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ABSTRACT

Background and Aim Occasionally, there is a need to split aggregated fertility data into a fine
grid of ages. For this purpose, several disaggregation methods have been developed. Yet these
methods have some limitations. We seek to identify a method that satisfies the following criteria:
1) shape – the estimated fertility curves should be plausible and smooth; 2) fit – the predicted
values should closely trace the observed values; 3) non-negativity – only positive values should
be returned; 4) balance – the estimated five-year age group totals should match the input data;
and in case of birth order data 5) parity – the balance by parity has to be maintained. To our
knowledge, none of the existing methods fully meets the first four criteria. Moreover, no attempt
has been made to extend the restrictions to criterion (5). To address the disadvantages of the
existing methods, we introduce two alternative approaches for splitting abridged fertility data:
namely, the quadratic optimization (QO) method and the neural network (NN) method. Data and
Methods We mainly rely on high-quality fertility data from the Human Fertility Database (HFD),
Additionally, we use a large and heterogeneous dataset from the Human Fertility Collection
(HFC). The performance of the proposed methods is evaluated both visually (by examining of
the obtained fertility schedules), and statistically using several metrics of fit. The QO and NN
methods are tested against the current HFD splitting protocol (HFD method) and the calibrated
spline (CS) method. Results The results of thorough testing suggest that both methods perform
well. The main advantage – and a distinguishing feature – of the QO approach is that it meets
all of the requirements listed above. However, it does not provide a fit as good as that of the NN
and CS methods. In addition, when it is applied to birth order data, it can sometimes produce
implausible shapes for parity 1. To account for such cases, we have developed individual
solutions, which can easily be adapted to account for other cases that might occur. While the
NN method does not satisfy the balance and parity criteria, it returns better results in terms of fit
than the other methods. Conclusions The QO method satisfies the needs of large databases
such as the HFD and the HFC. While this method has very strict requirements, it returns
plausible fertility estimates regardless of the nature of the input data. The NN method appears
to be a suitable alternative for use in individual cases in which the priority is given to the fit
criterion.
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1. Introduction

The problem of splitting aggregated fertility data into single years of age is often encountered by

demographers. To address this issue, several disaggregation methods have been developed

(McNeil et. 1977; Smith, Hyndman, Wood, 2004; Liu, et al. 2011; Schmertmann, 2012;

Jasilioniene et al. 2012). Using a sample of HFD countries, Liu et al. (2011) tested 10 different

methods that derive age-specific fertility rates from abridged data, and concluded that the

modified Beers method (de Beer, 2011) provided the best fit. Using the HFD and the US

Census International Database, Schmertmann (2012) compared the performance of the

calibrated spline (CS) with that of the Beers and HFD methods. The analysis showed that while

the three methods performed very well, the CS method provided the best fit. In the overall

ranking, the CS method placed first, the HFD method placed second, and the Beers method

placed third (Schmertmann, 2012).

The disaggregation problem primarily occurs in relation to historical data and data from

developing countries that lack functioning systems of vital registration. Splitting is often required

for the purposes of harmonizing the data so that they are comparable across time and

countries. This issue is particularly relevant for the maintenance of large international

databases, such as the Human Fertility Database1 and the Human Fertility Collection2. At the

moment, the HFD has its own splitting protocol, the HFD method (Jasilioniene et al. 2012); while

the HFC uses the CS estimator to disaggregate age-specific fertility rates (Grigorieva et al.

2015). According to Schmertmann (2012), these two methods appear to produce the best

results. The effectiveness of these methods has also been confirmed by extensive experiments

with real data from the HFD and the HFC (Grigoriev and Jdanov, 2015). There are, however,

several important differences between the HFC and the HFD that affect the choice of estimation

strategy:

1) The degree of heterogeneity of the input data. The HFD contains much more

homogenous fertility data than the HFC, which gathers all available fertility data across

the globe, and has low data quality requirements.

2) The target measure to be estimated. In the HFD it is the absolute number of births,

while in the HFC – age-specific fertility rates.

