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Abstract 

Discrete-time multistate life tables are attractive because they are easier to understand and apply 

in comparison to their continuous-time counterparts. While such models are based on a discrete 

time grid, it is often useful to calculate derived magnitudes, like state occupation times, under 

assumptions that posit that transitions take place at other times, such as mid-period. 

Unfortunately, currently available models allow only a very limited set of choices about 

transition timing. We propose to utilize Markov chains with rewards as an intuitive and general 

way of modelling the timing of transitions. Combining existing discrete-time models with the 

rewards methodology results in an estimation strategy that features easy parameter estimation, 

flexible transition timing, and little theoretical overhead. We illustrate the usefulness of rewards-

based multistate life tables with SHARE data for the estimation of working life expectancy using 

different retirement transition timings. We also demonstrate that, for the single-state case, the 

rewards-based multistate life tables match traditional life table methods exactly. We provide 

code to replicate all results of the paper, as well as R and Stata packages for general use of the 

method proposed. 

 

Keywords: life tables; multistate models; Markov chains; working life expectancy 
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1 Introduction 

The life course can be thought of as a realization of a stochastic process whereby individuals are 

subject to risks of moving between states, with the sequence of states and sequence of transitions 

representing their life histories (Willekens & Putter, 2014). Aggregating the occupancy times of 

individuals in different states subject to these movements results in state expectancies. In a single 

state model, with that state being "alive", this aggregate is the life expectancy. The prime 

demographic framework for analyzing such life histories are single-state and - in its generalized 

version - multistate life tables (MSLTs). The latter provide a truly general framework: They 

contain all flavors of the traditional life tables, such as single-decrement, multiple decrement, 

and cause-deleted tables, as special cases.  

MSLTs have traditionally been modeled in continuous-time (Keyfitz & Caswell, 2005), 

frequently using transition rates calculated off of occurrence-exposure data as a starting point 

and using assumptions on the evolution of continuous-time functions, such as within-interval 

linearity of the survivor function l(x), or constancy of the force of mortality 𝜇(𝑥), to close the 

table. We refer to these models as "continuous-time MSLTs".  However, during the course of the 

past few decades longitudinal studies with intermittent observations became more and more 

important for empirical research. These data sets often naturally suggest modelling in discrete 

time, and consequently a new branch of "discrete-time MSLTs" have been developed and 

applied. For examples of recent applications, see Bardo and Lynch (2019), Chiu (2019), Farina et 

al. (2019), Magnusson Hanson et al. (2018), Zaninotto and Steptoe (2019). Transitions in discrete-
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time MSLTs may, strictly speaking, only occur at the points in time that the model is defined on. 

Nevertheless, for the calculation of the central magnitudes (e.g., state expectancies) it is useful to 

reason about their placement at other points in time. For example, on average, are subjects dying 

mid-interval? Are subjects, on average, marrying closer to the upper end in the age interval 20-

25? Do labor market participants stop working closer to the beginning of their retirement age 

year? If left unadjusted, the standard formulas of discrete-time MSLTs deliver numbers that 

pertain to end-of-interval transitions, which, as some of the preceding examples suggest, is not 

satisfactory. 

As a remedy for the case of single-state life tables, van Raalte and Caswell (2013) suggested 

deducting half of the age interval from the calculated MSLT expectancy.1 This approach is 

applicable in situations in which age intervals do not vary and there is only one non-absorbing 

state. It effectively assumes mid-interval transitions and therefore works well if the data roughly 

match this assumption, as it may, for example, for the timing of deaths. However, it can actually 

increase the bias if the assumption is not met. Dudel (2018) generalizes the idea of mid-interval 

transitions to multiple non-absorbing states by deducting half of the age interval from the 

diagonal of the so-called fundamental matrix. We will refer to this procedure as "initial period 

deduction".2 The initial period deduction has two limitations. First, it only applies to a regular 

age-grid, which does not, for example, cover the demographic 5-year grid that has the irregular 

childhood age intervals [0-1) and [1-5). Secondly, while the addition of the mid-interval 

 
1 A similar argument had also been made, implicitly or explicitly and in somewhat different contexts, by (Guilkey & 

Rindfuss, 1987; Sonnenberg & Wong, 1993). 
2 The continuous-time MSLT equivalent to this is the linear l(x) ("linear integration") assumption (Schoen, 1988, p. 

78). 
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assumption is an important step forward, its rigid timing is not suitable for some empirical 

applications. 

In this article, we demonstrate how the Markov Chain with Rewards (MCWR) method can 

flexibly implement transition timing into discrete-time MSLTs. The basic idea behind the usage 

of rewards is the combination of probabilities of reaching certain states, conditional on a baseline 

state, with probabilities of moving out of these states, and the flexible assignment of time 

rewards to origin and destination states that define a particular transition. A more thorough 

exposition follows in the next section.  

