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Abstract

Background The Goodman-Keyfitz-Pullum Kinship Equations estimate offspring survival for women

in populations with stable levels of mortality and fertility. A separate body of literature has focused on

the effects of mortality change on life expectancy. Combining these two approaches allows us to consider

the effects of mortality change on offspring survival.

Results The effect of an all-age mortality increase on child survival is indirectly proportional to the

mean age of an average woman’s surviving children. Equivalently, the effect is indirectly proportional

to the mean time that a woman has spent with her surviving offspring. Generalizing for an age-specific

mortality change follows life expectancy treatment.

Contributions We bring together two separate traditions in mathematical demography to provide

an intuitive understanding of the consequences of mortality change for offspring survival and women’s

lived experience of child loss. This conceptual framework can be used, for example, to study maternal

bereavement in the context of a sustained mortality decline or a sudden mortality crisis.

Relationship

Let CSa =
∫ a

0 mxla−xdx be the expected number of children surviving to a woman aged a in a female stable

population with fertility rates mx, mortality hazard µx, and survival function lx = e
−

∫ x

0
µt dt (with unit

radix l0 = 1), as described by Goodman, Keyfitz, & Pullum (1974). The effect of an absolute change ∆δ

(positive or negative) in mortality rates (resulting in µ∗ = µ+ δ), on child survival CSa for a woman aged a,

is inversely proportional to the mean age of her surviving daughters xa:
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∆CS∗a
CSa

≈ −xa∆δ. (1)

This change applies only to surviving offspring, like an excess mortality effect, and the magnitude of the

change is more pronounced the younger the fertility profile is. Equation 1, in which mortality increases

uniformly at all ages, is a special case of a more general formal relation linking age-specific changes in

mortality to child survival from a mother’s perspective.

Proof

The average number of surviving daughters for a woman aged a can be thought of in two ways: CSa =∫ a
0 mx la−x dx =

∫ a
0 ma−x lx dx, depending on whether x represents the mother’s or the daughter’s age. The

latter expression is akin to the temporary life expectancy ae0, but with fertility m acting as a cohort size

factor in a stationary context (i.e., a special kind of Markov ‘rewards’ (Caswell, 2019)). Given this similitude,

as a first step we can generalize the Wrycza & Baudisch (2012) approach for changing rates µ∗x in the age

range (b, c) with 0 ≤ b ≤ c ≤ a and c = b+ h to see its impact on ae0:

ae
∗
0 =

∫ a

0
e

[−
∫ min(b,x)

0
µt dt−

∫ min(c,x)

min(b,x)
µ∗t dt−

∫ a

min(c,x)
µt dt]

dx. (2)

The expression min returns the minimum between two numbers. Replacing µ∗t = µt + δ and rearranging the

terms corresponding to lx, for a small absolute change (δ → 0) we get:

ae
∗
0 =

∫ a

0
lxe
−[min(c,x)−min(b,x)]δ dx

dae
∗
0

dδ
≈ −

∫ a

0
lx[min(c, x)−min(b, x)] dx

(3)

dae
∗
0

dδ
≈ −[

∫ c

0
lx x dx−

∫ b

0
lx x dx+

∫ a

c

lx c dx−
∫ a

b

lx b dx]

≈ −[
∫ c

b

lx (x− b) dx+
∫ a

c

lx h dx]
(4)
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dae
∗
0

dδ
≈ −[(Tb − Tc) (xb,c − b) + (Tc − Ta)h]

≈ −[Cb,c (xb,c − b) + Cc,a h] e0.

(5)

Tb is the population over some age b and Cb,c is its weight in the total population; in this case, between

ages b and c. This derivative depends on life expectancy e0 (i.e., its default level) and a population-weighted

measure of expected time for women aged between b and c (first term), and women older than c (second

term). When a = c = ω and b = 0 this expression is x e0: the mean age in a stationary population times life

expectancy at birth (Wrycza & Baudisch, 2012).

Returning to child survival CSa, we now include the fertility factor in Equation 4:

dCS∗a
dδ

≈ −[
∫ c

b

ma−x lx (x− b) dx+ h

∫ a

c

ma−xlx dx]. (6)

The relative impact of an absolute change in mortality within ages b and c on child survival is:

∆CS∗a
CSa

≈ −[CS
b,c
a

CSa
(xb,ca − b) + CSc,aa

CSa
h] ∆δ. (7)

CSb,ca represents the expected number of surviving daughters aged between b and c for a mother aged a, and

xb,ca represents their mean age. Equations 5 and 7 share the same intuition, but the latter is weighted by

daughter survival within each age range at maternal age a. To get Equation 1 in the Relationship section,

consider a change over the entire age range (a = c < ω and b = 0). The relative impact of an absolute change

in mortality rates on CSa is proportional to the mean age of a woman’s surviving daughters xa:

∆CS∗a
CSa

≈ −xa∆δ. (8)

Finally, we prove that an equivalent expression can be derived in terms of the mother’s lived years. Let x be

the mother’s age and a = c < ω and b = 0, then:

CS∗a =
∫ a

0
mxla−xe

−δ(a−x)dx (9)
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dCS∗a
dδ

≈ −a
∫ a

0
mxla−xdx+

∫ a

0
xmxla−xdx

≈ −aCSa +
∫ a

0
xmxla−xdx.

