
MPIDR Working Paper WP 2019-004  l  February 2019 
(Revised October 2019)

Nikkil Sudharsanan
Maarten J. Bijlsma  l  bijlsma@demogr.mpg.de

A Generalized Counterfactual Approach 
to Decomposing Differences 
Between Populations

This working paper has been approved for release by: Kieron Barclay (barclay@demogr.mpg.de), Deputy Head of the 
Laboratory of Population Health.

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review. Views or opinions expressed 
in working papers are attributable to the authors and do not necessarily  reflect those of the Institute.

Konrad-Zuse-Strasse 1  D-18057 Rostock  Germany  Tel +49 (0) 3 81 20 81 - 0  Fax +49 (0) 3 81 20 81 - 202  www.demogr.mpg.de

Max-Planck-Institut für demografische Forschung

Max Planck Institute for Demographic Research



A Generalized Counterfactual Approach to Decomposing 
Differences Between Populations 

 

Nikkil Sudharsanana and Maarten J. Bijlsmab 

 

aHeidelberg Institute of Global Health  
Heidelberg University 
Im Neuenheimer Feld 130.3 
69120 Heidelberg 
Germany 
Tel: +49 176 59587870 
Fax: +49 0622 1565948 
nikkil-sudharsanan@uni-heidelberg.de 
 
 

bLaboratory of Population Health 
Max Planck Institute for Demographic Research 
Konrad-Zuse-Straße 1  
18057 Rostock 
Germany 
Tel: +49 381 2081-211 
bijlsma@demogr.mpg.de 
 

 
 

mailto:nikkil-sudharsanan@uni-heidelberg.de
mailto:bijlsma@demogr.mpg.de


2 
 

Abstract 
 
One central aim of the population sciences is to understand why one population has different levels 

of health and well-being compared to another. Various demographic and regression decompositions 

have been used to decompose population-differences in a wide range of outcomes. We provide a way 

of implementing an alternative decomposition method that, under certain assumptions, adds a causal 

interpretation to the decomposition by building upon counterfactual-driven methods. Our approach 

has the advantage of flexibility to accommodate different types of outcome variables and any summary 

population measure. By using Monte Carlo methods, our approach does not rely on closed-form 

approximate solutions and can be applied to any parametric model without having to derive any 

decomposition equations. We demonstrate our approach through two motivating examples using data 

from the 1970 British Birth Cohort Study and the Korean Longitudinal Study of Aging. Our first 

example decomposes socioeconomic status differences in three different summary measures of 

fertility and our second addresses the classic demographic question of the contribution of smoking to 

sex differences in life expectancy. Together, our two examples outline how to implement a very 

generalized decomposition procedure that is theoretically grounded in counterfactual theory but still 

easy to apply to a wide range of situations. We provide example R-code and an R-function [package 

in development]. 

 

Keywords: decomposition, causal inference, Monte Carlo, parametric g-formula, population models 
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Introduction 
 
One central aim of the population sciences is to understand why one population has different levels 

of health and well-being compared to another. Recent examples of this question include understanding 

why African Americans have worse health compared to white Americans (Geruso 2012; Kittner et al. 

1990), why the United States has lower life expectancy compared to other high-income countries (Ho 

2013), why poorer individuals in Finland have higher mortality compared to more affluent individuals 

(Martikainen et al. 2014), and why the southern American states have higher rates of cardiovascular 

disease compared to other parts of the country (Steckel and Senney 2015). By identifying the sources 

of differences across populations, these studies provide an important first step for determining what 

can be done to reduce disparities. 

 Different disciplines have developed various methods to answer this wide array of questions. 

Demographic decompositions, such as the Kitagawa (Kitagawa 1955), Arriaga (Arriaga 1984), step-

wise (Andreev, Shkolnikov, and Begun 2002), and related decompositions (Chevan and Sutherland 

2009; Gupta 1978; Horiuchi, Wilmoth, and Pletcher 2008) use aggregate data to decompose 

differences between populations. Regression decompositions, such as the Oaxaca-Blinder (OB) 

decomposition (Blinder 1973; Oaxaca 1973) and its nonlinear extensions (Powers and Yun 2009; Yun 

2004), use individual-level data and are employed frequently in economics and sociology. Both these 

classes of decompositions are based around mathematical identities, where estimates of the 

contribution of specific characteristics are derived such that they sum to the total difference in the 

outcome between groups. For this reason, while the decomposition results have clear mathematical 

interpretations, they often have ambiguous causal interpretations that are not mapped to specific 

counterfactual scenarios. 

Recent advances in epidemiology and psychology provide a new perspective to 

decompositions by situating them in causal inference and counterfactual theory (Jackson and 
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VanderWeele 2018; Nandi, Glymour, and Subramanian 2014). Jackson and VanderWeele (JVW) 

(2018), develop a general decomposition theory where the importance of specific characteristics to 

differences between populations is evaluated through hypothetical intervention scenarios with clear 

counterfactual interpretations. For example, as one scenario, JVW estimate the contribution of 

educational attainment (measured through test scores) to black-white differences in wages by 

estimating how much the black-white disparity reduces when test scores are intervened upon and 

brought to the same level as the white population in comparable demographic strata. The idea of a 

contributing variable being intervened upon is important because it implies that the decomposition 

results can be biased if there are unobserved confounders of the relationship between the contributing 

variable and the outcome. For example, if the decomposition was conducted on the basis of 

unconditional associations or correlations, the resulting estimate of the contribution of test scores 

would be biased from a causal perspective because it includes both the true effect of intervening on 

test scores plus the effect of intervening on other factors that are correlated with both test scores and 

wages (such as childhood socioeconomic status). Importantly, under some conditions, the JVW 

decomposition is equivalent to the linear Oaxaca-Blinder decomposition methods when all relevant 

confounders are adjusted for (see JVW for a formal proof). 

There are important limitations to existing decomposition methods that constrain their ability 

to answer questions that are common in demography and the population sciences. The JVW and 

extensions of the OB decomposition are only built to decompose mean differences between 

populations. This means they cannot be applied to many important summary population measures, 

such as life expectancy, total fertility rates (TFR), and age-standardized prevalence rates. The OB and 

JVW decompositions also generally require that the researcher separately derive a new set of equations 

depending on the distribution of the outcome variable of interest, and in many cases, may require 

making approximations to obtain closed-form solutions. This limits their applicability and use by a 
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wider scientific community. Many demographic decompositions, such as the step-wise decomposition 

algorithm and line-integral decomposition are formulated to overcome these two limitations by 

providing general algorithms for decomposing any function, not just mean contrasts (Andreev et al. 

2002; Horiuchi et al. 2008). However, because these decompositions are based around mathematical 

identities instead of causal frameworks, the resulting estimates often do not map to specific 

counterfactual intervention scenarios. Related to this issue is that the decompositions are mostly non-

parametric and can therefore only account for confounding through stratification. This rapidly creates 

dimensionality problems when there are multiple confounders or confounders with many strata. 

In this paper, we implement a micro-data-based counterfactual decomposition that is easily 

applied to a wide range of questions common in demography and the population sciences. Our 

approach uses parametric models and Monte Carlo estimation to extend existing decomposition 

methods in two ways. First, building on the OB and JVW decompositions, our approach is not limited 

to just mean differences and can be applied to decompose any contrast of any summary population 

measure, such as life expectancy, prevalence ratios, and even distributional differences such as 

quantiles (incl. medians). Second, our implementation does not require the analyst to derive 

decomposition equations and can be estimated flexibly for different types of outcome and explanatory 

variables.  Third, our approach extends classic demographic decompositions by using parametric 

models to control for confounders and thus avoids the need for stratification and problems created 

by high dimensionality. The method does not come without tradeoffs however. In contrast to the OB 

and JVW decompositions, our approach requires substantial computational power and time, and in 

contrast to demographic decompositions, which are often based on widely accessible aggregate data, 

our approach requires large scale individual-level data and parametric modeling assumptions. 