We illustrate the flexibility of rewards-based MSLTs with respect to transition timing with two 

examples. First, we use Human Mortality Database (HMD) data to show that rewards-based 

MSLTs coincide numerically with traditional spreadsheet-type life table calculations in the 

single-state case. This is in contrast to discrete-time MSLTs based on end-of-interval or mid-

interval transitions, whose bias can be large. In our second empirical example, we turn to the 

case of multiple states and use retrospective survey data from the Survey of Health, Aging and 

Retirement in Europe (SHARE) on working life histories to estimate state expectancies for 

employment and retirement. We show that, due to the nature of retirement timings, the rewards-

based MSLT is the only method that can accurately exploit information on state entry/exit 

timings. We again analyze the bias of the discrete-time MSLTs. Finally, we provide Stata and R 

packages that implement the calculations to facilitate replication and broader use of the method.3 

 
3 Installation is done via the repositories CRAN (R):
> install.packages("mcwr")
and SSC (Stata):
. ssc install mcwr

https://osf.io/tzyh9/?view_only=a444d38ce94249a99be9d86e5dae9de6
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2 Background: The Estimation of Multistate Life Tables 

The origins of the life table, which is probably the most well-known demographic tool, date back 

to the 17th century (Graunt, 1662/1964; Halley, 1693). Maybe somewhat surprisingly, 

generalizations to multiple alive states were not conceived until the 20th century (Du Pasquier, 

1912). The subject finally received extensive treatment during the 1970s and early 1980s 

(Schoen, 1975; Schoen & Land, 1979; Land & Rogers, 1982). Within MSLTs, the key life table 

outcome, life expectancy, is generalized to state expectancies. For example, using MSLTs one 

can calculate the expected life time spent in marriage; the expected life time being unemployed; 

the expected pain-free life time; and so forth. One fundamental assumption that is part of any life 

table methodology is the Markov assumption which posits that the probability of making a 

particular state transition only depends on the current state, but not on the entire history of states 

occupied.4 Estimating a MSLT hence can be seen as consisting of two steps: First the basic 

parameters are estimated from the data, and in the second step Markov theory is applied in order 

to calculate the desired statistics, such as state expectancies. In this article, when talking about a 

"model", both steps are implied.5 

Both the traditional single-state life table6 and the traditional multistate life tables are expressed 

in continuous time.7 The central model concept is that of instantaneous transition rates, with 

 
4 For this reason, and since concepts are usually expressed in matrix formulas, MSLTs also run in the literature as 

"multistate Markov models", "matrix population models", or similar. 
5 If interest only lies in the second step, state expectancies are just among the most basic statistics that can be 

calculated. An immense number of results related to other derived statistics is available. For an introduction and for 

further references, see Caswell et al. (2018). 
6 The single state is "alive". 
7 In some expositions this may be hidden behind notation that looks discrete. The underlying ideas, such as a 

continuous survivor function (and, by implication, a continuous force of mortality and age distribution at death), 

however, are unanimously cast in continuous time. 
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subsequent model calculations leading to transition probabilities defined on pairs of points in 

time, the number of time units spent in a state in a certain age interval, and finally, state and 

overall life expectancies. While the model inputs of the MSLTs developed in the 1970s and 

1980s are period transition rates, a related strand of popular models, multistate survival 

(regression) models, is based on assumptions on properties of the hazard. Semi-parametric 

models harness fully-fledged (i.e., precisely dated) life history data in order to estimate schedules 

of instantaneous rates for further processing; parametric models do the same, but must be based 

on assumptions about the global shape of the hazard. A huge advantage of regression models 

over the traditional MSLT estimation techniques is that they can accommodate covariates. 

Different tables can be presented for different values of those covariates based on the same 

parameter estimates, dispensing with the need for sample splits. Still, there are downsides that all 

of the above models share. They require a larger theoretical exposition as well as knowledge of 

matrix algebra and differential and integral calculus. Moreover, they are frequently 

computationally burdensome. For these reasons, they are not always easily accessible to 

researchers. 

More recently, another strand of demographic and epidemiological literature has emerged whose 

model formulations share many ideas with the above-mentioned MSLTs, starting with Millimet 

et al. (2003). Like their continuous-time counterparts, they make use of Markov theory and 

frequently express the ideas using matrix notation. However, they are considerably simpler. 

While there are many textbooks on continuous-time MSLTs available (Hougaard, 2012; 

Willekens, 2014; van den Hout, 2017; Cook & Lawless, 2018), discrete-time MSLTs do not 

require precisely that: textbook-length treatment. It is one of their appealing features that they are 
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easy to understand, communicate and apply. A substantial simplification is that transition

probabilities are directly estimated and do not have to be inferred from estimated rates or

estimated instantaneous rates. At the very simplest level, transition probabilities can be estimated

via transition counts. Slightly more sophisticated and accommodating covariates, like the

continuous-time survival models, is the usage of a multinomial logit model, a regression

technique that is well accessible to quantitative social scientists. For the Markov calculations that

use the probabilities as an input, only knowledge of matrix multiplication is required, one of the

most basic operations on matrices. Matrix formulas for obtaining state expectancies are outlined

in the methods section below and explained in greater detail in the appendix. Moreover,

aside from the bootstrap procedure used to obtain standard errors, the computational cost is

typically very low.

There are modifications of the above procedure, such as the IMaCh method of Lièvre et al. 

