
MPIDR Working Paper WP 2017-015  l  May 2017 (revised April 2018)

Timothy Riffe  l  riffe@demogr.mpg.de 
Alyson van Raalte  l  vanraalte@demogr.mpg.de
Maarten Bijlsma  l  bijlsma@demogr.mpg.de

Healthy life expectancy, mortality, and 
age prevalence of morbidity

This working paper has been approved for release by: Mikko Myrskylä (sekmyrskyla@demogr.mpg.de),
Head of the Laboratory of Population Health and Head of the Laboratory of Fertility and Well-Being.

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review. Views or opinions expressed 
in working papers are attributable to the authors and do not necessarily  reflect those of the Institute.

Konrad-Zuse-Strasse 1  D-18057 Rostock  Germany  Tel +49 (0) 3 81 20 81 - 0  Fax +49 (0) 3 81 20 81 - 202  www.demogr.mpg.de

Max-Planck-Institut für demografische Forschung

Max Planck Institute for Demographic Research



Healthy life expectancy, mortality, and age prevalence
of morbidity

Tim Riffe1, Alyson van Raalte1, and Maarten J. Bijlsma1

1Max Planck Institute for Demographic Research

April 3, 2018

Abstract

In calculating period healthy life expectancy, the use of age-specific morbid-
ity prevalence patterns assumes that age captures the important time-variation in
the given health condition, i.e. that the disabling process is related to how long
an individual has lived. However, many morbidity patterns are better classified
by time-to-death. At advanced ages the conflation of an increasing chronological-
age mortality pattern and a time-to-death morbidity pattern produces an apparent
morbidity pattern that increases with advancing age. Differences in period healthy
life expectancy over time or between populations cannot easily be partitioned into
morbidity and mortality components because the period morbidity pattern may de-
pend on an unknown future time-to-death process not captured by period mortality.
We illustrate these concepts formally and empirically, using morbidity data from
the U.S. Health and Retirement Study. While holding the time-to-death morbidity
pattern fixed, we show that mortality reduction alone reduces the total life years
with disability. We estimate an upper bound of bias in estimates of disability life
years that are based on age patterns of prevalence derived from different realistic
time-to-death morbidity patterns. Our findings have implications for any between-
or within-population comparisons of period healthy life expectancy conditioned on
different age patterns of mortality.

1 Introduction

Healthy life expectancy (HLE) is among the most widely used metrics of population
health. It combines information on mortality and morbidity (or disability) to summa-
rize the expected years of life lived in good health, however measured.1 If healthy life
expectancy increases faster than life expectancy, morbidity is compressed into a smaller
proportion of life. HLE can change because of changes in mortality, morbidity, or both.

Most often, HLE is calculated on the basis of morbidity prevalence and a lifetable.
In calculating HLE, the use of age-specific morbidity prevalence data implicitly assumes
that a chronological age pattern best characterizes variation in the health characteristic

1In this manuscript we use the terms morbidity and disability interchangeably when referring to
prevalence patterns.
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over the lifespan. However research has shown that the prevalence of many health charac-
teristics in old ages is better measured by a pattern over time-to-death (TTD) or by both
age and TTD (Klijs et al. 2010, Riffe et al. 2017, Rehkopf et al. 2017). Most morbidity
patterns increase with age in the aggregate, and can claim empirical regularity in this
regard. However, we explain how the observed level and shape of a morbidity prevalence
age-curve could change due to changes in mortality even with no change in underlying
morbidity. At advanced ages the conflation of an increasing chronological-age mortality
pattern and a TTD morbidity pattern produces a morbidity pattern that appears to
increase with advancing age.

In the cohort perspective the TTD and age prevalence patterns imply the same HLE.
Problems arise in the period perspective. Differences in period HLE over time or between
two populations cannot easily be partitioned into morbidity and mortality components
because period morbidity patterns may depend on a TTD countdown process already in
place (Wolf et al. 2015).2 For the same reason, comparisons of disability prevalence by
age between populations with different underlying mortality may not be cut-and-dry.

In this paper we illustrate these concepts formally and empirically, using morbidity
data from the U.S. Health and Retirement Study (RAND 2017, HRS 2017). Assuming
a fixed TTD prevalence function, we show that mortality reduction alone can lead to a
lower fraction of years lived in poor health, and consequently morbidity compression. We
estimate the magnitude of potential biases for different empirical prevalence patterns,
given different levels of mortality extracted from the Human Mortality Database (HMD
2018). We first explain how the age pattern of morbidity prevalence may partly be a
function of mortality using both formulas and a schematic illustration.