1 http://www.humanfertility.org
2 http://www.fertilitydata.org
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3) The HFD provides high-quality data that allows for high-quality research. The

interpolation should not be transferred into smoothing, which might remove real effects.

4) The original data included in the HFC is likely to be noisy and erroneous, especially

for countries without a functioning system of vital statistics. In such cases, smoothing is

a good solution.

While both the HFD and the CS methods meet the basic requirements of the HFD and the HFC,

they are not free of limitations (We discuss these limitations in more detail in section 2).

Moreover, despite the differences between the HFD and the HFC, it is more reasonable to rely

on a universe splitting protocol in both databases. All of these considerations motivated us to

develop alternative methods that could be universally applied to both the high-quality HFD data

and the heterogeneous and noisy HFC data. As an alternative to the current HFD method, we

seek to identify a method that could simultaneously satisfy the following criteria:

1) Shape - The estimated fertility curves should be plausible and smooth.

2) Fit – The predicted values should closely trace the observed values.

3) Non-negativity – Only positive predicted values should be returned.

4) Balance – The estimated five-year age group totals should match the input data.

5) Parity – The balance by parity has to be maintained after splitting.

Generally, the HFD method meets criteria (1)–(4), but may not always satisfy criterion (1)

because of a mathematical feature of the spline function used for this method. The HFD method

relies on the Hermite spline, which is monotonic, and thus meets criterion (3). However, unlike

other polynomial splines, it has a discontinuous second derivative, which might result in sudden

twists in the estimated fertility curves. The CS method satisfies criteria (1)-(3) but does not

satisfy criterion (4), which is crucial for the requirements of the HFD. In addition, the CS method

is rather complex. This lack of suitable methods motivated us to search for alternatives. To our

knowledge, none of the existing methods fully meets criteria (1)-(4). Moreover, no attempt has

been made to extend the restrictions to meet criterion (5).

In this paper, we address the disadvantages of the existing methods by introducing two

alternative approaches for splitting abridged fertility data: namely, the quadratic optimization

(QO) method and the neural network (NN) method. To assess the performance of the proposed

methods, we relied on high-quality detailed fertility data from the HFD and a large sample from

the HFC. These data, along with R scripts containing the QO and NN functions and various

examples of their usage, are provided in the MPIDR technical reports (see Michalski, Grigoriev,

Gorlischev, 2018 and Gorlischev, Grigoriev, Michalski, 2018).



4

2. Limitations of the HFD and CS methods

2.1. HFD Method

The HFD splitting procedure is based on the interpolation of the cumulative rates, which follows

the method proposed by McNeil et al. (1977). The HFD algorithm described in the HFD Methods

Protocol (see Jasilione et al. 2012, pp.30-31) consists of the following steps:

1) Calculating cumulative fertility rate )(xF from age-specific fertility rates )(xf ;

2) Calculating logits of cumulative fertility rate
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6) And, finally, obtaining single-year rates )()1()(1 xFxFxFf x -+=¢= .

Figure 2.1 visualizes the main steps of this procedure. The major disadvantage of the technique

described above is point (3), in which undefined logarithms at the extremes (–Inf and +Inf) have

to be replaced by arbitrary values. These values – which we hereafter refer to as LO and HI,

respectively – are currently set to –20 for the lower limit and +12 for the upper limit of the

distribution. The testing on the HFD data has shown that in most cases, Hermite spline

interpolation with these values produces satisfactory results. In some cases, however, the HFD

method fails to generate plausible fertility curves. Figure 2.2 depicts such an (hypothetical)

example: the ASFR estimates below age 30 appear implausible, and they are very far from the

observed values.
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Figure 2.1

Estimating single-year age-specific fertility rates (1fx) on the basis of 5-year (5fx) age-
specific fertility rates; the HFD method, Russia, 1985
Source: Human Fertility Database
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Figure 2.2

Estimating single-year age-specific fertility rates (1fx) on the basis of 5-year (5fx) age-
specific fertility rates; the HFD method, Northern Ireland, 1975
Source: As for Figure 2.1