(2003), which can account for interval censoring (i.e. for the lack of information on transitions 

between observational points); the SPACE method of Cai et al. (2010), which can compute a 

large number of statistics harnessing simulation techniques; and GSMLT developed in Lynch 

and Brown (2005), a Bayesian approach. While this paper will ignore these extensions, its results 

are at least partially applicable to these methods too. If rewards can be assumed to be fixed (non-

stochastic), it is a straightforward task to incorporate them in the point estimates of the different 

methods. 

The choice between a continuous-time or discrete-time model frequently boils down to an 

assessment of whether the continuous-time model can substantially make better use of the 
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information, and whether some simplifying assumptions needed for discrete-time models are 

tenable. Among the points to consider are whether the data provide precisely dated transitions 

and/or interview/sampling times. If they do, discrete-time methods may induce loss of 

information. Generally, the assessment of whether slight inaccuracies in the usage of the timing 

of observations and/or additional assumptions are justifiable needs to be done on a case-by-case 

basis. For example, for an annual survey, ignoring the variation of interview dates within a few 

weeks may pose no problem, but the situation is different for a survey whose wave spacing 

varies between 2 and 5 years. In case of doubt, it is always a possibility to cross-check discrete-

time results against continuous-time ones. The important point to grasp is that, if simplifying 

assumptions seem innocuous, discrete-time models are an attractive choice because they are easy 

to understand, apply, and communicate. 

Being discrete-time MSLTs, rewards-based MSLTs inherit all of their advantages (and 

shortcomings) from them. Their distinguishing feature, compared to other discrete-time MSLTs, 

is that rewards-based MSLTs improve upon timing options in order to deliver more accurate 

results. We turn to the description of these models next. 

3 Markov Chains with Rewards 

An absorbing Markov chain describes the trajectories of individuals through the states of the 

chain, eventually arriving at the absorbing state of death. A Markov chain with rewards 

associates a reward with each possible transition; the individual accumulates these rewards over 

its life. The rewards can be anything, including time spent in a particular age-stage combination. 

The theory was introduced by Caswell (2011) in the context of lifetime reproduction, and the 
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possibility of analyzing longevity was introduced. The theory has since been applied to the 

fertility transition (S. van Daalen & Caswell, 2015), to lifetime income and expenditures 

(Caswell & Kluge, 2015), to healthy longevity and disability adjusted life years (Caswell & 

Zarulli, 2018), to episodes of disability (Dudel & Myrskylä, 2020), and to periods of 

malnourishment (Owoeye et al., 2020). The complete theory for the demographic Markov chains 

with rewards, including simple expressions for all the statistical moments and sensitivity 

analysis, is given in van Daalen and Caswell (2017). The model is based on an age-stage Markov 

chain whose state space is comprised of the Cartesian product of 𝜔 age classes and 𝜏 stages. As 

is common in the literature, we opt for slightly ambiguous terminology and sometimes use 

"state" in place of "stage". Later on, in the retirement example, states are "employed", 

"unemployed/out of labor force", "retired", and "dead", with the first three being transient states 

and death being an absorbing state. The terminological ambiguity arises since a state can now 

refer to employment status or to the Markov state, which is the employment status at a certain 

age. However, what is meant will be clear from the context. This section assumes regularly 

spaced age intervals of size 𝑛, but results easily generalize to irregularly spaced age intervals. 

The Markov assumption is that the process is memoryless, i.e., that the probability of a particular 

transition depends only on the current state, but not on the history of previous state visits. 

Matrices and vectors of a Markov model that encompasses both age and state can be organized

by age-within-state or by state-within-age. Both presentations are equivalent in the substantive

sense. We opt for the age-within-state ordering in the following exposition because the ordering

of elements in the fundamental matrix (see the appendix) will be more suitable for our
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purposes. Let 𝑷 denote the transition matrix of the process. The matrix 𝑼 is a submatrix of 𝑷 that 

only contains transitions among transient states: 

𝑼 = (
𝑷11 ⋯ 𝑷1𝜏
⋮ ⋱ ⋮
𝑷𝜏1 ⋯ 𝑷𝜏𝜏

) 

where 𝑷𝑖𝑗  denotes a 𝜔 × 𝜔 matrix with non-zero elements on the first subdiagonal only: 

𝑷𝑖𝑗 =

(

 
 

0 0 ⋯ 0 0
𝑝𝑖𝑗,2 0 ⋯ 0 0

0 𝑝𝑖𝑗,3 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑝𝑖𝑗,𝜔 0)

 
 

 

Element 𝑝𝑖𝑗,𝑘 denotes the probability of moving from state 𝑗 to state 𝑖 when entering age class 𝑘. 

An important matrix in Markov chain theory and in MSLTs is the "fundamental matrix", which 

is calculated as 

𝑭 = (𝑰𝜔𝜏 − 𝑼)
−1 

where 𝑰𝜔𝜏 denotes an 𝜔𝜏 × 𝜔𝜏 identity matrix and the power of minus one stands for the matrix 

inverse. The fundamental matrix contains, for each initial age-state, the probabilities of reaching 

any later age-state. When multiplied by 𝑛, the length of the age interval, this is equivalent to the 

expected length of stay in a particular age-state, given an initial age-state. For example, for 

annual data of subjects starting at age 50, an element of 𝑭 may indicate that a person has a 

probability of 0.8 to be in the employed state at age 60 if her initial age-state was being 

employed at age 50. Put differently, this matrix element says that for a large number of 
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individuals, 80% of those who are initially employed at age 50 will be employed at age 60. The 

remaining 20% are either in the absorbing state "dead" or in one of the alternative non-absorbing 

states (unemployed/out of labor force; retirement) at age 60. Multiplying 𝑭 by the length of the 

age interval (here: 𝑛=1) results in a matrix whose elements indicate the expected length of stay. 