2 Morbidity as a function of time to death

A joint pattern of morbidity prevalence by age and time to death could in principle obtain
any shape. Limited research suggests that such joint patterns fall into a small set of basic
types, which typically slope monotonically in a single direction over these two dimensions
(Riffe et al. 2017). For example, Figure 1 shows US female poor self-reported health
(SRH) prevalence after age 70 broken down by age and TTD under three views. Panel 1a
shows these data as a surface, whose more horizontally running prevalence contour lines
indicate that time until death is a more important time measure to describe prevalence
of poor SRH than age. Figures 1b and 1c, show the same prevalence data plotted with
respect to the respective TTD and age margins. Of these, the TTD lines (within age) in
1b yield a more compact set of patterns, which one could imaginably summarize with a
single line without much loss of precision. Age lines (within TTD) in 1c are less articulated
and more dispersed. Prevalence patterns such as this are inefficiently characterized by a
single age pattern.

Thus an assumption of a single fixed morbidity prevalence pattern by time-to-death is
simple, but not unrealistic, at least for characteristics with this joint prevalence pattern.
This pattern holds for many, but not all, indicators of health and disability (Riffe et al.
2017). Klijs et al. (2010) has similarly shown that, compared to age, TTD was a stronger
predictor of both incidence and prevalence of activities of daily living disabilities, but
that functional limitations were better predicted by age. Overall, there is not a broad

2TTD prevalence patterns may also arise from age-structured health and mortality transition rates,
but this is something we do not treat in detail.
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evidence base on joint age and TTD patterns. While our simplifying assumption of fixed
TTD patterns is an acceptable abstraction of the particular joint patterns from which
they were derived, these patterns only serve to demonstrate an arithmetic point in the
extreme. The degree to which prevalence is better measured by age or time until death
for different disabling conditions remains an open research question.
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Figure 1: Prevalence of females from the 1920-1924 cohort with self-reported poor health,
by time-to-death and age. The same data are shown by age over the time-to-death margin
in (b) and by time-to-death over the age margin in (c). Comparing (b) and (c) we conclude
that a single time-to-death pattern would better approximate the surface (a) than would
a single age pattern.

Still we wager that TTD-dominant prevalence patterns are widespread in old ages, and
an understanding of their mechanical role in lifetable-based demographic methods bears
lessons for the practices of comparing, decomposing, or analyzing trends in HLE. Imagine
a bad health condition, G, with prevalence that varies only as a function of time to death,
y, and not as a function of chronological age, a. Since the TTD prevalence distribution
is very closely concentrated at the end of life, there will still be an apparent age function,
g?(a). In this case g?(a) is a heterogeneous aggregate based on both mortality and the
underlying TTD process:
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g?(a) =

∫ ω

0
g(y)N(a, y) dy

N(a)
(1)

=

∫ ω

0
g(y)N(a)µ(a+ y) `(a+y)

`(a)
dy

N(a)
(2)

=

∫ ω

0

g(y)f(y|a) dy , (3)

where N(a) is the population aged a, `(a) is lifetable survivorship, and µ(a) is the force
of mortality. f(y|a) is the conditional remaining-years distribution, which gives the prob-
ability of dying in y years given survival to age a. The expression (3) says that the
proportion of those in age a that has condition G does not depend on population struc-
ture at all, but only on future mortality rates and the TTD pattern of G, g(y).

A function such as g(y) would have implications for the interpretation of period age
patterns of morbidity, and by extension, HLE. If a function such as g(y) holds, it is
tautologically true that the measurement of HLE in completed cohorts (or stationary
populations) will be identical whether calculated on the basis of g?(a) or the underly-
ing g(y) pattern. Distortions arise in the interpretation of period HLE under changing
mortality, or with period HLE comparisons between populations with different mortality.

Since morbidity prevalence in this scenario is partly a function of mortality, the age
patterns of morbidity for populations with different mortality levels or patterns cannot
be compared without additional information. Under these circumstances, it is also decep-
tively tricky to partition period HLE differences into underlying morbidity and mortality
components, because the morbidity component is (arithmetically) a function of an un-
certain future mortality pattern that accompanies the apparent age pattern of morbidity.
Although cohort HLE (a gold standard) is theoretically unbiased (Imai and Soneji 2007)3,
and therefore comparable, this quantity cannot be faithfully decomposed into morbidity
and mortality components based on age patterns of morbidity and mortality alone if the
underlying morbidity pattern is a function of time until death.

A toy example serves to illustrate these concepts. Figure 2 provides a schematic
overview of two stationary populations. The underlying survival pattern of these two
populations is based on period survival curves from Japanese males in 1970 (a) and 2010
(b) (HMD 2018), but the reader may imagine these as two hypothetical populations.
Population (a) has a life expectancy of 69.3, while population (b) has a life expectancy of
79.5, slightly more than 10 years higher. For demonstration, we partition each survival
curve into 10 lifespan quantiles, represented with horizontal bars. Our simple TTD
prevalence, g(y), is drawn with identical yellow triangles at the end of each lifespan bar.
Onset begins 5 years before death and culminates with 80% prevalence. The chronological
prevalence function is drawn with blue triangles, with onset at age 50 reaching a maximum
prevalence of 50% at hypothetical age 111.5. Both prevalence functions are identical for
populations (a) and (b).