In the first section of our paper, we introduce the counterfactual theory and background of 

our approach using the motivating example of decomposing socioeconomic status differences in 



6 
 

fertility in the United Kingdom. We next demonstrate the flexibility of our approach by addressing a 

classic demographic question: “what is the contribution of smoking to sex differences in life 

expectancy in South Korea?” Collectively, our two examples encompass multiple outcomes and 

mediating variables common in the population sciences and demonstrate how to implement a very 

generalized decomposition procedure that is theoretically grounded in counterfactual theory but still 

easy to apply to a wide range of situations. 

 

A Counterfactual Approach to Decomposition 

Concepts 

We motivate and develop our approach through the question, “what is the contribution of years spent 

in schooling to childhood socioeconomic status (SES) differences in fertility in the United Kingdom?” 

We hypothesize that part of the reason behind why women with higher childhood SES (henceforth 

“high SES women”) have lower fertility compared to women with lower childhood SES (henceforth 

“low SES women”) is that their fertility was delayed because they spent more years in school. To begin 

answering this question, our approach requires specifying a concrete definition for the “contribution” 

of years spent in schooling to differences in fertility. We adopt a counterfactual perspective and ask, 

“how large would the difference in fertility be if both high and low SES women completed the same 

number of years of school?” Based on this counterfactual, the contribution of schooling is revealed 

by seeing how much childhood SES differences in fertility change when we intervene to equalize 

schooling between high and low SES women.  

The first step needed to estimate this counterfactual is to specify exactly what level of 

schooling we are equalizing high and low SES women to. A number of possible options exist. For 

example, we could set schooling for both groups to secondary schooling levels (12 years), set the low 

SES groups to have the same distribution of schooling as the high SES group, or vice versa. When 
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the relationship between an outcome (such as fertility) and a mediator (such as schooling) is linear, the 

choice of this reference distribution does not affect the contribution estimate. However, when the 

outcome and mediator have a nonlinear relationship, the choice is non-arbitrary and different 

distributions can result in different contribution estimates (Andreev et al. 2002). For this reason, the 

choice of the reference distribution should be informed by substantive concerns (e.g. what makes 

sense from a policy perspective?) and inferential concerns (e.g. certain values may be outside the range 

observed in the data and should therefore be avoided). For our example, we set the low SES women 

to have the same distribution of schooling as the high SES women, since this maps to a clear 

intervention of “how much would SES differences in fertility change if we intervened to improve 

schooling among low SES women?”  

The second main step is to specify a summary population measure. We could use a simple 

mean as our summary measure and compare the mean number of children between high and low SES 

women. We are not just limited to the mean, however, and could also examine other summary 

measures such as median time to first birth, or even a function of means such as the total fertility rate 

(TFR).  

After specifying a summary measure, the third main step is to re-estimate what the summary 

measure of fertility would be for low SES women after they have been assigned a new schooling 

distribution. We adopt a potential outcomes framework where every woman in our data is assumed 

to have several potential fertility outcomes corresponding to each value of schooling they could have 

theoretically attained. In reality, we only ever observe a potential outcome for the actual level of 

schooling a particular woman attained. For example, for a woman with 12 years of schooling and 3 

children, her potential fertility outcome corresponding to 12 years of schooling would simply be 3 

children. However, if we reassigned low SES women to have the schooling distribution of high SES 

women, in the counterfactual world, this same woman may now have “attained” 20 years of schooling. 
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The main causal inference problem, which we outline more formally in the next section, is to 

determine what fertility for this woman would be if instead of the 12 years of schooling she actually 

attained, she instead attained 20 years. This process needs to be done for all low SES women in the 

data before forming the counterfactual summary measure of fertility. 

Based on both steps 1, 2, and 3, we construct our quantitative estimate as a percentage change 

and formally define “contribution” as: 

!"#$%&'($&"# = 1 −
∆-(/01234567804289)

∆-(/1;<56=5>)
	 (1) 

where / represents fertility, -(	) represents our chosen summary measure, ∆ refers to the difference 

in the summary measure of fertility between the high and low SES groups, and observed and 

counterfactual refer to the situations where the distribution of schooling is as empirically observed or 

where the low SES group has (counterfactually) received the schooling distribution of the high SES 

group. Note that -(	) need not just be the mean; a major advantage of our approach is this generality 

because it allows for the easy comparison of contrasts for multiple summary measures, such as mean 

or median differences in fertility, or, if / was an outcome like mortality, a difference of a function of 

/ such as life expectancy.  

In sum, there are three important conceptual steps that must be taken to perform the 

counterfactual decomposition for this example: (1) setting the low SES population to have the same 

distribution of schooling as the high SES population; (2) specifying a summary measure; and (3) 

estimating what the summary measure of fertility would be in the low SES population under the new, 

counterfactual, distribution of schooling. In the next section, we provide a more formal treatment of 

the counterfactual perspective and the three decomposition steps.  

 

[Box 1: Causal and g-computation terminology about here] 
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Formal counterfactual approach 

Our approach requires that we estimate what fertility (/) would have been among low SES women 

(group B) if they were set to have the same distribution of schooling (@) as the high SES women 

(group A). We first define the potential outcome for an individual when the mediator M is set to a 

specific value m as /(@ = A). We denote the distribution of @ in group A as BCD  and that in group 

B as BCE  and the potential outcome for an individual when the mediator is set to a value drawn from 

this distribution as /(@~BCD) and /(@~BCE), respectively. Equalizing @ as described (setting the 

schooling distribution in the low SES women to that of the high SES women), we are now interested 

in the value of fertility (/) for individuals in group B when schooling (@) is redistributed to 

BC
D:	/E(@~BC

D)). 

 Next, we need to formally define our summary measure and population contrast of interest. 

For this exposition, we will use the mean of completed fertility as our summary measure and the 

difference in this mean between low and high SES women, H[/D] 	− 	H[/E], as our contrast. Given 

this summary measure and contrast, we are now interested in the mean difference in fertility between 

SES groups when schooling (@) among low SES women has been redistributed to BCD:	H[/D] 	−

	H[/E(@~BC
D)]. The second term is the counterfactual potential outcome since it is not directly 

observable in the data. One way to reveal how to estimate this quantity is by expanding the observed 

mean fertility among low SES women by conditioning on the different values of schooling found in 

BC
E : 

H[/E] = K H[/|@ = A,N] ∙ P(@ = A|N)

Q∈7S
T

(2) 

Within this expression, the distribution of schooling (@) for group B, BCE , is captured by the set of 

probabilities, P(@ = A|N), for each value of m found in BCE . Therefore, if we wanted to estimate 
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what the expected value of /E would be if low SES women had the same distribution of schooling as 

high SES women (H[/E(@~BCD)]), we could replace the probabilities of observing each value of @ 

in group B with the corresponding probability of observing that value in group A (P(@ =

A|V)). Then we would estimate the potential outcome as: 

H[/E(@~BC
D)] = K H[/|@ = A, N] ∙ P(@ = A|V)

Q∈7W(	)

	 (3) 

This is simply a direct standardization or re-weighting approach to estimating the counterfactual 

potential outcome. 

Unfortunately, in most observational research, this approach will not lead to a correct estimate 

of the counterfactual average potential outcome since it  assumes that the expected value of the 

outcome / when @ is set to a specific value AY among those with A ≠ AY  can be estimated as the 

observed expected value for those with A = AY . This condition, known as exchangeability 

(Greenland and Robins 1986), is often a strong assumption given that there are likely other systematic 

ways those with different values of @ differ that would affect their value of /. For example, applied 

to our fertility example, the social and economic characteristics of a region that a woman is born in 

may affect both the years of schooling that a woman attains (@) and the eventual fertility of that 

woman (/). Therefore, if we estimated what fertility for women with low levels of schooling would 

be if they received more schooling using the observed fertility of those with higher levels of schooling, 

we would be confounding the true effect of schooling on fertility with the effect of region of birth on 

fertility. Therefore, in the presence of confounding variables (!), H[/E(@~BCD)] ≠ ∑ H[/|@ =Q∈7S
W

A,N] ∙ P(@ = A|V). However, this equality will hold within strata of !: 

H[/E(@~BC
D)|! = \] = 	 K H[/|@ = A, ! = \,N] ∙ P(@ = A|! = \, V)

Q∈7S
W

	 (4) 
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This is because within strata, there is no difference in the value of the confounders between those 

with different levels of schooling. Therefore, differences in stratum-specific potential outcomes are 

not confounding the effect of schooling with the effect of different confounder values. 