At first glance, the problem appears to be related to the mathematical properties of the Hermite

spline. To our knowledge, at the moment of its adaptation for the HFD computational routine,

the Hermite spline was the only method implemented in R that quarantined the non-negativity of

the interpolated data. However, unlike other polynomial splines, it does not guarantee the

continuous second derivative. The second derivative of interpolated cumulative fertility curve

)(xF ¢¢ is discontinuous by definition; as is its first derivative, ASFR fertility schedule )()( xFxf ¢=

The discontinuity of the derivatives might produce undesirable results, such as kinks and abrupt

slope changes in the fertility curve. The other interpolations methods do not have this property,
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but they can return negative values. Nevertheless, when the same spline function is applied but

just the LO value is changed from –20 to –8, the results improve radically (Panel A of Figure

2.3).

A. Calibrating LO and HI values

B. Assigning a small artificial value (phantom birth) to the first group

Figure 2.3
Estimating single-year age-specific fertility rates (1fx) on the basis of 5-year (5fx) age-
specific fertility rates; the HFD method after adjustments, Northern Ireland, 1975
Source: As for Figure 2.1
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Note that the odd patterns depicted in Figure 2.2 occurred in a case in which no fertility was

recorded for the first age group. As a result, the two first values of the logit cumulative fertility

curve are undefined, and have to be replaced. Setting a value of –20 is obviously too low in

such cases, as it forces the cumulative curve to go too abruptly to the next value (which is much

higher than –20). Assigning a small artificial value of 0.00001 to the first age group improves the

results, regardless of the default values of LO and HI (Panel B of Figure 2.3).

The same experiments (adding phantom births) were repeated for other problematic cases that

were generated from the real HFD data. As in the case shown above, the results improved

significantly. Moreover, in each case it was possible to find empirically optimal LO and HI values

that ensured that the estimated fertility curve looked plausible and close to the original single-

year ASFRs. Thus, it appears that the interpolation results depend on the HFD splitting

algorithm more than on the mathematical properties of the Hermite function itself, particularly in

selecting optimal LO and HI values.

2.2. Calibrated spline (CS) method

The approach offered by Carl Schmertmann (2012) is quite different from the one currently used

in  the  HFD3 and from other disaggregation methods. The innovative component of the CS

method is that the optimization task uses empirical information, which improves the plausibility

of the estimated fertility curves. The objective of the CS method is to find a compromise

between Fit (proximity of the predictors to the observed values) and Shape (similarity of the

known fertility patterns). This goal is achieved by minimizing a squared error penalty based on

these two criteria. The CS approach assumes that the optimal schedule f *
 is a linear function

of the observed data y . Matrix K containing predetermined constants links f *
and y :

yKf ×=
*

The core of the method is the estimation of matrix K , which involves rather complex matrix

algebra. However, once K is defined, the application of the method is straightforward.

3 The detailed documentation of the CS method, the input data, and R scripts are available online at:
http://calibrated-spline.schmert.net
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Our thorough testing based on the HFD and HFC data has confirmed that the CS method

performs well, as measured by the smoothness of the fertility curves and the absence of sudden

kinks. We also tested the CS method on birth order-specific fertility data. For these data, the Ks

first needed to be derived. The obtained results again favored the CS estimator: even for higher

birth orders, the estimated fertility schedules still looked smooth and plausible. Yet like any other

method, the calibrated spline estimator has its limitations, which are primarily related to its

potential usage in the HFD:

1) By construction, the CS method does not assume that the spline function should pass
through defined knots. Thus, by definition it does not meet our balance criterion. This
limitation is crucial for the HFD, in which the birth counts within aggregated age groups
before and after splitting should match.

2) Occasionally, the CS method produces negative values, which mostly occur at the tails.
These values are then being replaced by zero. The negative values might appear at age
15, and even at ages 16, 42, 43, or 44. The ASFRs at these ages are not very high, but
are still substantial. Thus, the simple replacement of these negative values with zeroes
(as is now done) results in the loss of birth counts. This method sometimes produces
positive values that should be zeroes. Both problems need to be accounted for, which
can be done using a simple post-correction procedure. Yet the need for such a
procedure lends additional complexity to the practical implementation of this method.