Finally, summing up the appropriate elements of 𝑛 ∙ 𝑭 will give state expectancies at age 50, 

given an initial state. Weighing these magnitudes by the initial state distribution yields state 

expectancies independent of the initial state. 

The above procedure yields state expectancies based on the assumption of end-of-period 

transitions. The initial period deduction method uses �̃� = 𝑭 −
𝑛

2
𝑰𝜔𝜏  instead of 𝑭, which 

corresponds to the assumption of mid-period transitions. In order to add more flexibility with 

respect to transition timing, we introduce, for each state 𝑚, rewards matrices 𝑹𝒎. Their structure 

is very similar to 𝑼 and its submatrices 𝑷𝑖𝑗 . Two matrices 𝑹𝑗 and 𝑹𝑖 specify, for each transition, 

two time rewards, one towards the state of origin and one towards the destination state. The 

rewards-based calculation of the expected time spent in state 𝑚 links the information on the 

expected time spent in a certain state at a certain age embodied in the matrix 𝑭 with the rewards 

towards a particular state when moving out of the age-state, embodied in the elementwise matrix 

product 𝑷 ∘ 𝑹𝑚. To continue with the above example, if there is a probability of retiring of 0.1 

during age 60 when being employed at the 60th birthday, and on average those who retire work 

for 0.3 years before retiring, the transition from employment to retirement during age 60 

contributes 0.8 × 0.1 × 0.3 = 0.024 years to the working life expectancy. If the only additional 

state were death and there was no mortality during age 60, the transition would contribute 
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0.8 × 0.1 × 0.7 = 0.056 years to the retirement life expectancy. Likewise, the transition to 

staying employed would contribute 0.8 × 0.9 × 1 = 0.72 years to working life expectancy, and 

0.8 × 0.9 × 0 = 0 years to retirement life expectancy. 

The exposition in this section has been brief and geared towards an intuitive understanding. The

appendix contains a thorough description of the full methodology and formulas involved.

4 Empirical Illustrations 

We illustrate two interesting aspects of the rewards methodology with empirical applications. 

The first one touches upon the issue of traditional (single state) life tables being a special case of 

MSLTs, which in the discrete case is not strictly true. The rewards method is shown to be 

suitable for bridging the numerical gap. The second application is a proper multistate one and 

shows how the rewards-based MSLTs incorporate additional information, thereby refining 

estimates. The example chosen uses information on retirement transitions to improve estimates 

of working life expectancy.8 

4.1 Life Expectancy in the Human Mortality Database  

Figures 1a and 1b, left-vertical-axes, use data from the Human Mortality Database (University of 

California, Berkeley and Max Planck Institute for Demographic Research, Germany; Wilmoth et 

al., 2020) with a one-year and five-year age spacing, respectively, to illustrate the magnitude and 

variation of error in the MSLT with end-of-period transitions when compared to life table 

calculations following standard methodology. As is standard in demographic tabulations, the 

 
8 A comprehensive script for reproducing all results in this manuscript is available at 

https://osf.io/68tkb/?view_only=a444d38ce94249a99be9d86e5dae9de6 . 

https://osf.io/68tkb/?view_only=a444d38ce94249a99be9d86e5dae9de6
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five-year grid is not exactly regular as it employs the usual childhood intervals of ages 0 and 1-4. 

The magnitude and direction of bias in the life expectancy estimates for this example is mostly 

determined by infant mortality. In the first year, deaths occur shortly after birth on average, that 

is, at the very left end of the interval and not at mid-interval (age 0.5). Therefore, the end-of-

period transition assumption that death occurs at age 1 introduces a strong upward bias. 

Hypothetically, the maximum bias for this interval is 1. The overall impact of the end-of-period 

transition assumption from infancy on life expectancy estimates depends on both the average age 

at death among those who died, as well as the magnitude of infant mortality. For higher life 

expectancy estimates, although infant deaths occur on average closer to the birth (Andreev & 

Kingkade, 2015), which leads to a larger bias per death, the higher survival probabilities reduce 

the total bias on life expectancy estimates. At ages older than zero, subjects die closer to mid-

interval on average. Here the end-of-period transition assumption introduces a bias close to 0.5 

for intervals of the 1-year age grid. The result is a downward sloping data cloud, approaching a 

bias of roughly half of the age interval (0.5) from above as expectancies increase. The upward 

sloping data cloud of the 5-year spacing, which approaches a bias of 2.5 as expectancies 

increase, is explained by similar reasoning, taking into account that the first age interval is only 

one year wide, whereas higher age intervals are five years wide. 

