initial conditions 
and age-specific trend components. The input data consisted of four vectors of age-specific 
death rates from the HMD (Japan in 1970 and 2009 and the USA in 1970 and 2009).  

The decomposition results are displayed in Figure 4. The two upper panels display age-specific 
components of the difference and their initial conditions and trend parts. On the two lower 
panels the trend component is further split into parts produced by mortality change in Japan 
and those produced by mortality change in the USA.   

The structure of the Japanese lifetime advantage in 2009 differed between men and women: 
For men the contributions peaked at middle adult ages and were smallest at younger and 
older ages, while for women old ages clearly dominated. In men 68% of the overall Japanese 
advantage in 2009 was produced by working ages 15 to 64 with the highest contribution by 
the age group 40 to 64. The impact of working ages was determined by the initial 
disadvantage of the USA, which was only slightly tempered by the effects of mortality change. 
Childhood ages also contributed somewhat to the Japanese advantage and these 
contributions were mostly determined by the initial conditions of 1970. By contrast, at ages 
65 and older, the 2009 Japanese advantage owed exclusively to the trend component; 
American men had more favorable initial conditions over these ages. 

For women, nearly 60% of the Japanese lifetime advantage in 2009 came from ages 65 and 
older; ages 65 to 79 produced the highest contribution followed by ages 80+. In both age 
groups the impressive trend component played the decisive role, which was somewhat 
tempered by an initial U.S. advantage. The contribution by the age group 40 to 64 was split 
into about equal parts due to mortality trends and initial between-country differences. One 
can see that in this age group mortality change made a positive contribution to the advantage 
of Japanese women.  As we just mentioned, this was not the case for men.  
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Figure 4. Contributions to the total difference in life expectancy at birth between Japan and 
the USA in 2009 of age groups with further split into dynamic and initial (of the year 1970) 
conditions parts.   

The two lower panels explain how the trend-age-components of the Japan-USA life 
expectancy gap of 2009 were formed. In all age groups, the U.S. experienced mortality decline 
which would have narrowed the life expectancy gap had the Japanese maintained their 1970 
age structure of mortality. However, the Japanese mortality trends were stronger over most 
ages, especially for females, and thus the gap widened further.     

 

Example 2. Difference in the age at first birth variability between Czech and Russian female 
cohorts of 1970 with a reference to 1955.  

The left panel of Figure 5 presents age distributions of unconditional fertility rates over ages 
12 to 39 for first births of female 1955 and 1970 birth cohorts in the Czech Republic and 
Russia (Human Fertility Database, 2014). For the 1970 cohort, the Czech and the Russian 
fertility rates were about the same at ages below 20 and in both distributions the mode 
corresponded to age 20. At ages 21 to 26 the Russian fertility rates were higher, but at ages 
above 26, the Czech rates were higher.  

The Czech and Russian fertility rates compare quite differently for the older cohorts of 1955.  
Here Czech fertility was clearly higher below age 20 than Russian fertility, but lower at ages 21 
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and older. This suggests that between the cohorts of 1955 and 1970, Czech women 
experienced a massive redistribution of first births from ages 21 to 26 to ages 27 and older. In 
Russia, there was some fertility increase at ages below 20 and a similar (but weaker than in 
the Czech case) fertility redistribution from ages 21 to 27 to ages 27 and older.    

Values of the standard deviation of the age at first birth are given in Table 2. In both countries 
the 1970 birth cohort had a higher standard deviation than the 1955 cohort. But the increase 
was greater in the Czech Republic than in Russia.  

Using the contour decomposition method, we estimated age-contributions to the Czech-
Russia difference between the 1970 cohort standard deviations with reference to the 1955 
cohorts (Figure 5, right panel). As much as 77% of the total Czech-Russian difference in 1970 
was produced by fertility differences at ages above 30. For this age group, the trend and initial 
conditions components were working against each other, with a stronger impact from the 
trend component. While the age group 12-19 contributed a little toward an increase in the 
Czech-Russia difference, ages 20 to 29 contributed somewhat in the opposite direction. At all 
age groups under 30, impacts of the trend were stronger compared to impacts of initial 
conditions.         

Table 2. Standard deviation in the age at first birth over ages 12 and younger to 40 in the 
Czech Republic and Russia in female cohorts of 1955 and 1970 

 

Standard deviation 

Cohorts 
Czech 

Republic Russia Diff. 

1955 3.42 3.80 -0.38 

1970 4.55 4.11 0.44 

Change 1.13 0.31 0.82 

 

 

 
Figure 5. Unconditional age-specific fertility rates of first birth for female cohorts of 1955 and 
1970 in the Czech Republic and Russia (left panel) and decomposition of the 1970 cohort 
difference in the standard deviation of first births into initial conditions (1955 birth cohort) 
and trend components (right panel). 
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Conclusion 

When one thinks about the reasons for current differences between two populations in an 
aggregate measure of mortality, fertility or population reproduction, it is natural to be 
interested in the origin of this difference. To date, a scholar would normally have examined 
the components of between-population differences in the past and the changes between the 
starting period and the present or final time period. Information obtained from such analysis 
would include differences and changes attributed to each elementary event rate. Since these 
differences were numerous and often conflicting, their relative importance to the aggregate 
outcome measure remained unclear. The decomposition method proposed in this study 
permits a difference in an aggregate measure at a final time point to be split into additive 
components that correspond to the initial differences in the event-rates of the measure and 
differences in trends in these underlying event-rates. 

In this study the aggregate measure was defined as a function of a vector of age-specific event 
rates. Technically our central task was to develop a decomposition method which ensured 
that the sum of the initial conditions and trend components equaled the conventional age-
component (i.e. from other decomposition methods) of the inter-population difference at the 
final time point.  This was accomplished by the contour replacement algorithm.  

In the examples provided, we considered the aggregate measure to be a function of a one-
dimensional vector. It is certainly possible to include additional dimensions of interest in the 
decomposition such as causes of death for mortality or birth orders for fertility. In this case 
each step of the contour replacement of a single age-specific event rate  would include a 
sequence of replacements of age-and-cause or age-and-birth order specific rates. This is 
analogous to the inclusion of additional dimensions within the framework of the general 
stepwise replacement algorithm as described in earlier studies  (Andreev, Shkolnikov, Begun, 
2002; Shkolnikov, Andreev, Zhang, Oeppen and Vaupel, 2011).       
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