We can now estimate H[/E(@~BCD)] by aggregating these conditional potential outcome 

estimates across the strata of ! and @: 

H[/E(@~BC
D)] = KKH[/|@ = A, ! = \,N] ∙ P(@ = A|! = \, V) ∙ P(! = \, N)

7S
W^

(5) 

Estimating this equation amounts to first stratifying by all values of !.  Next, within each of these 

strata, estimating what fertility for low SES women would be if their schooling was re-distributed to 

the schooling distribution of high SES women in that same stratum. To do this, we would estimate 

the expected value of fertility for low SES individuals for each value of schooling found in the 

schooling distribution of high SES women in that same confounder stratum BC|^`0
D . We would then 

multiply these stratum-specific counterfactual-expected fertility values by the share of the stratum with 

that specific value of schooling in the high SES population P(@ = A|! = \, V)	and then sum across 

strata of @ and !. This second step matches the distribution between low and high SES women by 

equalizing the share of women with each value of A in the low SES population to that share in the 

high SES population (within confounder strata).  

 At this point, estimating the decomposition first defined in Eq. 1.requires the following three 

quantities: mean number of children among high SES women H[/D], the mean number of children 

among low SES women H[/E], and the mean number of children among low SES women if they 

had the education distribution of high SES women H[/E(@~BCD)]. Inserting these quantities into 

Eq. (1) leads to our analytic expression for the contribution of schooling to childhood SES 

differences in fertility:  	
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!"#$%&'($&"# = 1 −
H[/E(@~BC

D)] − H[/D]

H[/E] − H[/D]
	 (6) 

 

Parametric Modeling and Monte Carlo-Based Estimation 

The analytical solution for the counterfactual decomposition (Eq. 6) is simply direct standardization 

or re-weighting conducted within confounder strata. However, it is challenging to directly estimate 

this value from observed data for two important reasons. First, the number of expectations that need 

to be calculated can increase substantially as the number of unique confounder and mediator values 

increases. This is because the counterfactual potential outcome in Eq. 6 requires estimating separate 

expectations for each value of the mediators within each stratum of the joint distribution of the 

confounders. The second major issue that hinders direct estimation is sparsity. As the number of ! 

variables increases, many of the strata will contain few individuals. This creates the following issues: 

(i) the empirical distribution of @ within strata (P(@ = A|!)	∀	A ∈ @c|!) will be based off of very 

few people and therefore may not reflect the underlying distribution from which the values of @ are 

from BC|^ ; (ii) many strata may not contain individuals with the schooling values needed to form the 

counterfactual expectations (even if these individuals did exist, the resulting expectation will likely 

have a high variance due to the small within-strata sample size).   

 Our solution to these two major issues is to use parametric modeling and Monte Carlo based 

estimation to first parameterize all the expectations, then simulate entire populations under the 

observed and counterfactual scenarios using the parametric model estimates, and lastly estimate the 

unconditional expectations by directly taking averages from the simulated data (Bijlsma and Wilson 

2019; Robert and Casella 2013). This approach of parameterizing a high-dimensional direct 

standardization equation is generally referred to as the parametric g-formula and using Monte Carlo 

estimation and simulations is a frequently applied computational procedure for parametric g-formula 
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estimation (Bijlsma and Wilson 2019; Hernan and Robins 2019; Imai, Keele, and Tingley 2010; Keil 

et al. 2014; Wang and Arah 2015). 

We start by addressing the issue that the observed empirical distribution of @D within strata 

of the confounders (!) may not reflect the true strata-specific distribution of @D due to sparsity. We 

do this by assuming a distribution type for @D and fitting a parametric model for @D as a function of 

the confounders (!). For example, our main mediator (@) in the fertility example is a count variable 

(years of schooling); therefore, we might assume a Poisson distribution and then fit the following 

regression model:  

d(H[(@D|!)]) = ef
D + ∑!Y ∙ e^,Y

D (8)	 

where d(	) is the log-link function.   

Next, we use this model to estimate the conditional distribution of schooling among high SES 

women (@D|!). In the case of a Poisson distribution, which is only characterized by a mean parameter, 

we estimate the distributions of @D|! as: 

@cD|!	~	P"&ii"#(j = Hk[@D|!] = dlmneof
D + ∑!Y ∙ eo^,Y

D p (9) 

where the hats represent quantities that have been estimated. We can now set the conditional 

distribution of @ in any strata of ! for low SES women (@E|!) to that of the same conditional 

distribution among high SES women (@D|!) by directly drawing new values of schooling (@) for the 

low SES group from the model-estimated conditional distribution of schooling for high SES women 

in the same stratum, @cD|!	~	P"&ii"# rj = Hk[@D|!] = dlmneof
D + ∑!Y

D ∙ eo^,Y
D ps. By drawing 

values from a parametric distribution, this approach side-steps the need to directly estimate the 

empirical distribution of @D in any given stratum P(@ = A|!, V)	∀	A ∈ @cD. 

 This approach can be applied to any parametric distribution. For example, if @ is binomially 

distributed, d(	) would represent a logit link and we could draw values from a binomial distribution. 
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Similarly, if @ is a continuous variable, we would estimate a linear regression and draw from a normal 

distribution with a mean based on the model and a standard deviation based on the model residuals. 

Next, Eq. 6 requires estimates of H[/E|@ = A,!]	∀	\ ∈ !. Similar to the mediator model 

above, we reduce the dimensionality of this problem by a fitting parametric model for /Eas a function 

of @ and !. In the fertility example, our outcome (number of births) is also count distributed and 

therefore we again assume a Poisson model: 

d(H[/E|@, !]) = tf
E +@ ∙ tC

E + ∑!Y ∙ t^,Y
E 	 (10)	 

Based on this model, the expected value of /Efor any value of @ within any of the confounder strata 

H[/E|@, !]	is estimated as: 

Hk[/E|@, !] = dlmntvf
E + @ ∙ tvC

E + ∑!Y ∙ tv^,Y
E p	 (11) 

 
Therefore, we can now form a parametrized model-based version of H[/E(@~BCD)] as: 

Hk[/E(@~BC
D)] =KKdlm(tvf

E +@ ∙ tvC
E + ∑!Y ∙ tv^,Y

E ) ∙ P∗(@c = Ax|! = \, V)) ∙ P(! = \, N)
C^

	(12) 

In this equation, P∗(@c = Ax|! = \, V) are the estimates of the conditional distribution of schooling 

for high SES women (group A), BC|^
D , generated by drawing new values of @ from a parameterized 

distribution, @cD|!	~	P"&ii"# rj = Hk[@D|!] = dlmneof
D + ∑!Y ∙ eo^,Y

D ps rather than directly using 

the observed empirical distribution of @|! for high SES women (P(@ = A|!, V)	∀	A ∈ @cD). 

 Now that we have an estimate of H[/E(@~BCD)] we could technically estimate the 

contribution of schooling as defined in Eq. 6 by plugging in Hk[/E(@~BCD)], i.e.  !"#$%&'($&"# =

1 −
ykz{TnC~7S

Wp|ly[{W]

y[{T]ly[{W]
 since H[/D] and H[/E] could be directly estimated from the data using the 

sample means. This is potentially problematic because Hk[/E(@~BCD)]	is model-based while the other 

quantities are not. Therefore, differences between the numerator and denominator of Eq. 6 (the 
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counterfactual and observed contrasts) could be due to both the contribution of @ and the modeling 

process. To mitigate model-induced differences, we also estimate H[/D] and H[/E] using the same 

modeling process used to form Hk[/E(@~BCD)].	We use these model-based estimates of the observed 

data – often referred to as “natural course” estimates – to form our estimates of the contribution of 

schooling to SES differences in fertility. 