The resulting disabled life expectancy (DLE) is shown with barplots next to each
stationary population. In population (a) the age and TTD prevalence functions yield the
same DLE (and HLE). In population (b) the time-to-death DLE is identical to population
(a), but the age DLE is nearly twice as high. For the age prevalence function, it is correct

3We confirm that this remains so even if morbidity prevalence is strongly patterned by time until
death.
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Figure 2: Schematic survival curves from higher (2a) and lower (2b) mortality popu-
lations. Each population is subjected to the same chronological age (blue) and time-
to-death (yellow) morbidity prevalence patterns. The total prevalence of each sums to
disabled life expectancy (DLE), drawn on the right of each survival curve. In 2a the
age and time-to-death prevalences imply the same DLE. In 2b the time-to-death DLE is
identical to 2a, but the age DLE is two years higher, due entirely to improved longevity.

to conclude that increased longevity leads to increases in prevalence, but for the TTD
prevalence function there is no morbidity-mortality trade-off. Instead, improved longevity
leads to increased proportions of life lived disability-free, albeit with no change in the
absolute concentration of morbidity in the final years of life. Analyses based on the
standard Sullivan method (Sullivan 1971) are only capable of predicting increased DLE
when projecting from the mortality of (a) to (b). This is so for both kinds of morbidity
because the TTD prevalence pattern is erased when the same condition is measured over
age. The same Sullivan method can also only conclude that the morbidity of the TTD
process is more compressed in (b) than in (a), even though its essential character is
unchanged. Prevalence functions are in fact more nuanced than those presented here,
often varying by both age and TTD, but this example provides a useful heuristic to
understand this source of bias in common applications of the Sullivan method.

3 Data and methods

For our exercises we require lifetables and morbidity or disability prevalence patterns
structured by time to death. Lifetables are taken from the Human Mortality Database
(HMD 2018). Estimating disability prevalence by time until death is straightforward
for health surveys with mortality follow-up modules. We use the RAND version P of
the U.S. Health and Retirement Study (HRS),4 which consists of 12 survey waves from
1992 through 2014 and an extensive set of measures for various aspects of morbidity
and disability. Time to death is calculated directly for deceased respondents as the
difference between the date of death and interview date. Within-individual time-to-death

4The HRS is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and
is conducted by the University of Michigan.
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trajectories of health measures are therefore directly available as such in the data. For a
given binary health measure on a single age by TTD grid, the specific prevalence (ga,y)
is defined as the average value of that respective health measure in that age by TTD
interval. We estimate patterns for variables including counts of disabilities in Activities
of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL), living in a
nursing home, having poor self-rated health, and being unable to name the month of the
year.

To ease interpretation, for each sex separately we produced age by TTD prevalence
surfaces in which random variation is filtered out by applying logistic regression models
with a given binary health measure as the outcome and natural splines over birth cohort,
TTD, and age as covariates. We used the predictions from these regression models to
produce a series of prevalence surfaces for each variable. To account for the longitudinal
nature of the HRS, potentially resulting in correlated error terms, we reproduced the HRS
sampling structure in a bootstrap procedure (Efron and Tibshirani 1994). The bootstrap
procedure is described in a technical appendix. In a sensitivity analysis, we investigated
the influence on our results of the underlying assumption that morbidity prevalence is a
smooth function over birth cohort, TTD, and age; both natural splines and LOESS curves
over these time measures (Riffe et al. 2017) produced highly similar results. Annotated
R-code for all empirical results in this analysis is available in an open online repository.

4 Results

We follow the logic of our examples from section 4.1 to design two empirical exercises that
help develop intuition on how time-to-death prevalence patterns create age patterns of
prevalence, and how the may lead to bias in common decomposition approaches. We first
develop an empirical sense of how different time-to-death morbidity prevalence curves
interact with mortality in late life to change the shape and level of age patterns of
prevalence. In section 4.2 we examine the degree to which standard decompositions of
disabled life expectancy into disability and mortality components could be biased if these
relationships hold.

4.1 Time-to-death morbidity interacted with mortality

The age pattern of morbidity prevalence observed in the cross-section (in older ages)
depends on the extent to which prevalence is principally described by age versus time-
to-death and on the underlying mortality level. If the prevalence is principally a func-
tion of TTD, the specifics of its shape are also important. In Figure 3 we show the
age-translations of different schematic TTD prevalence patterns when interacted with
fictitious stationary populations under different mortality levels.