3) The application of the CS method is fairly easy, but only if the input data are supplied in
a uniform format. Otherwise, matrix K needs to be defined each time through a rather
complex derivation process. It would appear that the raw data in the HFD are not
standardized. The number of age groups might vary from country to country and from
year to year. That implies that the matrix of constants K has to be estimated for each
particular case.

4) When applying the CS method to the birth order data, order-specific Ks have to be
derived. Again, this adds complexity. More importantly, birth order fertility data are
scarcer, which might be an issue when constructing an empirical basis for K, particularly
for higher birth orders.

Given these limitations, we did not consider using the CS method in the HFD. However, the
CS method has proven to be a very good fit for the HFC, which contains very
heterogeneous and noisy data.
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3. Quadratic optimization (QO) method

Here, we present a new approach that is very different from both the HFD and CS methods. Let

us consider the problem of estimating the age-specific fertility rates by single year of age from

data collected by five-year age groups of the mother’s age. When we analyze the number of

births by five-year age groups, we are solving an empirical approximation for an integral

equation, which links the age-specific fertility rates to the number of births by five-year age

groups. Denote )(xE  number of women of age x in the given year in the population of interest,

and )(xfr – the age-specific fertility rate. If the age is continuous, the number of births ( )yb  to

women not older than y years is given by expression:

( ) ( ) ( )ò=
y

y

dxxfrxEyb
0

                                                            (3.1)

where 0y  is the age when fertility starts. From (3.1) follows that the number of births ib  in age

group ii yyy <£-1  for yni ,...,1=  equals:

( ) ( )ò
-

=
i

i

y

y
i dxxfrxEb

1

                                                               (3.2)

The objective of the QO method is to solve a quadratic optimization problem with a set of

constrains regarding forms of inequalities and equalities. The method for solving the set of

equations (3.2) in different settings is described in the respective sections. Section 3.1

describes the implementation of the QO method in the case when the age-specific fertility rates

by single year of age are estimated from the number of births aggregated in groups. Section 3.2

describes the algorithm of estimating the age-specific fertility rates from the aggregated fertility

rates. Finally, section 3.3 deals with estimating conditional and unconditional fertility rates by

parity.

3.1. Estimating the age-specific fertility rates from the aggregated number of births

Approximate the set of equations (3.2) via substitution function )(xE  by vector E , with elements

iE  being equal to the number of women in the i-th one-year age group, and with function )(xfr
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by vector fr with elements ifr  being equal to the one-year age-specific fertility rate. Integration

in (3.2) is replaced by a summation to obtain a matrix equation:

frGb ´=                                                                                                  (3.3)

where b is a vector with elements bi equal to the number of births in the i-th age group, and G is

an aggregator matrix with elements

î
í
ì DÎ

=
otherwise

jE
G ij

ij 0
,

Here, iD  is a set of years that belong to the i-th interval of the women’s age. In the data

presented in the HFD, there are 9 aggregated and 43 one-year age groups covering the age

interval 12 to 55. This implies that matrix G is composed of 9 rows and 43 columns.

From a theoretical point of view, matrix equation (3.3) has an infinite number of solutions. In

practical applications, it is a common approach to take one of the possible solutions that has a

positive property, such as the smooth solution (Williams, 2013). This can be done by minimizing

the quadratic functional

fr
frFfrGb min22 ®´+´- l                                                                        (3.4)

where å
=

=
n

i
ixx

1

22
, n - number of elements in vector x, 0>l , F - matrix with elements

ï
î

ï
í

ì
+=-

+==
=

otherwise
ji

jiji
Fji

0
12

2,1
, 2,,1 -= mi K ; mj ,,1 K= .