 To form the natural-course estimates, we begin by estimating the following four models (two 

for the mediator, and two for the outcome): 

d(H[(@|!, V]) = ef
D + ∑!Y ∙ e^,Y

D (13) 

d(H[@|!, N]) = ef
E + ∑!Y ∙ e^,Y

E 	 (14) 

d(H[/|@, !, V]) = tf
D +@ ∙ tC

D +	∑!Y ∙ t^,Y
D 	 (15) 

d(H[/|@, !, N]) = tf
E +@ ∙ tC

E +	∑!Y ∙ t^,Y
E 	 (16) 

Note that we assumed separate models for group A and B, with the superscripts indicating that the 

coefficients need not be the same in both groups. This flexibility comes with the tradeoff of lower 

precision compared to more constrained models. For example, we could have instead estimated 

pooled mediator and outcome models with a dummy variable for group and potential interactions of 

the group dummy with some or all of the ! variables. While such models increase precision, they also 

introduce additional assumptions by constraining the distributions of / and @ across the two groups. 

 Next, we draw mediator values as before; however, since we are not interested in setting a 

counterfactual distribution, we draw values for each group based on their own distribution. For 

example, we would draw values of @ for group A (high SES women) based on @cD|!	~	P"&ii"#(j =

Hk[@D|!] = dlm(eof
D + ∑!Y ∙ eo^,Y

D )), and values of @ from group B (low SES women) based on  

@cE|!	~	P"&ii"#(j = Hk[@E|!] = dlm(eof
E + ∑!Y ∙ eo^,Y

E )). We then use the outcome models with 

the natural-course mediator draws to form natural-course estimates of H[/D] and H[/E]: 
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Hk[/|V] =KKdlm(tvf
D + @c ∙ tvC

D +	∑!Y ∙ tv^,Y
D ) ∙ P∗(@c = Ax|! = \, V)) ∙ P(! = \, V)

C

#(17)
^

 

Hk[/|N] =KKdlm(tvf
E +@c ∙ tvC

E +	∑!Y ∙ tv^,Y
E ) ∙ P∗(@c = Ax|! = \,N)) ∙ P(! = \, N)	#(18)

C^

 

Combining these two estimates with the counterfactual estimate of fertility, Hk[/E(@~BCD)] =

	∑ ∑ dlm(tvf +@c ∙ tvC + ∑!Y ∙ tvY) ∙ P
∗(@c = Ax|! = \, V)) ∙ P(! = \, N)C^ , we can now estimate 

the contribution of schooling to SES differences in fertility as: 

!"#$%&'($&"# = 1 −
Hk[/E(@~BC

D)] − Hk[/D]

Hk[/E] − Hk[/D]
	 (19) 

 

Other measures than the mean and the pseudo population perspective 

For this example, we focused on the mean as our summary population measure and compared mean 

fertility levels between groups. Our approach is not just limited to the mean, however, and can easily 

be extended to other summary population measures, such as the median, mode, variance, or a function 

of population moments such as life expectancy.  

For example, suppose rather than the mean number of children we are interested in the 

contribution of schooling to the difference in median time to first birth between low and high SES 

women? To estimate this contribution, we begin just as before and start by asking the question “how 

large would the difference in the median time to first birth between low and high SES women be if 

we intervened to bring low SES women to the same levels of schooling as high SES women?” Also 

as before, we fit models for the mediators and set the conditional distribution of schooling for low 

SES women to that of high SES women by drawing from the parameterized distributions.   

At this point for the mean outcome, we used the parametric outcome model with the updated 

mediator values to estimate the mean value of fertility in each of the strata of the confounders. Using 

iterated expectations, we then went from this set of conditional means to the unconditional mean 
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fertility outcome. We were able to do this because the mean can be expressed as a weighted sum of 

conditional means. This process, however, cannot be done for the median, since the overall median 

does not equal the weighted sum of a set of conditional medians.  

Our approach to solving this issue is to introduce another level of Monte Carlo estimation: 

rather than using the outcome model to predict conditional expectations, we use it to parameterize 

the distribution of the outcome and then draw individual values of the outcome (time to first birth) 

from this parameterized distribution in exactly the same way we did for the mediators. We can then 

estimate any summary measure directly from the simulated data (for example by taking the median or 

mode of the simulated time to first birth values). 

Using these two levels of Monte Carlo estimation (one set of draws for the mediator and 

another for the outcome), our approach can be understood as estimating the contribution of a 

mediator or several mediators by first generating an entire counterfactual micro-population where the 

mediator (and consequently the outcome) is changed in some way and then comparing summary 

measures from this population to a natural-course population where the mediators have not been 

changed. This pseudo-population perspective is powerful because it easily allows for comparisons of 

any contrast we can think of since we have effectively re-generated entire micro-populations for the 

observed and counterfactual worlds. Provided that the modeling procedure was flexible enough to 

allow for subgroup-specific effects, we could also focus on specific subgroups by simply limiting our 

comparison to specific observations in the pseudo-population. 

Although this approach may appear challenging, it can actually be estimated by following a 

straightforward algorithm: 

Step 0: Specify starting decisions 

a. Decide on a summary measure. 

b. Decide on a contrast. 
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c. Decide on a reference distribution or group. 

Step 1: Estimate relationships in the data  

a. Fit regression model(s) for the mediator(s) of interest with the same confounders as the 

outcome model as covariates. 

b. Fit regression model(s) for the outcome with the mediator(s) of interest and confounders 

of the mediator-outcome relationship as covariates. 

Step 2: Form the Natural Course Pseudo-Population.  

a. Use the mediator model(s) with observed confounder values to simulate mediator values.  

b. Use outcome model(s) together with observed confounder values and simulated mediator 

values to simulate the outcome. This is the natural-course pseudo-population. 

c. Using the natural course pseudo-population, estimate the summary measure for both 

groups and then form the contrast of interest across groups. 

Step 3: Form the Counterfactual Pseudo-Population 

a. For the non-reference groups, use the mediator model(s) with observed confounder values 

to simulate mediator values from the reference group. 

b. Use the outcome model(s) together with observed confounder values and simulated 

mediator values to simulate the outcome. This is the counterfactual pseudo-population. 

c. Using the counterfactual pseudo-population, estimate the summary measure for both 

groups and then form the contrast of interest across groups. 

Step 4: Compare the contrast of interest in the natural-course and counterfactual pseudo-

populations. 

To estimate standard errors and to produce stable estimates of the contribution, we have to 

address two types of variability. First, since we are drawing values of the mediators and outcomes 

from probability distributions, the exact values assigned to individuals can change across multiple 
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draws. This results in the estimate of the contribution also changing across draws (known as Monte 

Carlo error). To reduce this error, we conduct Steps 2 and 3 multiple times, each time drawing a new 

set of mediator and outcome values. We then construct the contrasts for each draw and then average 

across all these draws to produce stable natural course and counterfactual estimates, before calculating 

the contribution in Step 4. 

Second, because our results are based on a sample, we need to account for sampling variability. 

This is especially important for the construction of confidence intervals around the estimates. We use 

a bootstrap procedure to capture this uncertainty, drawing with replacement a fresh sample of size 

equal to the original data before step 1, conducting the entire analysis k times, and then averaging 

across the k bootstrap samples to obtain a point estimate and using the 2.5% and 97.5% percentiles 

for the confidence interval. 

We provide pseudocode for the fertility example to further clarify these steps and how to 

implement them with common statistical software (Figure 1).  We also provide an R-function for easy 

implementation of our method [Package in development] 
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Empirical Example 1: Contribution of years of education to childhood 

socioeconomic differences in fertility 

In this example, we demonstrate the application of our approach to an expanded version of the 

hypothetical question we used to motivate the paper: what is the contribution of years spent in 

schooling to childhood SES differences in fertility? We demonstrate how to decompose two different 

types of outcome variables and three classic demographic summary measures: percent childless, 

median time to first birth (revealing how to apply the method to non-mean-based summary measures), 

and cohort total fertility rate (TFR).   

 

Data: The 1970 British Birth Cohort 

We use data from the 1970 British Cohort Study (BCS70) (Elliott and Shepherd 2006; UK Data 

Archive 2016). The BCS70 routinely follows around 17,000 individuals born in Great Britain (except 

Northern Ireland) in a single week in 1970. Beginning in the 26-year follow up, women were asked 

about their pregnancy history. For this example analysis, we use data on women from the 2008-2009 

follow-up wave when the women were 38 years old. We only include those with non-missing baseline 

and pregnancy follow-up information for a total sample of 3,634 women.  