The first column contains three different types of disability, all of which are experi-
enced by half of the population at the time of death, but which differ in the timing of
onset prior to death and in the steepness of the curve with the approach to death. The
first type of disability is virtually nonexistent 5 years prior to death, but then increases
very rapidly as death approaches. The middle variant of disability is rare 15 years be-
fore death, but increases to about 20 percent of the population 5 years before death and
rises sharply thereafter. The bottom figure depicts a disabling process that although still
strictly determined by time-to-death, is common and accumulates very slowly starting
from about 50 years before death.
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Figure 3: The age pattern of morbidity prevalence in ages 60+ derived from interacting different
TTD prevalence patterns (left column) with fictitious stationary populations subject to the color-
coded death distributions depicted in the top right figure.
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The second column translates the time-to-death disability prevalence curves into the
“apparent” chronological age prevalence of disability for different mortality levels depicted
by the death density curves above. These mortality levels roughly correspond to USA
males in 2002 e60 = 20.0 years, Canadian females in 2004 e60 = 25.0 years, and projected
Japanese females a decade or so from now e60 = 30.0 years (latest observed level in 2012
was e60 = 28.3 years (HMD 2018). In all cases increasing remaining life expectancy
results in decreasing age-specific disability prevalence by chronological age. With steeply
increasing disability prior to death (first row), the differences in disability prevalence
are largest above age 80, where the bulk of mortality occurs, while with more gently
increasing disability (second and third rows) the greatest differences in disability age-
prevalence curves appear at younger ages.

These mortality-induced differences are large and also qualitatively different. In the
middle variant, which closely resembles the TTD prevalence of disability in being able to
bathe oneself, a 10-year increase in e60 results in a 50 percent drop in disability prevalence
at age 80 from around 20 to 10 percent. Meanwhile, the age at which a quarter of the
population were considered disabled in this scenario differed by about 5 years with a 5-year
improvement in e60 from 20 to 25. The sharply increasing TTD prevalence pattern (top
row) translates to a concave age pattern of prevalence, whereas the high and gradually
increasing TTD pattern in the bottom row translates to a convex age pattern. This sheds
light on some limiting conditions: As a TTD prevalence pattern tends to concentrate in
the final moment of life, its corresponding age pattern will tend to be proportional to the
force of mortality; as a TTD prevalence pattern tends to uniformity, its corresponding
age pattern will also tend to uniformity.

4.2 The impact of mortality differences on comparisons of dis-
abled life expectancy

The Sullivan method is the most commonly used method to partition life expectancy
into estimates of the average life years lived in a state of good health (HLE) or disability
(DLE). Its popularity owes to its minimal data requirements. Only current age-specific
disability prevalence rates are needed in addition to a life table. Specifically, the station-
ary number of person-years with disability in age-group x to x+ n is the product of the
person-years lived from the life table nLx and the proportion disabled nπx. The total
DLE is the sum of nπx ×n Lx over all age groups (Sullivan 1971).

Comparing populations on the basis of HLE or DLE is standard practice in macro
studies of population health. The difference in either metric, either a within-population
difference over two time periods or a between-population difference in the same time
period, is often decomposed into mortality and morbidity components on the basis of
differences in mortality rates and morbidity age-prevalence respectively. Andreev et al.
(2002) propose an analytic decomposition of HLE based on age patterns of mortality
incidence and morbidity prevalence, which partitions a difference in HLE into two additive
components for mortality and morbidity.

If we take the interaction between TTD-prevalence and mortality from section 4.1 at
face value, then there is reason to suspect that decompositions based on an age-pattern
of prevalence might be biased. Specifically, a marginal age pattern of prevalence can
itself be partitioned into morbidity and mortality components, at least for the TTD-type
prevalence patterns considered here, which appear to be common. This relationship is not
accounted for in standard decompositions, which here constitutes a compositional bias in
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Figure 4: The disability prevalence by time to death for various disability types, based on U.S.
HRS data (females).

the decompositon. To get a sense of the upper bound in the magnitude of this bias, we
test how the disability/morbidity component of the Andreev et al. (2002) decomposition
method would change when a fixed time-to-death prevalence pattern is applied to different
mortality regimes using empirical data.5

Specifically, we consider the age prevalence of difficulties in carrying out at least 1,
2, or 3 (out of 5) functional Activities of Daily Living (ADL), difficulties in carrying
out at least 1, 2, or 3 (out of 5) instrumental Activities of Daily Living (IADL), living
in a nursing home, having poor self-rated health, and being unable to name the month
of the year. We estimate a linear time-to-death prevalence profile for each disability by
averaging over the predicted time-to-death profiles for each lifespan and birth cohort. The
TTD prevalence of morbidity for each disability type is shown for females in Figure 4.

We calculate the apparent period chronological age prevalence of morbidity, g?(a) for
all medium to large populations of the Human Mortality Database, had they experienced
the US time-to-death profile of morbidity. Eastern European countries are excluded from
this exercise due to widely varying age patterns of mortality, particularly in the years
surrounding political transition. To calculate the age-pattern of morbidity, we assume the
survival pattern of each lifetable to be a stationary population and apply a discretization
of equation (3).

We then make pair-wise comparisons of DLE between each population in the same
year for the years 1980, 1990, and 2000. For within-country comparisons, we compare
each population in 10-year jumps, for all years starting from 1950. Altogether this leads
to 187 within-population comparisons and 1785 between-population comparisons for each
sex. Finally we decompose the change or difference in DLE between the population pairs
into mortality and morbidity components using the method of Andreev et al. (2002).
The true value of the change or difference in DLE and the true value of the disability
component are both zero by design. Thus, the estimated disability component from this
decomposition gauges bias.