Here, m is the number of elements in vector fr equal to the number of years for which the age-

specific fertility rate is calculated. The multiplication of vector fr  by this matrix gives the vector

of the second set of differences for vector fr , while the value
2frF ´  reflects the

‘smoothness’ of the age-specific fertility rate estimate. To get a non-negative fertility rate

estimate, we should minimize (3.4) under constraints 0³jfr , mj ,,1 K= .
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In general, parameter l  in (3.4) scales the ‘smoothness’ of the age-specific fertility rate

estimate and the precision of the solution to matrix equation (3.4). If we are certain that the

registered number of births bi, i=1,..., ny is determined with negligible error, then the first term in

(3.4) can be omitted, and the new task of quadratic minimization can be written in the following

form:

minimize
2frF ´

subject to 0=-´ bfrG        (3.5)

0³jfr , mj ,,1 K= .

If there are no births in the first (j=1) and the last (j=m) age groups, then the first and the last

columns in matrices G and F are to be omitted.

3.2. Estimating the age-specific fertility rates from the aggregated fertility rates

Fertility rate Fri obtained from aggregated data for age group ii yyy <£-1  is calculated by

formula ( )ò
-

=
i

i

y

y
ii dxxEuFr

1

/ ; here, ui is the number of births from the i-th age group, and

( )ò
-

i

i

y

y

dxxE
1

 is the total number of women. Keeping equation (3.2) in mind, we can write:

( ) ( ) ( )òò
--

=´
i

i

i

i

y

y

y

y
i dxxfrxEdxxEFr

11

.

If function E(x) changes slowly within age interval ii yyy <£-1 , the approximation for this

equation can be derived in the following form:

( )ò
---

=
i

i

y

yii
i dxxfr

yy
Fr

11

1
.

The estimation of the age-specific fertility rate from aggregated data can be performed using the

method described in section 3.1, with small modifications:

minimize
2frF ´
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subject to 0* =-´ FRfrG

0³jfr , mj ,,1 K=

Here, FR is a vector of aggregated fertility rates. The elements of matrix G* are calculated as:

î
í
ì DÎD

=
otherwise

j
G ii

ij 0
/1* ,

where iD  is the number of years in the i-th interval of age.

3.3. Estimating the age-specific fertility rates by parity

3.3.1. Maintaining the balance by parity within aggregated age groups

The age-specific fertility rate by parity satisfies a set of equations similar to equation (3.2)

( ) ( )ò
-

=
i

i

y

y
i dxxfrxEb

1

( ) ( )ò
-

=
i

i

y

y

ppp
i dxxfrxEb

1

, pnp ,,1 K=                                                                (3.6)

Here, p is the birth order (parity), ( )xE p  is the number of women at age x who had already gave

p-1 births , ( )xfr p  is the respective age-specific fertility rate, and np is the maximal number of

births. Each equation from (3.6) can be solved using the QO method described in section 3.1 by

substituting the proper p
ib and ( )xE p , as well as the bi and E(x).

Parity-specific age distributions ( )xE p  are hard to obtain in practice, but they can be substituted

by a distribution for all women (regardless their parity): ( ) ( )å
=

=
pn

p

p xExE
1

~ . The solution of the

new set of equations

( ) ( )ò
-

=
i

i

y

y

pp
i dxxrfxEb

1

~~
, pnp ,,1 K=                                                                      (3.7)
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gives unconditional estimates for the age-specific fertility rate for a given birth order, which can

be found by applying the QO method described in section 3.1. The quadratic minimization

problem for solving equation (3.7) for different p takes the following form:

minimize
2~ prfF ´

subject to 0~ =-´ pp brfG

0~ ³p
irf , mi ,,1 K= .

3.3.2. Maintaining the balance by parity within one-year age groups

Equations (3.6) and (3.7) assume that the projected numbers of births in aggregated age groups
are equal to the given numbers of births in aggregated age groups p

ib . This approach
guarantees that the sum of the projected numbers of births in aggregated age groups with
parities 1,...,np equals to the total projected numbers of births in aggregated age groups.
However, this approach does not guarantee that the sum of the projected numbers of births in
one-year age groups with parities 1,...,np is equal to the total projected numbers of births in one-
year age groups. To achieve such balance, some modifications of the quadratic optimization
method should be made. The quadratic minimization problem for estimation in this case is as
follows:

minimize å
=

´+´
pn

p

pfrFfrF
1

22

subject to 0=-´ bfrG

0=-´ ppp bfrG pnp ,,1 K=

0³ifr mi ,,1 K=

0³p
ifr mi ,,1 K= ; pnp ,,1 K=

0
1

=´- å
=

pn

p

p
i

p
iii frEfrE mi ,,1 K=

The last equation corresponds to the one-year age group’s balance condition.