(10)

Dividing both sides by CSa we get the discrete approximation:

∆CS∗a
CSa

≈ −(a− ka)∆δ. (11)

Equation 11 shows that the expected change in offspring survival is inversely proportional to the difference

between maternal age a and the mean age of the mother at the birth of her surviving daughters ka. By

intuition, this is equivalent to the mean age of the mother’s surviving daughters, as shown in Equation 1.

Related relationship

An approximation

We approximate lx using a second-order Taylor polynomial around the mean age of childbearing κ to obtain

an intuitive understanding of the demographic forces that drive child survival:

CSa ≈ la−κ
∫ a

0
mxdx+ (la−κ)

′
∫ a

0
(x− κ)mxdx+ (la−κ)

′′
∫ a

0

(x− κ)2

2 mxdx

≈ Fala−κ + σ2

2 Fa(la−κ)
′′

≈ Fa la−κ

[
1 + σ2

2
(la−κ)′′

la−κ

]
.

(12)

Here, the fertility pattern by age is concentrated around κ, and the accumulated fertility (or the gross

reproduction rate in our female-only scenario) is Fa =
∫ a
α
mxdx. The second Taylor’s term is null because∫ a

α
xmxdx = κFa. We find that, seen from the perspective of a mother, child survival mainly depends on the

cumulative fertility function and the survival of daughters from birth to age a− κ. The approximation is

affected negatively by the dispersion of fertility over age (variance σ2) and the (negative) curvature of the

survival curve lx in the age range 20-40, which is typically very flat in post-transition populations1.
1This approximation also highlights the relevance of changes in the mean age of childbearing for child survival if fertility

levels remain unchanged. After taking the logs of Fa la−κ and deriving we get ∆CSa
CSa

≈ µa−κ∆κ. This shows that daughters are
exposed to a shorter mortality risk period because of a hypothetical fertility delay.
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Burden of maternal bereavement

The Shared-Lifetime Lost (SLT ) is a measure of the daughter person-years ‘lost’ to a mother because of the

death of her daughter. It is also the expected time that a mother aged a could have spent with a living

daughter if each daughter would have survived at each age. This can be expressed in terms of a temporary

expected lost years index, in line with e† (Vaupel, 1986):

SLTa =
∫ a

0
ma−x

∫ x

0
dt [x−t]e0 dt dx =

∫ a

0
m[a−x] xe

†
0 dx (13)

where dt is the death distribution from birth, [x−t]e0 is the life expectancy at birth until age x− t, and xe
†
0 is

the temporary dispersion measure.

A related measure compares these ‘lost’ years to the years that a mother could have shared with her daughters.

We call this the Intensity of Time Lost (ITL): a ratio between the expected time spent bereaved (in daughter

person-years lost, as introduced above) and the expected time spent with living daughters:

ITLa =
∫ a

0 m[a−x] xe
†
0dx∫ a

0 m[a−x] xe0dx
. (14)

This measure allows us to compare these ‘lost’ years across different population regimes. It is also similar

to the transcendental entropy measure H (Keyfitz & Caswell, 2005), but considering all the cohorts born

during the mother’s life, weighted by their relative size. Assuming that fertility is concentrated around κ

(see An approximation), daughters would have a− κ years of exposure to death, on average. Thus, we can

express this measure as ITLa ≈ Ha−κ, the entropy measure restricted to a− κ. A woman’s intensity of loss

is proportional to the lifespan inequality of her daughters.

Applications

Using data from countries in Latin America and the Caribbean, we consider the impact of an absolute change

of mortality of .001 on the expected number of living daughters for an average woman aged 50 whose surviving

daughters are, on average, 25 years old. We chose this region as an example because it includes countries with

widely differing levels of fertility and mortality. If mortality in the region increased uniformly across age2, the

number of living daughters would decrease by 2.5% (∆CS50
CS50

≈ 25 ∗ 0.001) (Equation 1). What would happen

if mortality increased only between ages 15-29, and remained constant at all other ages? Assuming that 80%
2For reference, mortality rates in Latin America and the Caribbean in 1950-1955 were 0.1255, 0.0174, 0.0037, 0.0019, 0.0029,

0.0041, and 0.005 for, respectively, ages zero, 1-4, and then grouped by five until age 25; which implies a different relative impact
for each group.
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of the woman’s daughters are aged 15-29, this change would decrease the woman’s parity by approximately

[.8*(25-15)+.2*15]*.001, 1.1% (Equation 7).

This framework has many practical applications. For example, it can be used to approximate the effect of a

mortality crisis on maternal bereavement. Using traditional demographic data from censuses and household

surveys, it can reveal inequalities in the experience of maternal bereavement by socioeconomic status (SES).