[Figure 1 about here] 

The right-hand side vertical axes in both subfigures depict the remaining bias after initial period 

deduction. Note that initial period deduction is, strictly speaking, not applicable to the unevenly 

spaced age grid (Figure 1b), but in the case of a single transitory state simply amounts to 
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deducting a fixed number from the total life expectancy, which seems like a useful shortcut. 

Initial period deduction removes a sizeable fraction of the error present in the unadjusted 

numbers, but does not solve the problem completely. 

A solution is provided by the rewards-based approach, which yields identical numbers to

standard life table calculations. The corresponding rewards specification consists of Chiang's 𝑎,

that is, the average time lived by those who die in the age interval, commonly denoted by  𝑛𝑎𝑥.

This information is - based on assumptions - available in the HMD. Furthermore, survivors of an 

age class are assigned a reward of 𝑛 = 1 in the single-age case and 𝑛𝑖 ∈ {1,4,5} in the 5-year

interval case. Section 1.2 in the appendix shows that the two approaches are fully

numerically equivalent.

4.2 Working and Retirement Expectancies in SHARE  

To illustrate the error in MSLTs in a situation of multiple non-absorbing states when 

conventional transition timing assumptions are not met, we calculate working life and retirement 

expectancies at age 50 using the Survey of Ageing, Retirement and Health in Europe and the 

accompanying Job Episodes Panel. Increasing life expectancy and increased recognition of the 

fact that actual retirement decisions differ from mandatory retirement ages has spurred research 

into how long people actually work, and how long they can enjoy retirement (Loichinger & 

Weber, 2016; Lorenti et al., 2018; Leinonen et al., 2018). Although retirement decisions are 

often only partially related to mandatory retirement ages, in many settings the level of benefits 

depends on age such that after certain birthdays (for example, the 65th) the benefits may jump. 

Such incentives may result in transitions that occur early on within age intervals. 
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Our main data source is the Job Episodes Panel (JEP) version 6.0.0 (Brugiavini et al., 2013; 

Antonova et al., 2014; Orso et al., 2017; DOI: 10.6103/SHARE.jep.600). JEP, in turn, is mainly 

derived from wave 3 of the Survey of Health, Ageing, and Retirement in Europe (SHARE) 

(Börsch-Supan et al., 2013) and complemented by information from waves 1 and 2 (DOIs: 

10.6103/SHARE.w1.600, 10.6103/SHARE.w2.600, 10.6103/SHARE.w3.600). SHARE is a 

representative longitudinal survey started in 2002 containing data on more than 120,000 

individuals aged 50 and over. It is conducted for 16 EU member states and mainly funded by the 

European Commission, with additional funding from the German Ministry of Education and 

Research, the Max Planck Society for the Advancement of Science, the U.S. National Institute 

on Aging and from various national funding sources. Wave 3 of SHARE, known as 

SHARELIFE, is special in that it focuses on collecting data on individuals' life histories and 

contains modules with retrospective information. Data was collected during 2008-09 for almost 

30,000 subjects of 14 SHARE countries (Austria, Belgium, Czech Republic, Denmark, France, 

Germany, Greece, Ireland, Italy, Netherlands, Poland, Spain, Sweden, Switzerland). JEP is a 

retrospective long panel data set based on SHARELIFE information that features full working 

life histories for each SHARELIFE respondent. We supplement JEP by basic demographic 

information taken from wave 2 of SHARE. 

The accuracy of work histories is at the level of one state (i.e., employed, out of labor 

force/unemployed, retired) recorded per age-year. Precise start and end dates of state spells are 

not given. The JEP contains such work histories for 28,492 subjects. After dropping subjects 

who have no record beyond age 50, or who were already retired at age 50, or whose state 

information we deem too inaccurate, 26,554 subjects remain. The smallest subsample contains 
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350 subjects (men in Ireland) and the largest one 1,519 (women in Greece). While the longest 

life history in our data set goes back to 1957, the bulk of the data points (more than 90%) fall in 

the time range 1985-2008. 

We use the above data and a multinomial logit model to estimate transition probabilities among 

employment states for each age. Estimation is stratified by sex and country. Since the JEP is 

entirely based on retrospective interviews, it does not contain mortality information. Therefore, 

we use data from the Human Mortality Database in order to calculate country-specific 

probabilities of dying by sex and single age over the period 1985-2004. We apply the resulting 

mortality conditions to all states in all of our analyses. We include age dummies for each single 

age from 50 to 70 in the regression, and it is for these ages that we calculate transition 

probabilities. After age 70 retirement is assumed. We also slightly reclassify employment states 

to resolve conflicting state information for a smaller fraction of observations. All analyses are 

unweighted. 

Wave 2 data is used to calculate the average exact (fractional) age at retirement for each age, 

separately by sex and country. This information is not included in JEP and only available for a 

subset of individuals, which is not a problem in the present context since we only need mean 

estimates. We use this fraction of the retirement age as a reward towards the state directly 

preceding retirement (working or unemployed) for this age, and one minus that fraction as the 

reward towards retirement life expectancy. 

Figure 2 shows for work-retirement transitions the average fraction of the year that is spent 

working. It can be seen that retirement transitions during the ages from early- to mid-60s - which 
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is where the bulk of retirement transitions occur - often take place close to the beginning of the 

interval. This suggests that incorporating the transition timing information in the calculation of 

working and retirement expectancies is important. 