 

Outcome (Y) 

We study three closely related fertility outcomes: being childless at age 38 (binomial), time to first birth 

from age 16 among those who had at least one child (Poisson), and the number of children born to a 

woman at age 38 (Poisson). We construct all three outcomes based on self-reported prior pregnancy 

histories. For this analysis, we only consider live births. 
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Mediator (M) 

Our mediator of interest is the number of years spent in school, based on theory and evidence that 

greater time spent in schooling could both increase the opportunity cost of having a child and the age 

at which women give birth (Balbo, Billari, and Mills 2013; Becker 1981; Cleland and Wilson 1987).  

 

Grouping variable 

We classify individuals into three childhood socio-economic (SES) groups. To construct the childhood 

SES groups, we first conduct a principal components analysis on binary indicators for tertiles of 

parental income when the cohort members were aged 10, tertiles of the respondent’s mother’s age at 

delivery, whether their mother was unmarried at the time of delivery, whether the respondent’s mother 

was college educated, whether the respondent’s father was college educated, and indicators for 

occupational classes for both the father and mother. We then create a continuous SES score using the 

first principal component and classify individuals into tertiles of the score.  

 

Summary measures and contrast 

We consider three summary measures corresponding to the three outcomes: percentage of women 

who are childless at age 38, median time to first birth, and partial-cohort TFR (the mean number of 

children at age 38; this is partial because women may still have additional children after age 38). For 

all three summary measures, our contrast of interest is the difference in the summary measure for the 

low and medium SES groups relative to high SES women. As our counterfactual scenario, we set the 

education distribution of the low and medium SES women to be equal to that of the high SES women. 
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Confounders (C) 

As confounders of the relationship between years spent in education and childbearing, we adjust for 

region of birth (Scotland, Wales, Northern England, Midlands, Southern England, and London), the 

age of the mother of the respondent at first childbearing (less than 22, between 22 and 30, and 30 or 

more), and the number of siblings that the respondent herself had while living in her parental 

household. 

 

Models 

Mediator models 

We model years spent in schooling using the following Poisson regression model: 

Ä"d(H[@|!, -H-]) = ef + ∑!Y ∙ e^,Y + -H-91Å ∙ e91Å + -H-QY>>95 ∙ eQY>>95  

Where M is the count of number of years in education, -H-91Å  and -H-QY>>95  represent dummy 

variables for low and medium SES categories (leaving high SES as a reference category), and C 

represents the confounders described previously. 

 

Outcome models 

We fit separate models for each of the three outcomes as a function of the years spent in schooling 

(M), the confounders (C), and SES group:  

Ä"d&$nH[/0ÇY9>95<<|@, !, -H-]p

= tf + @ ∙ tC + ∑!Y ∙ t^,Y + -H-91Å ∙ t91Å + -H-QY>>95 ∙ tQY>>95  

Ä"dnH[/47Y6<4;Y64Ç|@, !, -H-]p

= tf + @ ∙ t^,Y + ∑!Y ∙ tY + -H-91Å ∙ t91Å + -H-QY>>95 ∙ tQY>>95  
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Ä"dnHz/30ÇY9>653É@, !, -H-|p

= 		 tf + @ ∙ t^,Y + ∑!Y ∙ tY + -H-91Å ∙ t91Å + -H-QY>>95 ∙ tQY>>95  

Note that although we identically named t’s in all three models, they are separately estimated and 

hence represent different quantities. Code for this analysis is available in Supplemental Material will 

be available with R package. Pseudo-code for calculating the TFR contrast is shown in Figure 1. 

 

Results 

Table 1 presents the observed percentage of women who are childless at age 38, the median age at 

first birth among those that have had at least one birth, and cohort TFR at age 38, across childhood 

SES groups. Women with higher childhood SES are more likely to be childless, have an older age at 

first birth, and (consequently) have a lower cohort TFR. 

Table 2 presents the counterfactual-based decomposition results for childlessness (Panel A), 

age at first birth (Panel B), and cohort TFR (Panel C). There is an 8.5 percentage point difference in 

the natural course difference in percentage childless at age 38 between women with high and low 

childhood SES, and a 4.2 percentage point difference between women with high and medium 

childhood SES. After setting the lower two childhood SES groups to have the same distribution of 

total years spent in education as the high childhood SES group, these differences reduce substantially 

(5.8 percentage points and 2.1 percentage points for the low and medium childhood schooling groups 

respectively). Based on this change, we estimate that 32.2% of the difference in childlessness between 

high and low childhood SES groups and 50.2% of the difference in childlessness between the high 

and medium childhood SES groups is due to differences in total years spent in education. 

 We find similarly high levels contributions of schooling to SES differences in median age at 

first birth. For example, there is a 3.2-year natural course difference in median age at first birth between 

the high and low childhood SES groups. After setting the low childhood SES group to have the same 
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years spent in education as the high SES group, this difference reduces to 2.6 years. Therefore, we 

estimate that differences in total years spent in education between the two groups is responsible for 

18.7% of the 3.2-year difference in median age at first birth between those with high and low 

childhood SES. 

 Lastly, schooling also had a large contribution to SES differences in the cohort TFR at age 38. 

The difference in TFR between women with high and low childhood SES reduces from 0.27 to 0.19 

when total years of schooling for the low SES group is set to that of the high SES group. Therefore, 

30.9% of the difference is attributable to schooling differences. The percent contribution for the 

medium SES group was even larger; while the TFR difference between women with high and medium 

SES is only 0.10, this reduces to 0.04 when the schooling distributions are equalized, resulting in a 

58.2% contribution. 
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Empirical Example 2: Smoking’s Contribution to Sex Differences in Life 

Expectancy in South Korea 

In this example, we demonstrate the application of our approach to a classic demographic question: 

what is the contribution of smoking to sex differences in life expectancy? For this example, we 

examine the case of South Korea, a country with particularly large sex differences in both smoking 

and life expectancy.  

 

Data: The Korean Longitudinal Study of Aging 

We use data from the 2006, 2008, 2010, and 2012 waves of the Korean Longitudinal Study of Aging, 

a nationally representative survey of South Korean adults ages 45 and above (Jang 2015). We focus 

on adults ages 50 and above for a total sample of 7,615 individuals comprising 500,321 person-month 

observations. 

 

Outcome (Y) 

Our outcome is whether an individual died over the course of the study period. We use information 

on family-member-reported date of death and the date of last interview for those who did not die to 

determine the number of person-months that every individual lived between 2006 and 2012. 

 

Mediator (M) 

Our primary mediator is a dichotomous indicator for whether an individual reported ever regularly 

smoking cigarettes. 

 

Grouping variable 

We compare men and women ages 50 and above. 
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Summary measure and contrast 

Our summary measure is period life expectancy at age 50. We construct this measure by estimating 

age-specific mortality rates from the individual-level data and converting these rates into period life 

expectancies using standard life table techniques (Preston, Heuveline, and Guillot 2000). Our contrast 

is the difference in life expectancy at age 50 between men and women. As our counterfactual scenario, 

we set the smoking levels among men to be equal to those among women. 

 

Confounders 

We adjust for the following potential confounders of the smoking-mortality relationship: age, how 

frequently an individual reported drinking alcohol, marital status, schooling, and whether the 

individual lived in an urban or rural area. 

 

Models 

For this example, we estimate pooled outcome and mediator models with an indicator variable for 

sex. In contrast to the previous example, we also interact the sex variable with the confounders in the 

mediator model and with the confounders and mediator in the outcome model to allow the conditional 

mediator and outcome distributions to flexibly vary across men and women. 

 

Mediator model 

We parameterize the probability of ever regularly smoking for men and women using the following 

logistic regression model: 

Ä"d&$(H[@|!, -HÑ]) = ef + ∑!Y ∙ e^,Y + -HÑ ∙ eÖyÜ + ∑-HÑ ∙ !Y ∙ eÖyÜá^,Y 
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Here, M is a binary variable for whether an individual self-reported ever regularly smoking, C 

represents the vector of confounders described previously, SEX is a dummy variable for female, and 

the final term represents interactions between the female dummy and the confounders. 