How much would mortality need to decline for lower-SES women to experience the same levels of child survival

as higher-SES women, controlling for fertility levels (i.e., ∆δ ≈ [CSlowera − CShighera ]/[xlowera CSlowera ])?

Figure 1 shows the effect of a mortality change ∆δ on child survival CSa at different maternal ages based

on two alternative estimation methods. ‘Empirical’ estimates come from a discretized form of the equation

CSa =
∫ a

0 mxla−xdx, and ‘approximated’ values come from Equation 13. The figure shows that the effect

of ∆δ is larger at older maternal ages. We find that the estimates from the empirical and approximated

methods are broadly consistent, especially for small ∆δ. However, our approximation tends to overestimate

the effect before maternal age 40, and to underestimate it after that age when the change is large.

We now evaluate the accuracy of Equation 12, an approximation of CSa introduced in the Related relationship

section to capture essential factors of its behaviour by age. Figure 2 (panels A-C) shows that this approximation

is very precise, especially for recent periods. The relative error (aprox−empiricalempirical ) across all regions and years

for a =30 ranges from .8% to .005%, and from -.8% to -.08% for age 50. The accuracy of the approximation

increased over time, as exemplified by Guatemala (red dots in Figure 2). Panels D-E show that for the

Guatemalan case, this improvement can be explained by the rectangularization of lx (as lower mortality at

young ages leads to second derivatives close to zero in that range), and, to a lesser degree, by lower dispersion

in the fertility age pattern over time.

Lastly, we consider the Intensity of Time Lost (ITL), introduced in the Burden of maternal bereavement

section. Figure 3 shows the ratio between the daughter person-years ‘lost’ by an average woman and the

total daughter person-years that she would have shared with her daughters in the absence of offspring death

(Equation 14). Higher values indicate a more ‘intense’ experience of bereavement up to maternal age a.

The ITL for Haitian women at age 30 is 4.8% for those born in 1950-1955 and is 1.4% for those born in

2010-2015. The equivalent values for Costa Rican women are 2.3% and 0.2%. The average values in the

region are 2.7% and .3% for the most recent period. Offspring survival at higher maternal ages depends less

on infant mortality, which is why ITL values are lower than 2% for women aged 50 in all countries, eventually
3Using fertility and mortality rates from the 2019 Revision of the United Nations World Population Prospects. We smoothed

female lx using cubic-splines constrained to monotonic decrease, taking L0 and T100 from raw life tables as inputs for person-years
calculations. We obtained single-year fertility rates using a quadratic optimization approach (Michalski et al., 2018). We assumed
a sex ratio at birth of 0.49 for all periods and countries. The discrete calculations assumed that live births mx happen at exact
maternal age x. All reproducible materials are available in the online Appendix.
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Figure 1: Estimate and empirical CSa for different mother ages and change sizes. Latin America countries in
the 1950-2015 period

converging to zero.

In conclusion, our work contributes to the formal understanding of the effects of mortality change, age-specific

or uniform over age, on the experience of offspring survival and offspring loss for women or, with some

modifications, for men. We identify two main limitations of our approach. First, it assumes a homogeneous

population with stable fertility and mortality, and it assumes that mortality change is permanent and affects

all birth cohorts. Second, a uniform and absolute mortality change over a wide age interval (e.g., ages 0-40)

may be unrealistic. One way of addressing this issue would be to account for other types of mortality change

(proportional, exponential, lineal, etc.) (Wrycza & Baudisch, 2012). Alternatively, Equations 2-7 could be

used to concatenate a series of age-specific (absolute) mortality changes. These interesting lines of work

lie outside the scope of this paper, but we hope that our approach will inspire the further development of

indirect estimations methods applicable to widely available demographic data.

History

Kin count estimation has a long history in mathematical demography, starting with the work of Lotka

(1931) on modelling orphanhood in theoretical populations across demographic regimes. To the best of our
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Figure 2: Relative error in approximation of child survival CSa for ages 30 (A), 40 (B), and 50 (C), from
the years 1950-1955 (darker) to the years 2015-2020 (lighter) for all Latin American countries (blue) and
Guatemala (red). D) Guatemala: lx, same period. E) Fertility distribution by age in Guatemala, same period.

knowledge, Brass (1953) first proposed an equation akin to CSa =
∫ a

0 mxla−xdx to estimate child survival

over maternal age. Goodman et al. (1974) generalized this approach to sisters, granddaughters, cousins,

etc., in stable and non-stable populations. The so-called Goodman-Keyfitz-Pullum Kinship Equations were

popularized by Keyfitz & Caswell (2005), even though Bongaarts (1987) used a similar approach to estimate

descendants in his ‘Family Status Model’. More recently, Caswell (2019) recast the problem of kin counts

using matrix algebra. Finally, Wrycza & Baudisch (2012) used formal techniques to describe the effect of

different types of age-specific mortality change on life expectancy, an approach we drew upon heavily in this

paper.
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