[Figure 2 about here] 

Figure 3 shows total and state rewards-based life expectancies at age 50 for all and for individual 

SHARE countries, as well as the bias of other methods. Figure 3a contains numbers for men and 

Figure 3b for women. In each subfigure, the top graph displays total and component life 

expectancies calculated using rewards-based MSLTs. The rewards approach accurately assigns 

for each transition the time that individuals on average spend in the origin and destination states 

and delivers error free results. The middle and bottom graph in each subfigure compare other 

discrete-time methods to this gold standard. The middle graph depicts the difference in working 

life expectancy numbers between the rewards method and end-of-period calculations 

(diamonds), as well as the difference between rewards and the initial period deduction method, 

i.e. the method that subtracted half of the age interval from the diagonal of the fundamental 

matrix (triangles). The bottom graph of each subfigure does the same for retirement life 

expectancy. 

[Figure 3 about here] 

For both men and women, the end-of-period approach (diamonds) overestimates working life 

expectancy in most cases, and the magnitude of the error is often more than half a year, despite 

the length of the age interval being only one year. The initial period deductions approach 
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(triangles) delivers estimates that are much closer to the rewards approach, eliminating most of 

the bias. 

For retirement expectancies (bottom graphs in each subfigure) the direction of the error is 

switched: The unadjusted end-of-period numbers are about 0.2 years short of the rewards 

numbers, i.e., they understate the length of retirement. Note that these numbers are not simply 

negatives of the ones for WLE for two reasons: First, the methodological discrepancy between 

the life expectancy estimates amount to 0.5, not zero, so the component life expectancy 

differences add up to that, and not to zero. Secondly, the results for unemployed life expectancy 

(not shown) capture the remainder. Two features of the initial deduction-based retirement 

numbers catch the eye: They are almost identical to the unadjusted end-of-period numbers, and 

they sometimes even slightly increase the bias. The first feature is explained by the fact that the 

deduction-based method weighs the deduction from the initial period by the population 

distribution over the initial states. Since the fraction of retired people at age 50 is very small, the 

deduction from retirement life expectancy is small, so the unadjusted and the adjusted numbers 

are close. The second feature is a simple consequence of the fact the end-of-period estimates are 

lower than the rewards ones, and any deduction further diminishes its values and increases the 

bias. 

5 Conclusion 

Discrete-time MSLT approaches to calculating state-specific expectancies are broadly used in 

demography. The standard approach implies an assumption of transitions taking place at the end 

of the interval. This results in a discrepancy between the Markov chain estimates and life table 
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estimates of state expectancies. Using two high-quality data sets on life expectancy, working life 

expectancy and retirement expectancy, we have shown that the error can be non-negligible. The 

error, however, can be completely removed using the Markov chain with rewards approach, in 

which the researcher has full control over the timing of transitions.  

In the simplest case of one non-absorbing state, the Markov chain with rewards estimates are the 

same as with the standard life table calculations traditionally used by demographers. For the case 

of multiple non-absorbing states, discrete-time MSLTs currently offer only a very limited set of 

timing choices, and continuous-time models are oftentimes more difficult to apply. Here the 

proposed rewards-based discrete-time method improves the accuracy of the state expectancy 

calculations over existing discrete-time methods. To remove the error in discrete-time MSLT 

state expectancies, we encourage users to incorporate rewards in their analyses. To facilitate 

replication and broader use of the rewards approach, this paper is supplemented by R and Stata 

packages that implement and guide calculations.   
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7 Figures 

Fig. 1. Difference between uncorrected Markov chain estimates of life expectancy and life table-

based life expectancy 

Fig. 1a 1-year age interval 

 

Fig. 1b 5-year age interval 

 

Data taken from the Human Mortality Database.  
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Fig. 2 Fraction of the year of retirement spent working, by single age 

 

Based on data for all countries from SHARE wave 2. The horizontal dashed line corresponds to the mid-

interval reward of 0.5 to each of the states of origin and destination. The horizontal solid line depicts the 

overall average calculated over all retirement events in the data. 
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Fig. 3 Working life expectancies at age 50 across SHARE countries calculated using rewards, 

and differences thereof with respect to other methods 

Fig. 3a Men

 

Fig. 3b Women

 

Based on data for all countries from SHARE wave 2 and the job episodes panel from SHARELIFE. For 
each panel, the top graph shows total and component life expectancies. The middle graph depicts the 

difference in working life expectancy numbers between the rewards method and end-of-period 

calculations (diamonds), as well as the difference between rewards and the initial period deduction 
method (triangles). The bottom graph of each panel does the same for retirement life expectancy. 
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1 Markov Chain Calculations

1.1 General Exposition

1.1.1 Expositional Setup and Notational Conventions

The purpose of this appendix is to present the main formula for Markov chains with rewards and subsequently

examine its individual parts in order to gain a deeper understanding of it. Relating the rewards expressions

to traditional life table formulas will then be easy. The presentation aims to do this in a way that makes the

method and its formulas accessible to readers who only have had little exposure to matrix algebra. The only

prerequisite is knowledge of matrix multiplication.