 

Outcome model 

Before estimating the outcome model, we convert the data to the person-month level with 

observations for every month between the initial interview in 2006 to either the date of death or date 

of last interview. We then model mortality as a function of smoking, sex, and the confounders by 

fitting the following logistic regression model on the person-month observations (this type of model 

is also referred to as a discrete failure-time model): 

Ä"d&$(H[/|@, !, -HÑ])

= tf +@ ∙ tC + ∑!Y ∙ t^,Y + -HÑ ∙ tÖyÜ + -HÑ ∙ @ ∙ tÖyÜáC + ∑-HÑ ∙ !Y

∙ tÖyÜá^,Y 

Note that we have also included an interaction between ever smoking and female. By estimating this 

model on the person-month level, we are able to simulate the precise age at which individuals die. 

This is needed to correctly estimate age-specific mortality rates. Pseudocode for this example is shown 

as Figure 2 and code to estimate the example is provided in the supplementary material. 

 

Results 
 
There is a large, 6.7-year difference in life expectancy at age 50 between men and women in South 

Korea (Table 3). Sex-differences in smoking potentially explain a part of this large mortality difference: 

61.0% of men reported ever regularly smoking cigarettes compared to just 4.3% of women. 

Figure 3 graphs the natural course and counterfactual life table death distributions and the 

corresponding estimates of period life expectancy at age 50.  In the natural course, men have 
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substantially excess levels of mortality between ages 50 and 80, with especially pronounced differences 

between ages 70 and 80. In contrast to men, the death distribution for women is concentrated in the 

oldest ages, with the largest absolute share of life table deaths occurring in the 90+ age group. After 

setting men to have the same distribution of smoking as women, the large, 6.7-year difference in life 

expectancy actually reverses, resulting in a 1.8-year advantage for men relative to women. This can be 

visualized in the counterfactual death distribution for men: the distribution is substantially more 

concentrated in the older ages even relative to women. The resulting change in the difference in life 

expectancy corresponds to a (1 - 6.0/(-1.8) = 1.3) 130% contribution of smoking to sex-differences 

in adult life expectancy in South Korea. 
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Discussion 

We introduce a generalized yet easily applied procedure for decomposing social or population 

differences in a wide range of outcomes within a counterfactual and potential outcomes framework. 

This approach is built on Jackson and VanderWeele’s counterfactual decomposition theory (Jackson 

and VanderWeele 2018) and measures the contribution of mediating variables to group differences in 

a summary population measure by considering how group differences change when the mediating 

variable is intervened upon in some way.  This approach is similar to causal mediation analysis 

(VanderWeele 2015) with one important difference: whereas causal mediation analysis seeks to split a 

causal effect into the contribution of mediating pathways, our approach splits an observed association 

(difference across groups) into the contribution of group differences in the distribution of potential 

mediators. We demonstrate this approach on two examples that capture questions common in the 

population sciences: (i) “what is the contribution of years spent in schooling to childhood 

socioeconomic status differences in fertility in the United Kingdom?”; and (ii) “what is the 

contribution of smoking to sex differences in life expectancy in South Korea?” In the following 

sections, we compare our approach to answering these two questions to existing decomposition 

methods and conclude with a discussion of the general strengths and weaknesses of our method. 

 

Comparison to other methods 

Example 1: Schooling and fertility in the United Kingdom 

Our first example decomposes differences in three outcomes (childlessness, time to first birth, and 

number of children) using two summary measures (the mean for childlessness and number of children, 

and the median for time to first birth). For this example, the major advantage of our approach over 

existing methods is the ability to decompose median differences; to our knowledge, this is currently 
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not possible with the JVW decomposition theory, regression decompositions such as the Oaxaca-

Blinder and its extensions, nor with demographic decompositions.  

Although the other two summary measures in the example (mean number of children and 

percent childless) can be decomposed using existing methods, our approach may still provide a few 

important advantages. For example, while the JVW theory applies to both summary measures, JVW 

do not provide decomposition equations for Poisson distributed outcomes (number of children) nor 

common binary outcomes (childlessness). For these summary measures, our approach can be seen as 

a way to practically implement JVW’s theory to a wider range of outcome types. 

Similarly, the mean number of children and percent childless can also be decomposed with 

the extensions of the Oaxaca-Blinder decomposition developed by Yun and Powers (Powers and Yun 

2009; Yun 2004), which uses approximations and Taylor expansions to directly estimate non-linear 

decomposition equations. Our approach provides an alternative to the Yun and Powers 

decomposition and uses simulations to avoid needing to derive decomposition equations and making 

linear approximations. This could be especially helpful when the underlying regressions contain several 

interaction terms or involve large differences between groups that are not well-approximated by linear 

equations. 

Demographic decompositions, such as the stepwise replacement algorithm (Andreev et al. 

2002), line-integral decomposition (Horiuchi et al. 2008), or even the Kitagawa decomposition 

(Kitagawa 1955), can also be used to estimate the contribution of schooling to group differences in 

percent childless and mean number of children. The primary limitation of these demographic 

decompositions is that confounding has to be addressed through stratification. For our example, this 

means the decompositions would have to be conducted separately in each stratum of the joint density 

of region of birth (Scotland, Wales, Northern England, Midlands, Southern England, and London), 

the age of the mother of the respondent at first childbearing (less than 22, between 22 and 30, and 30 
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or more), and the number of siblings that the respondent herself had while living in her parental 

household (ranging from 0 to 11) -- representing more than 100 strata. This is likely not possible since 

many strata would have few to no observations and could not be used to accurately estimate either 

the counterfactual conditional expectations nor the underlying conditional distributions of schooling 

(the mediator). On the other hand, if we ignored these variables, the decomposition results may 

incorrectly estimate the contribution of schooling to fertility differences due to confounding from 

these other characteristics (see Appendix 1 for an example). 

 

Example 2: Smoking and life expectancy in South Korea  

For our second example, we estimate the contribution of smoking to sex differences in life expectancy 

at age 50 in South Korea. This example highlights a major advantage of our approach over other 

micro-data-based decompositions: because our summary measure, life expectancy, is not a simple 

population moment, it cannot be decomposed using the JVW decomposition nor extensions of the 

Oaxaca-Blinder decomposition.  

By contrast, a myriad of demographic approaches have been developed to answer this type of 

question, most relying on aggregate cause-specific mortality information. Our approach does not 

replace these decompositions but rather provides a micro-data driven alternative. This may be helpful 

in circumstances where cause of death data are not available or when the risk factor of interest affects 

mortality through multiple causes that cannot be solely attributed to the risk factor. This is an 

important consideration for estimating the contribution of smoking to life expectancy, since smoking 

affects several different causes of death. Estimating the role of smoking to differences in life 

expectancy between men and women using traditional decompositions, such as the Arriaga or step-

wise replacement algorithm, would therefore require somehow determining the share of multiple 

causes of death that are attributable to the difference in the prevalence of smoking between sexes. 
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Our approach bypasses this issue by directly estimating the relationship between the prevalence of 

smoking and all-cause mortality from individual-level data and using these estimates as the basis for 

decomposition. 

 

Limitations and disadvantages compared to existing methods 

Despite these advantages, our method comes with important trade-offs compared to existing 

methods. First, compared to the JVW closed-form decomposition equations, regression 

decompositions such as the Oaxaca-Blinder and its extensions, and many demographic 

decompositions, our approach requires substantial computational power and time. This is not a trivial 

consideration and decompositions with large datasets may take hours to even days to complete even 

when considerable computational power is available.  

There are two additional important limitations to our approach when compared specifically to 

demographic decompositions. The first is that many demographic decompositions use widely available 

aggregate data sources. Our approach, however, necessitates large, often population-representative, 

sources of individual-level data. Therefore, our approach is not intended to replace traditional 

decompositions, but rather to complement these decompositions with more concrete counterfactual 

interpretations when micro-level data are available. Second, in contrast to the mostly non-parametric 

approach used in most demographic decompositions (through binning of continuous variables), our 

approach requires making parametric modelling assumptions that could introduce error if the models 

do not accurately reflect the real data generating process. To reduce the chance for this error, we 

strongly recommend that the distribution of simulated outcomes and mediators for each population 

is compared to the empirical distributions observed in the data. If there are large discrepancies between 

the simulated and observed values, the model’s specification (i.e. assumed outcome distribution or the 

functional form of covariates) may need to be recalibrated until the differences between the observed 
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and simulated values are no longer large. Although this does not ensure that the models are correctly 

specified, it helps avoid gross misspecification. 