We compare the association between the change in the estimated disability compo-
nent and the difference in remaining life expectancy at age 60 for each population pair

5Results from this exercise would be nearly identical if decomposing with the method of Nusselder
and Looman (2004), since we do not examine the age pattern of bias (Shkolnikov and Andreev 2017).
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in Figure 5. This provides a rough empirically-based estimate of the upper bound of
the change in the disability component that is attributable to the different underlying
mortality levels of any two populations being compared. Thus for 2+ ADLs, if female
e60 increases in a country by 5 years, up to about 1 year of the reduction in DLE that
is attributed to the disability component could be solely arising from the decrease in
mortality.

Overall, the relationship between the change in disability component and the increase
in e60 is strikingly linear, although the slopes differ for males and females and by disability
type. Two factors apparently account for this variation: The degree to which prevalence
is concentrated close to the moment of death, and the overall level of the TTD prevalence
curve. The second correlates closely with the first: A TTD prevalence curve is higher
on average if it increases gradually with the approach to death, which implies a higher
proportion of prevalence spread out over a wider range of ages before each age at death.
“Real” departures from this upper bound depend on how well a 1-dimensional TTD
pattern describes its underlying joint age by TTD prevalence pattern, the extent to which
the US average TTD prevalence is representative, and the departure from the stationary
population assumption.
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Figure 5: Results of the hypothetical decomposition exercise. The size of the morbidity compo-
nent using a standard decomposition method is plotted against the difference in remaining life
expectancy at age 60 (e60) in each pair of populations. Linear trend lines are also provided for
each sex and decomposition type.
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5 Discussion

Healthy life expectancy is a popular measure of population health, forming a snapshot of
the hypothetical life years lived in good or poor health. This information is well-captured
in the cohort perspective, irrespective of whether morbidity prevalence is a function of
chronological age or time to death, or whether morbidity prevalence is estimated directly
or derived from a multistate incidence-based model. However, difficulties arise in the
interpretation of period differences in HLE. The age pattern of disability prevalence can
increase or decrease solely as a function of mortality change when the underlying TTD
morbidity prevalence is held constant. Thus, for instance, observed widening ratios in
the age profiles of disability prevalence between subgroups (Crimmins and Saito 2001)
cannot be attributed to changes in the disabling process without taking into account
changing mortality profiles. This observation should inform the practice of forecasting
observed age-specific rates of decline in disability (Manton et al. 2006, Khaw 1999), and
it especially calls into question the more common practice of holding age-patterns of
disability prevalence fixed in morbidity projections. Health economists refer to a similar
‘red herring’ argument, namely that medical costs are more closely associated with time
to death than with chronological age. As a result, health care cost projections based
on a chronological age rather than time-to-death pattern of expenditure are artificially
inflated when coupled with forecasted improvements in mortality (Zweifel et al. 1999, Lee
and Miller 2002, Geue et al. 2014).

It is preferable to measure changes in health or disability from a cohort perspective
(Manton and Land 2000, Manton et al. 2008, Christensen et al. 2013). Manton and Land
(2000), for instance, found large differences between period and cohort estimates of ac-
tive life expectancy (ALE). ALE at ages 65 and 85 was between 1.6 and 2.6 times larger
in the cohort perspective than for similar period estimates, and the expected years of
life disabled were smaller in the cohort perspective. Additionally, they uncovered larger
differences between the cohort and period perspectives for men than women, which they
attribute to sex differences in disability transition rates. The cohort-period direction of
difference in ALE is also consistent with a fixed TTD pattern combined with improv-
ing mortality, as of our toy example in Section 2. We hypothesize that some of these
larger differences might also be attributable to larger mortality reduction among men.
Further, although cohort HLE estimates are unproblematic as an index, decompositions
of prevalence-derived HLE differences between cohorts (with different mortality) into
morbidity and mortality components is still potentially biased. This is because the age
pattern of morbidity is itself decomposable into morbidity and mortality components.

As our example illustrates, differences in underlying mortality can imply differences
in the age profile of disability. It is of course more intuitive to reframe this statement
to say that differences in health transitions can drive aggregate mortality change. That
mortality levels and disability prevalence are related is perhaps not surprising. Several
studies have looked at the macro relationship between overall mortality levels and sex
differences in HLE. At higher levels of life expectancy, female advantage in healthy life
expectancy diminishes, or even reverses into male advantage (Van Oyen et al. 2013).
As well, the larger the proportional female advantage in longevity, the larger the female
excess in the proportion of life in poor health (Luy and Minagawa 2014). Additionally,
although the association between the severity of chronic conditions and poor health was
found to be similar for men and women, morbidity prevalence rates are generally higher
among women (Case and Paxson 2005). It would be worthwhile to investigate whether
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there might not only be differences in the composition of chronic conditions between the
sexes, but whether the underlying morbidity pattern itself might differ between the sexes
in its joint age and time-to-death pattern (Riffe et al. 2017).