One of the great bene�ts of the usage of matrices and vectors is the compactness of expressions. However, given

the above mentioned goals we opted for a more verbose presentation that uses explicit indexing. Explicitly

refering to matrix elements - for example, in order to write out sums of products from matrix multiplications -

requires usage of multiple subscripts. This necessarily results in notation that is somewhat tedious. Nevertheless,

in the present context this can hardly be avoided, given the aims of the exposition. Readers that are more familiar

with matrix algebra may also wish to consult Caswell and van Daalen (2019) (manuscript) for a more succinct

presentation of the formulas involved.

Even though we opted for an introductory presentation, we would like to emphasize at this point the usefulness

of matrix algebra. We encourage readers with little or no exposure at all to it to consider that they familiarize

themselves with basic concepts of this �eld of mathematics, since it provides access to an abundance of tech-

niques in di�erent areas of demography and ecology. Relatively little educational e�ort is required. A succinct

1



introcuction is the mathematical appendix in the textbook Caswell (2001) on matrix population models, which

spans only 15 pages.

In Markov models that incorporate both age and status, there are two sensible orderings of elements of matrices

and vectors: age-within-status or status-within-age. Even though status-within-age is the more common order-

ing in the literature on matrix population models, here we choose the age-within-status ordering. The reason is

that summations for conditional state expectancies neatly correspond to columns of matrix (2) below. Needless

to say, for the application of the main rewards formula it does not matter which ordering is used.

We assume a single absorbing state (death). The case of multiple absorbing states is not di�cult to deduce.

We opt for this simpli�cation in order to not further complicate notation, which is already somewhat unwieldy.

Matrices and vectors are denoted in boldface, with uppercase symbols denoting matrices and lowercase symbols

denoting (column) vectors. Scalars are typed in regular font. A prime indicates the transposition of a matrix

or vector. In particular, it turns a column vector into a row vector.

The following table lists the symbols used:

symbol meaning

ω number of age classes

k age class index, k = 1, . . . , ω

xk beginning age of age class k

x1 minimum (baseline) age in model. x1 is the age of the initial (beginning) state. x2 is the

age at which the �rst transition takes place.

Ξ set of age classes, {1, . . . , ω}
n length of age interval

τ number of transient states

S set of transient states, {1, . . . , τ}
i, j state indexes used for transitions

m state index used for rewards

d the (single) dead state

S̃ set of all states, i.e. transient states and dead: S̃ = S ∪ {d}
P transition matrix of all states

U submatrix of P consisting of transient states only

F fundamental matrix1

Rm rewards matrix for state m

gj fraction of population in state j at baseline age

exk
life expectancy at age xk

exk|j life expectancy at age xk, conditional on initial state j

eixk
expected lifetime spent in state i, starting at age xk

eixk|j expected lifetime spent in state i, starting at age xk, and conditional on initial state j

⊗ Kronecker product

◦ Hadamard product

Ic identity matrix of dimension c× c

Pairs of state indices show the index of the destination state �rst, followed by the index of the state of origin.

For example pij indicates the probability of moving from state j to state i. In the literature Markov matrices

are sometimes stated as column-stochastic matrices (columns sum to one) and sometimes as row-stochastic

matrices (rows sum to one). Here we use column-stochastic matrices. The �rst index i always refers to rows,

and the second index j to columns. When an expression has multiple nested subscripts, we frequently only use
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k in place of xk. Also note that d is not an index but denotes the �xed state �dead�, even though it is used in

an index position.

1.1.2 Standard Calculations (No Rewards)

In general, for the age-within-status ordering all matrices can be thought of as being mainly composed of τ2

blocks or submatrices, each of dimension ω × ω. For example, the transition matrix P is

P =


P11 · · · P1τ 0
...

. . .
...

...

Pτ1 · · · Pττ 0

p′d1 · · · p′dτ 1


where each submatrix Pij is a square ω × ω matrix. Each submatrix has nonzero elements only on the �rst

subdiagonal:

Pij =



0 0 · · · 0 0

pij,2 0 · · · 0 0

0 pij,3 · · · 0 0
...

...
. . .

...
...

0 0 · · · pij,ω 0


where pij,k denotes the a probability of making the transition from state j to state i when moving from age

class k−1 to age class k. p′dj are 1×ω row vectors. If there were multiple absorbing states in the model (e.g. for

a multiple decrement application), the vector would turn into a matrix with a corresponding number of rows.

For ease of exposition, this generalization is omitted here.

The vectors contain probabilities of dying at each age xk:

p′dj =
(
pdj,2 · · · pdj,ω pdj,ω+1

)
where the last element, pdj,ω+1 is equal to one: By assumption, subjects die during the transition from age class

ω to age class ω+ 1. The last column of P is a column of zeroes with only the last element being equal to one,

indicating the absorbing nature of death. The structure of the full matrix P, using row and column labels in

3



boldface, is then

i \ j · · · · · · 1 · · · · · · · · · · · · · · · τ · · · d

k 1 · · · ω − 1 ω · · · · · · 1 · · · ω − 1 ω .
... 1

1 2 p · · · · · · p
...

...
. . .

. . .

... ω p p

...
...