 We discuss other considerations for the application and interpretation of our model in 

Appendix 2. 

  

Conclusions 

Decomposing the sources of differences in health and other outcomes is a key research endeavor in 

demography and other population sciences. We introduce a flexible implementation of the 

counterfactual decomposition that builds on and generalizes the rich existing body of work on 

decomposition methods in the health and social sciences. Our approach is a highly flexible and easily 

implemented way of estimating decompositions that are grounded in potential outcomes and 

counterfactual theory and applicable to a wide range of population questions.  
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Table 1. Observed proportion of women who are childless at age 38, median age at first birth 
among women who have had at least one birth across childhood SES groups, and Total 
Fertility Rate, 1970 British Cohort Study 38-year follow-up. 

 
Low Childhood SES Middle Childhood 

SES High Childhood SES 

Childlessness 0.229 0.271 0.314 

Age at first birth 25.0 26.0 28.0 

Total Fertility Rate 1.72 1.55 1.45 

Notes: Childhood SES groups are based on tertiles of a continuous core based on several 
parental characteristics and parental income when the women were aged 10. 
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Table 2. Estimates of the contribution of total years of schooling to childhood socioeconomic status differences in every having a birth 
and median age at first birth among those who have had a birth using the counterfactual decomposition method, 1970 British Cohort 
Study, 1970-2008.  
Panel A: Any birth     

 Natural Course 
Percentage 

Counterfactual 
Percentage 

Natural Course  
Difference 

Counterfactual  
Difference 

Percent  
Mediated 

High Childhood SES 0.314 0.314    

 (0.290,0.341) (0.290,0.341)    

Middle Childhood SES 0.271 0.293 0.042 0.021 50.2% 

 (0.246,0.299) (0.266,0.322) (0.001,0.078) (-0.019,0.057) (14.1%,297.3%) 

Low Childhood SES 0.229 0.256 0.085 0.058 32.2% 

 (0.204,0.252) (0.229,0.282) (0.052,0.120) (0.021,0.095) (17.4%,61.7%) 

      

Panel B: Age at first birth among those who had a birth    

 Natural Course 
Median Age 

Counterfactual 
Median Age 

Natural Course  
Difference 

Counterfactual  
Difference 

Percent  
Mediated 

High Childhood SES 28.0 28.0    

 (27.9,28.3) (27.9,28.2)    

Middle Childhood SES 26.0 26.7 -2.0 -1.3 34.8% 

 (25.9,26.2) (26.1,27.0) (-2.3,-1.8) (-1.9,-1.0) (7.4%,50.0%) 

Low Childhood SES 24.9 25.4 -3.2 -2.6 18.7% 

  (24.2,25.0) (25.0,26.0) (-3.9,-3.0) (-3.1,-2.0) (5.1%,33.1%) 
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Panel C: Cohort Total Fertility Rate (TFR) 

 Natural Course 
TFR 

Counterfactual 
TFR 

Natural Course 
Difference 

Counterfactual 
Difference 

Percent 
Mediated 

High Childhood SES 1.45 1.45    

 (1.38, 1.51) (1.38,1.51)    

Middle Childhood SES 1.55 1.49 0.10 0.04 58.2% 

 (1.47,1.62) (1.41,1.56) (0.01,0.20) (-0.05,0.14) (19.7%,275.3%) 

Low Childhood SES 1.72 1.63 0.27 0.19 30.9% 

  (1.64,1.79) (1.55,1.71) (0.17,0.37) (0.09,0.28) (18.9%,52.2%) 

Notes: Cohort TFR is only measured up to age 38 – sometimes called a partial TFR. 
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Table 3.  Difference in period life expectancy at age 50 and the prevalence of ever regularly 
smoking cigarettes between men and women, Korean Longitudinal Study of Aging. 

 Men Women 

Life expectancy at age 50 30.7 36.7 

Prevalence of ever smoking 61.0% 4.3% 

Notes: Data are from the 2006, 2008, 2010, and 2012 waves of the Korean Longitudinal Study of 
Aging. We estimated life expectancy at age 50 using standard period life table methods. 
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Figure 1. Example bootstrap code for a Poisson mediator “totalschooling” (years in schooling) and 
Poisson outcome “totalbirth” (number of births between age 16 and 38). For the example in the figure, 
our summary measure is the mean number of children, our contrast of interest is the difference in 
mean fertility between women with low and high childhood SES, and for the counterfactual scenario 
we assign the education distribution of the high childhood SES group to the low childhood SES group. 
In the models, C represents covariates needed for exchangeability.  
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Figure 2. Example bootstrap code for a binomial mediator “smoke” (ever smoker), binomial outcome 
“died” (death in a person-year). For the example in the figure, our summary measure is life expectancy 
at age 50, our contrast is the difference in life expectancy between men and women, and for the 
counterfactual scenario we assign men the smoking distribution of women. In the models, C 
represents covariates needed for exchangeability. 
  

Start		loop	b	from	1	to	999	 	 	 	 	 	 	 	 	 	 	 	 																																										BOOTSTRAP	
n	<-	size(skorea.dat)	
bootstrap.data.wide	<-	sample(skorea.dat,	size=n,	replacement=TRUE)	
Reshape	bootstrapped	data	to	the	person-month	level	
bootstrap.data.long	<-	reshape.long(bootstrap.data.wide)	
We	then	save	the	relationships	in	the	data	by	fitting	regression	models		
outcome.model	<-	logistic.regression(died	~	sex	+	smoke	+	C	+	sex*smoke	+	sex*C,	data=bootstrap.data.long)	
mediator.model	<-	logistic.regression(smoke	~	sex	+	C	+	sex*C,	data=bootstrap.data.wide)	

Start	loop	m	from	1	to	50	 	 	 	 	 	 	 	 	 	 	 	 MONTE	CARLO	
Make	a	copy	of	the	wide	format	data	within	each	Monte	Carlo	loop	
montecarlo.wide	<-	bootstrap.data.wide	
Form	the	natural	course	estimates	

montecarlo.wide$smoke	<-	binomial.draw(probability	=	predict(mediator.model,	data	=	montecarlo.wide))	
montecarlo.long	<-	reshape.long(montecarlo.wide)	
Determine	the	hazard	of	mortality	for	each	person-month	of	observation	and	then	age-specific	mortality	by	sex	
montecarlo.long$hazard	<-	predict(outcome.model,	data	=	montecarlo.long)	
Start	loop	s	over	sex	

Start	loop	a	over	age			
age.by.sex.mortality.rate[age=a,sex=s]	<-	mean(montecarlo.long$hazard[age=a,	sex=s])*12		
End	loop	a	we	have	now	produced	annualized	rate	by	age	and	sex	

End	s	
men.natural.course.montecarlo[m]	<-	life.expectancy(age.by.sex.mortality.rate[sex=0)	
women.natural.course.montecarlo[m]	<-	life.expectancy(age.by.sex.mortality.rate[sex=1)	

Form	the	counterfactual	estimates	
men.montecarlo.wide	<-	montecarlo.wide[sex=0]	
Assign	men	the	identifier	of	women	so	that	the	counterfactual	smoking	values	are	drawn	from	the	female	distribution	
men.montecarlo.wide$sex	<-	1	
Draw	values	of	smoking	again,	this	time	from	the	female	probabilities	
men.montecarlo.wide$smoke	<-	binomial.draw(probability	=	predict(mediator.model,	data	=	men.montecarlo.wide))	
men.montecarlo.long	<-	reshape.long(men.montecarlo.wide)	
Determine	the	hazard	of	mortality	for	each	person-month	of	observation	and	then	age-specific	mortality	for	jus	men	
men.montecarlo.long$hazard	<-	predict(outcome.model,	data	=	men.montecarlo.long)	
Start	loop	a	over	age			

age.mortality.rate.counterfactual[age=a]	<-	mean(men.montecarlo.long$hazard[age	group])*12		
End	a	

Estimate	the	counterfactual	life	expectancy	for	men	
men.counterfactual.montecarlo[m]	<-	life.expectancy(age.mortality.rate.counterfactual)	

End	m	
Save	the	mean	life	expectancy	over	Monte	Carlo	loops	in	the	bth	place	in	a	vector	
men.natural.course.bootstrap[b]	<-	mean(men.natural.course.montecarlo)	
women.natural.course.bootstrap[b]	<-	mean(women.natural.course.montecarlo)		
men.counterfactual.bootstrap[b]	<-	mean(men.counterfactual.montecarlo)	
End	j	
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Figure 3. Natural course and counterfactual life table death distributions and estimates of the 
contribution of smoking to sex differences in life expectancy at 50, Korean Longitudinal Study of 
Aging. 
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Concept Explanation 

Grouping variable: An indicator variable of the populations (or groups) to be compared. 