Empirically, the prevalence of health conditions in the final decades of life is in most
cases not an exclusive function of time to death; rather, morbidity often varies as a
function of both age and time until death, and expressing morbidity prevalence as a
function of both can increase precision (Klijs et al. 2011, Riffe et al. 2017). There is great
variety in the temporal variation of the prevalence of late-life health conditions. There
is also great variety in individual trajectories with the approach to death (Lunney et al.
2003).

That morbidity prevalence may for certain health conditions be patterned by time to
death does not require that morbidity incidence is a function of time to death. First, a
sequence of health states wherein mortality risk increases in each successive state could
produce a time-to-death prevalence pattern.6 Second, it is also plausible that some mor-
bidity conditions are linked to a more general process of dying, thereby linking morbidity
to a process that ends with death and consequently producing a time-to-death prevalence
pattern. For example, certain conditions may manifest themselves that are not primary
causes of the impending death but consequences of nearness to death caused by some
other primary factor. Neither of these explanations conflicts with the reality that causes
must precede effects, and that therefore death cannot cause the morbidity that precedes it
(Lynch 2015). A third possibility, also consistent with the second, is that certain health
transition incidence rates are indeed patterned by time to death, as reported by Klijs
et al. (2010).

To model prevalence as a function of time to death requires no surreal understanding
of how things work, but is rather a modelling choice (Wolf et al. 2015). When modeling
for descriptive or exploratory purposes (as we have done to produce e.g. Figure 3),
and possibly for projections, one can safely use TTD as a predictive variable. However,
using time to death in models intended for causal interpretation is more perilous; Some
argue that TTD may function as a proxy for unobserved variables such as biomarkers for
impending mortality (Wolf et al. 2015) although a limited exploration of this possibility
yielded mixed results (Rehkopf et al. 2017). Others argue that including TTD as a proxy
in models will introduce omitted variable bias (Lynch 2015). This does not preclude
use of TTD patterns in classic aggregate demography settings, such as lifetable-based
methods as here. Much more empirical work is needed in order to determine whether
modeling morbidity prevalence as a function of time to death is more widely applicable to
other health conditions, younger ages, more recent birth cohorts, and other populations
in different stages of epidemiological transition. Further, even joint age-TTD prevalence
patterns, such as that of Figure 1 may change over time, and are not fixed as in our
examples. Nevertheless, the distortions demonstrated are likely to arise in everyday
practice when comparing health trends over age between populations or over time, since
many health conditions appear to show strong time-to-death components. To further test
the bias we hypothesize and to design more robust synthetic measures of life lived in good
or poor health, more effort should first be given to data collection, mortality followup,
and measurement practices.

Increasingly, data on mortality incidence and disability onset and recovery are avail-
able from multiple waves of survey panels such as the HRS, allowing researchers to cal-

6Even a minimal state model with no age patterns for state transitions or mortality risk within states
can produce both an overall age pattern of mortality and a time-to-death pattern of morbidity prevalence.
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culate healthy life expectancy using sophisticated multistate models. Unfortunately such
data is not available in all countries, or if it is, time trends are limited to the recent
past. We are not arguing that a TTD approach should replace multistate models when
such data is available. Our aim is rather to expose the implications of comparing healthy
life expectancy from age-structured prevalence-based models with different underlying
mortality regimes.

6 Conclusions

We describe a likely source of bias in comparisons of healthy life expectancy or life
years lived in poor health. This bias derives from a failure of age structure to capture
the principal pattern of time variation in morbidity. In short, age standardization does
not guarantee comparability of morbidity levels. Comparisons of period healthy life
expectancy calculated from marginal age patterns of morbidity prevalence cannot be
directly partitioned into morbidity and mortality effects if the joint age by time to death
morbidity prevalence pattern varies at all by time until death.

In Section 4 we provide an example of a variable whose joint prevalence pattern over
age and time-to-death is better summarized by a single time-to-death pattern than by an
age pattern. We show how simplistic time-to-death and age-patterns of morbidity interact
with lifetable survivorship to yield opposite conclusions on morbidity compression under
improved mortality. A fixed increasing age pattern of morbidity predicts a greater burden
of morbidity under improved survival, but a fixed time-to-death pattern of morbidity
predicts no change in the average time spent in poor health, and therefore morbidity
compression. In Section 4.1 we describe in greater detail how a range of schematic time-to-
death morbidity patterns interact with different stationary mortality levels to produce age
patterns of morbidity. We describe how concave age patterns of prevalence are suggestive
of strong time-to-death prevalence patterns, whereas convex age patterns suggest gently
sloping time-to-death patterns, or even pure age functions. We demonstrate in Section 4.2
that the degree of bias in partitioning effects depends on the shape and level of time-to-
death variation.
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A Description of bootstrapping technique

The Health and Retirement Survey (HRS) data is a longitudinal dataset, and hence
observations are not independent but correlated within individuals. To account for the
influence of the correlated error structure on the estimation of age by time-to-death
(TAL) surfaces, we applied a bootstrap (Efron and Tibshirani 1994) procedure in which
we approximated the sampling structure of the HRS. In our application, a bootstrap with
999 iterations provided a good approximation of the distribution of our estimator; if our
method is adapted to other datasets, we recommend the use of bootstrap diagnostics
applied to various locations on the TAL surface (with special attention to the “edges” of
the TAL surface) to determine bootstrap size.