Here, elements of matrix pG  are calculated by the formula:
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î
í
ì DÎ

=
otherwise

jE
G i

p
jp

ij 0
.

If there are unconditional estimates for the age-specific fertility rate, all matrixes pG  are equal

to matrix G.

4. Neural network (NN) method

Below we provide a very brief and general description of the neural network (NN) algorithm. A

more detailed description of this process can be found elsewhere (Riedmiller and Braun, 1994).

Our base model is a pre-learned neural network with a sigmoidal activation function evaluated

with a resilient back propagation algorithm. The outputs of the network are smoothed estimates

adjusted for negative values.

The neural network method is a mathematical model that builds on an analogy to the neural

networks in the human brain. A biological neuron is a cell that accepts input signals,

recalculates, and then sends output to other neurons. It is a complex system, the mathematical

model of which has yet to be fully studied. The most important model that mathematically

describes the biological neuron is a formal neuron. Networks built with formal neurons can

approximate the multidimensional function on the output.

4.1. Neural networks and resilient back-propagation algorithms

The most basic part of a neural net is a formal neuron, shown in Figure 4.1.

Figure 4.1. Formal neuron
Source: Adopted from Zaencev (1999)

A formal neuron contains a weighted sum and a non-linear element (activation function). The

operation of a formal neuron can be described by the following formulas:

ܶܧܰ = ∑ ௜௜ݓ ௜ݔ (4.1)
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ܱܷܶ = ܶܧܰ)ܨ − ,(ߠ (4.2)

where

ix – input signals, the vector of all input values stands for x;

iw – weight coefficients;

NET – the weighted sum of all input values, NET value is transferred to non-linear elements;

q – the threshold level of the neuron;

F – the non-linear function stands for the activation function – the sigmoidal (logistic) function

that accepts and recalculates ܶܧܰ) − (ߠ

1
1 NETOUT

e-=
+

 - Output with a sigmoidal activation function; equals zero for this function ߠ

The combination of formal neurons builds a neural net, shown in Figure 4.2.

Figure 4.2. Formal structure of a neural network

Source: Adopted from Zaencev (1999)

Formally, the neural network is just a sequential evaluation of linear and non-linear function

combinations:
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The sequential evaluation provides a close approximation of the multidimensional function.

The resilient back-propagation algorithm (Riedmiller&Braun,1993) is a method used to tune the

weights iw in such a way that the function )(xf  could approximate data. After all of the train

data are given to the neural net and all of the derivative errors of the formal neurons are

counted, update values ij
t )(D  for the neural net coefficients are calculated by the system of the

following equations:
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where

η is a step parameter. The updated values of weights are based upon the information on a local

error derivative
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(4.5)

Weights are updated by the following rule:
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The cycle continues until convergence is reached.

4.2. Spline and the elimination of negative values procedures

The smoothed values f
)

 of the neural net estimates f  is a minimizer for the functional:
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where 0³l  is a smoothing parameter that trades the quality of the approximation and the

smoothness of function (4.3).

The vector of smoothed spline parameters is calculated by the following formula:

YAIm 1)(ˆ -+= l (4.8)

with matrix

ò ¢¢¢¢= dxxfxfA ji )()(
(4.9)

where ( ), ( )i jf x f x  are a set of spline basis functions.