Mediator: A variable that potentially accounts for some of the differences between groups. In causal analysis, this 
variable should be a cause of the outcome of interest. 

Counterfactual: A hypothetical state of the world that may be different from its empirical state in some way. Standardized 
mortality rates are a common counterfactual used in demography: e.g. what would the mortality rate in the 
United States be if it had the age distribution of South Africa? 

Causal effect: In the Neyman-Rubin causal model, this is defined as the difference in an outcome when action A is 
present as compared with the outcome when action A is absent, all other things being equal (Neyman 
1923; Rubin 1974).  

Exchangeability: The situation where two groups have the same distribution of covariates that affect the outcome of 
interest, with the exception of the grouping variable and mediators. This ensures that any differences in 
outcome between the two groups is due to differences in the determinant. In observational research, lack 
of exchangeability is often caused by confounding (or endogeneity). 

Confounder: Variables that affect both the mediator and the outcome of interest. Not adjusting for confounding 
variables violates the exchangeability assumption. 

Equalizing: Setting the distribution of a variable to be the same in two or more groups. 

Pseudo-population: A simulated population. 

Natural course: A pseudo-population that approximates the empirically observed data. 

Monte Carlo estimation: The process of approximating closed-form distributions by drawing simulated values repeatedly and 
averaging across the draws. 

 

Box 1: Causal and g-computation terminology. 
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Appendix 1: Decomposition results when the mediator – outcome relationship 
is confounded 
 
In this appendix, we show an example of how traditional demographic decompositions will provide 
incorrect contribution estimates when the relationship between the mediator and outcome of interest 
is confounded. For this example, we demonstrate this using a simple Kitagawa decomposition, but 
the same conclusion would hold for other decompositions that do not explicitly account for 
confounding. 
 
Hypothetical Question 
 
What is the contribution of systolic blood pressure (BP) to the difference in disability between two 
groups (group 1 and 2)? 
 
Confounding 
 
For this example, we will assume that systolic blood pressure and disability share the common cause 
of waist circumference (the confounder). This is not an unrealistic assumption, as many studies have 
shown that waist circumference affects BP and affects disability through other causes such as arthritis 
and diabetes. 
 
Generating the data 
 
We begin by drawing two separate distributions of waist circumference for groups 1 and 2 with a mean 
difference of 10 cm between groups: 
 

# group size 
g.size <- 1000000 
 
# Waist circumference 
waist.g1 <- rnorm(g.size, mean = 110, sd = 5) 
waist.g2 <- rnorm(g.size, mean = 100, sd = 4) 
 

We then create blood pressure values for each group using the following expressions: 
 

# BP as a function of waist (using 0.35 as the relationship between waist and BP) 
 bp.g1 <- 130 + 0.35*waist.g1 + rnorm(g.size, mean = 0, sd = 5) 
   bp.g2 <- 120 + 0.35*waist.g2 + rnorm(g.size, mean = 0, sd = 6) 
 
Finally we express the probability of disability as a logistic function of BP and waist circumference, 
and draw specific values of disability for individuals in both groups from these disability probabilities: 
 

#Turn into data 
toy <- data.frame(rbind(cbind(waist.g1, bp.g1, rep(1,g.size)),cbind(waist.g2, bp.g2, rep(2,g.size)))) 
colnames(toy) <- c("waist","bp","group") 
 
# Disability as a function of both BP and waist 
expit <- function(x) exp(x)/(1+exp(x)) 
toy$prob <- expit(-3+0.00499*toy$bp+0.00995*toy$waist) 
toy$disability <- rbinom(2*g.size, size = 1, prob = toy$prob) 
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Generated Data 
 
This results in the following data for BP: 
 

  
With a prevalence of disability of 25.6% in group 1 and 22.6% in group 2. 

 
Conducting the Decompositions 
 
We first conduct a Kitagawa decomposition of disability between groups 1 and 2 by breaking up BP 
into bins of size 5 between 120 and 190 mmHg systolic BP. We then conduct two versions of the 
counterfactual decomposition, one where we did not control for confounding from waist 
circumference and one where we did. Since our decomposition requires specifying a counterfactual 
question, we estimate the answer to the question “How much smaller would the difference in the 
prevalence of disability between groups 1 and 2 be if they both had the same distribution?” To be 
consistent with the Kitagawa, we assign that distribution to be the average of the two distributions. 
 
Results 
 

Decomposition Table 
 Kitagawa* CFL Decomp no 

confounders 
CFL Decomp with 

confounders 
Contribution of BP 58% 58% 40% 
*We show the contribution of difference in the distribution of BP term from the Kitagawa 
decomposition. 

 
The results reveal that if we did not control for confounding for waist circumference, we would 
drastically overestimate the contribution of differences in the distribution of BP to the difference in 
disability between groups. This occurs because part of the contribution is driven by differences in the 
distribution of waist circumference and not BP. Secondly the results show that the in absence of 
controls for confounding the CFL decomp is equivalent to the Kitagawa, which is what we would 
expect based on results from JVW. 
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Could we have controlled for waist circumference in the Kitagawa Decomposition? 
 
Technically there is nothing preventing us from controlling for waist circumference in the Kitagawa 
decomposition. However, doing so would require splitting waist circumference into bins, separately 
conducting the Kitagawa decomposition within the bins of waist circumference, and then 
reaggregating the results across bins. Even with just one confounder this rapidly creates large 
dimensionality issues, a problem that becomes even worse with multiple confounders. 
 
Full R Code 
 
Attached as appendix code.R. 
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Appendix 2: Other considerations regarding the application of the generalized 

counterfactual decomposition approach 

Results from our approach are only valid if the underlying assumption of no unmeasured confounding 

of the mediator-outcome relationship is correct. Even with a large number of confounders, this is a 

strong assumption and thus the results need to be interpreted cautiously with consideration to the 

magnitude of bias that potential unmeasured confounders may introduce. Bias analyses, if adapted to 

our approach, may be a promising way to evaluate the causal validity of the decomposition estimates 

(Carnegie, Harada, and Hill 2016; VanderWeele and Arah 2011). 

One conceptual issue that may arise is a lack of common support (also known as positivity) of 

the mediator distribution across groups. For example, suppose we are interested in equalizing the 

distribution of schooling between women with high and low childhood SES. If the low SES group 

has total education values of 6 to 9 and the high SES group has values ranging from 6 to 12, it cannot 

be determined from the data how the low education group would respond to having education values 

above 9. In such a case, one may be forced to assume that the relationship between total education 

values above 9 in the low SES group is the same as that of the high SES group or be willing to 

extrapolate the model estimates outside the range of observed data. 

Finally, the selectivity of the sample must be considered in the interpretation of the results. In 

Example 3, we estimate the contribution of smoking to sex differences in mortality. To do so, we take 

a sample of individuals aged 50+ and estimate from them the relationship between smoking and 

mortality. When we assign the smoking distribution of women to men, we are not answering the 

question “what if men in general would have had the smoking distribution of women across their 

entire lives?”, but instead “what if the men who survived to age 50 would have had the smoking 

distribution of women who survived to 50?”. This distinction is important because some men may 

have died before age 50 and would have survived (and thereby potentially entered the sample) if they 
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had the smoking distribution of women at ages before 50. This type of bias is known as selection or 

survivorship bias. If the interest is in the life course contribution of smoking, a sample covering all 

age groups should be taken.  
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