A.1 Bootstrap steps

An R-code application of our method is available as Supplemental Material. The method,
and therefore the code, works through the following 9 steps:

1. Choose an outcome variable (i.e. BMI, hospital stay duration, etc.).

2. Create an empty dataset with time dimensions of interest (in our application: birth
year, time to death, and chronological age, but this could be more dimensions if
desired), which we call the Lexis space

3. Resample individuals with replacement.

4. Create natural cubic splines for the dimensions of the Lexis space.

5. Fit regression model of a type appropriate to the outcome variable to the resampled
data with the natural cubic splines (step 4) as covariates.

6. Use the regression fit to predict the Lexis space and save these predictions.

7. Repeat steps 3 to 6 until desired bootstrap size is achieved.
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8. Take the median or mean over the bootstrap iterations for each Lexis cell to create
a Lexis space with median or mean estimates.

• Optional: take α/2 and 1 − α/2 quantiles over the bootstrap iterations for
each Lexis cell in order to create Lexis spaces containing the lower and upper
1− α confidence bounds of the estimates.

9. Take a cross-section of the Lexis space with median or mean predictions in order
to plot the Lexis surface.

The rest of this appendix sheds more light on these steps. See also the supplementary
R-code for the implementation of the method.

A.2 Resampling with replacement and probability weights

The HRS samples individuals each year. Sampled individuals stay in the sample until
either death or drop-out. To account for the changing population structure of the United
States, probability weights for an individual can differ between observations (i.e. they
change over time).

In order to account for the longitudinal nature of the data, we resample individuals
following the sampling structure of the HRS. A (re)sampled individual contributes all
of his or her observations to that respective (re)sample. This type of resampling is also
known as blockwise bootstrapping in a time series context (Bühlmann and Künsch 1995).
The probability for an individual to be sampled is equal to the HRS probability weight
of the first observation of that individual (RAND variable wtresp). We resample indi-
viduals with replacement. The number of individuals resampled is equal to the number
of individuals in the original sample.

The information contained in the probability weights of subsequent observations of
individuals is also used: We create new weights termed rescale weights, which are each
individuals probability weights divided by that individuals respective sampling probabil-
ity (and hence, the rescale weight on the first observation for each individual is always
1). These rescaled weights are used in the regression procedure (see section A.3), where
the sampling probability represents the representativeness of the individual in their re-
spective demographic category, the rescale weights capture to what extent this weight
changes as a consequence of changes in population structure, and therefore captures to
what extent an individuals representativeness changes. In our application of the method,
the vast majority of resampling weights did not exceed the 0.90 to 1.10 range, i.e. the
sampling probability was never inflated or deflated by more than 10 percent.

A.3 Regression natural cubic splines

To produce smooth age by TAL surfaces we applied regression models to the outcome of
interest (BMI, hospital stays, etc.). Covariates in these regression models were natural
cubic splines of the dimensions age, birth year, and time to death. The cubic spline is
defined as follows:

S(x) =


S0(x) = a0x

3 + b0x
2 + c0x+ d0 t0 ≤ x ≤ t1

...

Sk−1(x) = ak−1x
3 + bk−1x

2 + ck−1x+ dk−1 tk−1 ≤ x ≤ tk ,

(4)
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where x represents points on the dimension (in our application, a time dimension) of
interest, and t0 and tk denote the two extremes (endpoints) of that part of the dimension
of interest for which we wish to create this spline. Furthermore, the constraints

Sk−1(xi) =Sk(xi) (5)

S ′k−1(xi) =S ′k(xi) (6)

S ′′k−1(xi) =S ′′k (xi) (7)

with i = 1, 2, . . . k−1 must be satisfied. This ensures that the segments of the spline meet
at the boundaries (first constraint) in a smooth manner (second and third constraint).
The additional constraint

S ′′k−1(xi) = S ′′k (xi) (8)

makes it into a natural cubic spline, i.e the second derivative of each polynomial is set to
0 at the endpoints of our part of the time dimension of interest.

The part of the dimension of interest that can be found between t0 and tk is sub-
divided into k − 1 segments, the connection of these segments are known as knots. In
our application, knots for birth year were placed at the year 1902.5 to 1925.5 at 5-year
intervals. Knots for time to death were placed at 0.5, 1, 2, 4, 7.5 and 10 years to death.
Knots for chronological age were placed at 72.5 to 97.5 years of age at 5 year intervals.
We denote the natural cubic spline for age as A(x), for birth cohort as C(x) and for time
to death as T(x).