The negative values are eliminated by the simple substitution:
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4.3. Disaggregation of the neural network structure

We constructed a net with nine input neurons (age groups: 10-14, 15-19, … , 50-54), two hidden

layers with 27 and 36 neurons, and 43 output neurons (single age groups: 12,13,14,…,54). The

structure of this neural net is given in Figure 4.3.
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Figure 4.3. Example structure of the neural net with three hidden layers

5. Results of testing4

The accuracy levels of the QO and NN methods were evaluated both statistically and visually by

examining the obtained fertility schedules. This was done using both the HFD and HFC data5.

Our new methods were also tested against the current HFD splitting protocol and the CS

method. This section provides a short summary of this testing procedure. The full results are

presented in the supplementary materials for this paper. For the comparative analysis, we used

original input data from the HFD by single year of age (birth counts and population exposures)

to calculate five-year age-specific fertility rates (ASFR). These data were then split into one-year

age groups using different disaggregation methods, and compared with the original ASFRs.

Nine age groups (10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, and 50-54) and 43

single age groups (from 12 to 54) were used for our testing procedure. In total, we had access

to 1,968 fertility schedules from the HFD. We used only the data for which original birth counts

and population exposures were available by single years of age. A random sample (50 percent)

was drawn from this dataset to generate the pre-learned model for the NN method. Other 50

percent samples (984 schedules) were then used in the comparative analysis of the

4 R scripts containing QO and NN functions, fertility data, and examples are provided in the respective MPIDR Technical Reports
(see Michalski, Grigoriev, Gorlischev, 2018 and Gorlischev, Grigoriev, Michalski, 2018)
5 The results of testing using HFC data are not shown here, but are provided in Gorlischev, Grigoriev, Michalski (2018)
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performance of the four methods: QO, NN, HFD, and CS. We used RMSE (root mean squared

error between observed and predicted ASFRs) as a statistical indicator of model fit. For testing

the performance of the QO method by parity, we relied exclusively on the visual examination of

the predicted and observed fertility schedules (see supplementary file S2). We previously

verified that the QO algorithm returned fertility rates that were ‘balanced’ both within five-year

age groups and by parity.

5.1. General assessment

Figure 5.1 depicts the RMSE by country-year (984 HFD schedules) produced by different

disaggregation methods. Overall, the error is below 0.01 for all HFD countries and methods.

There are, however, a few exceptions, such as two cases for the HFD for which the RMSE is

above 0.03 (ISL 1965 and ISL 1963). The top five outliers for each of the methods are listed in

the top-right corner of the panels of Figure 5.1. Iceland 1965 (1963) appears to be the ‘worst’

case in terms of fit for all of the methods except the QO method.
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Figure 5.1. RMSE between predicted and observed age-specific fertility rates
by country-year; HFD, CS, QO, and NN methods6

Source: Own calculations based on the HFD data
Note: country abbreviations as in the HFD

The distribution of the RMSE by age appears in Figure 5.2. Both the HFD and the QO methods

return the biggest errors (particularly at ages 19 and 20), which is the ‘price’ for compiling an

important constraint. Both methods fulfill the balance criterion, whereas the CS and NN methods

do not. Figure 5.3 depicts the cumulative RMSE by age. We can see that the error rises very

rapidly at younger ages for the HFD and QO methods; while for the CS and NN methods, the

patterns appear to be smoother. There is almost no difference between the HFD and QO

methods in terms of fit up to age 30. At higher ages, the HFD method appears to perform better.

However, by construction, the QO method returns a much smoother shape. Out of the four

methods, the NN method appears to deliver the best performance in terms of fit.

6 For individual values of RMSE, see supplementary file S8
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Figure 5.2. RMSE between predicted and observed age-specific fertility rates
by age; HFD, CS, QO, and NN methods
Source: As for Figure 5.1
Note: average of 984 fertility schedules from the HFD

Figure 5.3. Cumulative RMSE between the predicted and the observed age-specific fertility
rates by age; HFD, CS, QO, and NN methods
Source: As for Figure 5.1
Note: average of 984 fertility schedules from the HFD
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5.2. Specific cases

Figure 5.4 visualizes the observed and the predicted values obtained using different
disaggregation methods for several hypothetical cases7.