For continuous outcomes, we used these splines in linear regression models, i.e.

E[Y |xa, xc, xt] = A(xa) + C(xc) + T (xt) , (9)

where Y is the outcome variable of interest, and xa, xc, xt represent (observed) points on
the age, birth year and time to death axes, respectively. For binary outcomes, we used
logistic regression, i.e.

logit{E[Y |xa, xc, xt]} = A(xa) + C(xc) + T (xt) . (10)

Ordinal outcomes were dichotomized during data handling and therefore also modeled
using logistic regression.

For count outcomes we used zero-inflated Poisson regression, which is a mixture model,
combining logistic and Poisson regression. This type of model separates modeling the
probability that an observation is an “excess” 0 (or not) from the “count” component
(which is modeled if the observation is not an excess 0). The count component was
therefore modeled as:

ln{E[Y |xa, xc, xt]} = A(xa) + C(xc) + T (xt) . (11)

The 0 or not component was modeled with logistic regression as denoted above. We
used this type of model because most of our observations contained a very large number of
zeros relative to observed counts and therefore appeared to come from a mixture distribu-
tion. Ordinary Poisson models can be compared with zero-inflated Poisson models using
the Vuong test, but this was omitted in our application since most outcomes were very
clearly zero-inflated and furthermore zero-inflated Poisson models can also adequately
model non-zero inflated count outcomes (with some loss of statistical precision, but sig-
nificance or confidence intervals are not the focus of this work). Most count variables in
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our dataset were bounded, e.g. the number of nights that can be spent in the hospital is
bounded by 365 (maximum number of days in a year). In those instances, we included
those bounds in our Poisson model through an offset term:

ln{E
[

Y

max bound
|xa, xc, xt

]
} = A(xa) + C(xc) + T (xt) (12)

=⇒

ln{E[Y |xa, xc, xt]} = A(xa) + C(xc) + T (xt) + ln(max bound) .

Since the functions A(x), C(x) and T (x) are cubic natural splines, they represent a
vector of coefficients corresponding to S(x) as defined earlier. Specification of our models
in this manner with natural splines was inspired by work of Carstensen (2007).

Because the three time dimensions included in our models are not linearly dependent,
additional constraints on one dimension (such as required in APC modeling, see e.g.
Clayton and Schifflers (1987)) were not required. We did not exhaustively investigate the
application of splines along different time dimensions, or such splines in addition to splines
of the time dimensions already present. However, exploratory results indicated that this
would not have substantially affected our conclusions. Similarly, a higher number of knots
had only minor effects on the smoothed TAL surfaces. Finally, we also compared our
natural cubic splines to other flexible curve fitting methods (such as LOESS and GAM),
and found natural cubic splines to provide the best fit overall to the empirical data, as
expressed in distance to squared and absolute residuals and propensity for systematic
under- or over-estimation of the data along relevant time dimensions (including edge
effects).

Splines are known to function less well near the endpoints (t0 and tk); to determine
if this was present in our data, we investigated the residuals of regression models. We
found only weak evidence for the existence of edge effects, and for most outcomes edge
effects were absent. For those outcomes where edge effects were potentially present, as a
sensitivity analysis, in our resampling procedure we purposely oversampled observations
near the edges and estimated TAL surfaces under this regime. We did not find this to
substantially affect our conclusions.

A.4 Predicting the age by time-to-death surface

To produce age by time-to-death surfaces, we created a dataset with birth year, time to
death, and chronological age as columns. The minimum and maximum values of birth
year, time to death and chronological age were equal to those found in the empirical data,
and intermediate values were spaced at 1-year intervals. This dataset therefore represents
an empty Lexis space. Using the fitted regression models, we then predicted outcomes
for this Lexis space; i.e. we created a column with an expected value for each birth year,
time to death and chronological age combination (henceforth: Lexis cell) in the Lexis
space. Each iteration of the bootstrap added a new column of such predictions. Once
all iterations are finished, to produce the final Lexis surface we then plot the median
prediction for each Lexis cell. Since three dimensions are more difficult to visualize due
to overplotting, in our paper we chose the predictions of the 1915-1919 birth cohort and
plotted along the time to death and age dimensions.

20



We found that, overall, predictions for each Lexis cell were normally distributed,
and TAL surfaces based on Lexis cell averages were nearly identical to those for TAL
surfaces based on median values. However, since some cells had more skewed predictions,
namely when the outcome was binomial and predictions were close to 0 or 1 (the edge
of the parameter space), we chose the median as the appropriate measure of centrality.
Additionally, the median, being the 50% quantile, is also consistent with 95% quantile
bootstrap confidence intervals. As their name implies, 95% quantile bootstrap confidence
intervals can be calculated by taking the 2.5% and 97.5% quantile for each Lexis cell and
plotting those surfaces. The value of the median will, by definition, not exceed the 2.5%
and 97.5% quantiles, whereas in theory the mean could exceed these confidence bounds
in highly skewed distributions.
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