Figure 5.4. Observed and predicted values of ASFRs obtained using different disaggregation
methods; selected country-years8

Source: As for Figure 5.1

For this example, we selected the cases with the highest RMSE (see Figure 5.1). The case of

Iceland is very specific. Because the country has a small population and a small number of

births, Iceland’s fertility rates are very unstable. Moreover, there are no births in the first age

interval. As we have already shown for the case of Northern Ireland 1975 (Figure 2.2), the HFD

method is particularly unreliable in such situations. The QO and NN methods (and the CS

method) do not have a similar problem: regardless of the input data, they return plausible

shapes of fertility curves.

7 These cases are hypothetical, as in the HFD the raw data for these country-years are available by single year of age
8 See supplementary file S1 for all results
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For the other cases presented in Figure 5.4 (Ukraine 1988, Italy 1988, and Latvia 1967), all of

the methods look reasonable, despite the high RMSE. This finding suggests that the RMSE

alone cannot be used as the main performance criterion. It should be complemented by the

visual examination of the predicted and observed values. Supplementary file S1 provides such a

diagnostic tool for all of the HFD country-years used in our testing.

Figure 5.5 shows an example (Austria, 2004) of estimates for unconditional age-specific fertility

rates by parity relative to observed values:

Figure 5.5. Age-specific fertility rates by parity estimated by the QO method (red line) relative to
the original (green dots) values; Austria 2004
Source: As for Figure 5.1

The thorough examination of the HFD fertility schedules for which original data by birth order

(parity) were available by single year of age (N=1146) suggests that the QO method performs

well (see supplementary file S2). It maintains the balance with five-year age groups and by

parity in most of the cases. Also, the QO method returns plausible fertility curves. However, it

might sometimes produce implausible shapes for parity 1 (e.g., BGR1986, supplementary file

S2). For such cases, we have developed specific solutions that can easily be adapted for other
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cases. At a practical level, the method has been implemented in the form of built-in function

AGW of R function QOSplitPar.R (see Michalski, Grigoriev, Gorlischev, 2018).

6. Conclusion

In this report, we considered two alternatives to the existing disaggregation methods: namely,

the quadratic optimization (QO) method and the neural network (NN) method. Both methods

produce reasonably accurate results. The QO method produces a smooth ASFR, which

guarantees that the predicted number of births by five-year age groups is equal to the observed

values. Furthermore, the QO method can be also used for ASFR estimation by parity. In some

cases, however, the QO method produces relatively large errors for the ages with high fertility

levels. This problem can be fixed by introducing an age weighting in the quadratic function.

Nevertheless, the QO approach meets all the criteria of the ‘best’ splitting method, and can thus

be considered a good alternative to the HFD method. While the neural network method

generates highly accurate results, it requires large computational resources, and should be pre-

learned. It can also give wrong estimates for types of data that were not presented in the

learning data. On the other hand, the neural network approach is a relatively flexible and precise

method that can be used to reconstruct missing values. Further improvements to the neural

network method can be made through the optimization of some of the parameters: e.g., the

number of hidden layers, the number of neurons, and the activation function for the neural net.

Supplementary materials (wp-2018-001-supplemental_materials.zip)

S1. Observed and predicted ASFRs obtained using different disaggregation methods

(Observed vs predicted ASFRs by different methods.pdf)

S2. Observed (green dots) and predicted (red line) ASFRs by parity obtained using the

quadratic optimization method (Observed vs predicted ASFRs by parity QO method.pdf)

S3. Original HFD data by single years of age (Original HFD data 1x1.csv)

S4. Original HFD data by 5-year age groups (Original HFD data 5x1.csv)

S5. Original HFD data by single years of age and parity (Original HFD data by parity 1x1.csv)

S6. Original HFD data by 5-year age groups and parity (Original HFD data by parity 5x1.csv)

S7. Root mean squared error (RMSE) between the observed and the predicted ASFRs by age;

different disaggregation methods (RMSE different methods by age.csv)

S8. Root mean squared error (RMSE) between the observed and the predicted ASFRs by

country-year; different disaggregation methods (RMSE different methods by country-year.csv)
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