...
. . .

...
...

...
...

. . .
...

... 1

τ 2 p p
...

...
. . . · · · · · ·

. . .

... ω p p

d . p p p 1 · · · · · · p p p 1 1

with p indicating a probability, p ∈ [0, 1], and zeroes elsewhere. Each column of P sums to one.

Premultiplying a (ω · τ + 1)× 1 state distribution vector yt by P generates the state vector yt+1, i.e. P moves

counts (or fractions) of individuals from states at time t to expected states in time t+ 1, while simultaneously

aging the individuals by one time unit.2

U is simply a submatrix of P that only contains transitions among transient states:

U =


P11 · · · P1τ

...
. . .

...

Pτ1 · · · Pττ


The fundamental matrix F is calculated as

F = (Iω·τ −U)
−1

where I denotes the identity matrix. The easiest way to understand the above calculation is by remembering

the basic geometric series result for a ∈ [0, 1)

lim

∞∑
c=0

ac =
1

1− a

The formula for F is simply the corresponding matrix version:

lim

∞∑
c=0

Uc = lim
(
I + U + U2 + U3 + . . .

)
= (Iω·τ −U)

−1

Postmultiplying any power ofUc byU again has the e�ect of shifting the nonzero elements ofUc one subdiagonal

2This intuitive perspective of advancement by one time unit is only applicable if age classes are regularly spaced.
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down within each submatrix Pij . For example, U ·U = U2 has the submatrices

Pij =

· · · · · · · · · j · · · · · ·
k 1 2 · · · ω − 2 ω − 1 ω

... 1

... 2

... 3 p

i 4 p
...

...
. . .

... ω p

where the nonzero elements now denote transition probabilites over two time periods. U3 has submatrices with

the nonzero elements shifted down by another subdiagonal, and so forth.3 In general, Uc has submatrices with

nonzero elements on the c-th subdiagonal, denoting c-period transition probabilities. As a consequence, we have

Uc = 0, ∀c ≥ ω

so the result from the geometric series obtains exactly, not just in the limit:

F =

ω−1∑
c=0

Uc (1)

In the preceding formula, each term Uc adds another subdiagonal of nonzero elements to each submatrix Fij ,

so that it is easy to see that F must have the following structure:

F =


F11 · · · F1τ

...
. . .

...

Fτ1 · · · Fττ


3This does not mean that the elements of the relevant subdiagonal of Pij of U

c+1 only depend on the elements of the relevant
subdiagonal of Pij of U

c. This is not the case. They depend on the relevant subdiagonals of all matrices P·j and Pi· of Uc.
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=

i \ j · · · · · · 1 · · · · · · · · · 2 · · · · · · · · · · · · · · · τ · · ·
k 1 · · · ω − 1 ω 1 · · · ω − 1 ω · · · · · · 1 · · · ω − 1 ω

... 1 1

1 2 f 1 f · · · · · · f
...

...
...

. . . 1
...

. . .
...

. . .

... ω f · · · f 1 f · · · f f · · · f

... 1 1

2 2 f f 1 · · · · · · f
...

...
...

. . .
...

. . . 1
...

. . .

... ω f · · · f f · · · f 1 f · · · f

...
...

...
...

. . .
...

...
...

...
...

. . .
...

... 1 1

τ 2 f f f 1
...

...
...

. . .
...

. . . · · · · · ·
...

. . . 1
... ω f · · · f f · · · f f · · · f 1

(2)

That is, each submatrix Fij has nonzero elements, indicated by the symbol f , below the main diagonal, and

elements equal to one on the diagonal if i = j, and zeroes elsewhere. An element of F contains the probability

of reaching state i at age xk, conditional on starting in state j at baseline age x1.

For a regular age grid, we de�ne F̃ = n·F and corresponding submatrices F̃ij .
4 The matrix elements of F̃

contain the expected length of stay or occupancy time in a particular state i, conditional on initial state j. For

our purposes, only the entries of columns that refer to the starting age x1 are relevant. We identify these

entries of F̃ via f̃ij,k. For example, the circled element f̃12,ω above indicates the expected length of stay in

state 1 at the maximum age, conditional on the subject being in state 2 at baseline age. Note that, while pij,k

refers to the entries of the �rst subdiagonal of the matrix Pij , f̃ij,k refers to elements of the �rst column of

F̃ij . Summing the elements of an entire k = 1 column of F̃ yields life expectancies at age x1, conditional on

intitial state j, denoted by ex1|j , and corresponding, for example, to the sum of elements contained in the large

solid rectangle. Summing up the elements of the k = 1 column of a submatrix F̃ij only yields a conditional

component life expectancy, denoted by eix1|j . This is the state expectancy for state i, conditional on being in

state j at baseline age. For example, the sum of the elements contained in the small solid rectangle corresponds

to the total expected time spent in state 2, conditional of the subject being in state 1 at baseline age. The

formulas are

ex1|j =
∑
i∈S

eix1|j

4For a general, unevenly spaced age grid, de�ne n =


n1 0 · · · 0
0 n2 0
...

. . .
...

0 0 · · · nω

 and adjust F according to F̃ = (Iτ ⊗ n)F, where

⊗ denotes the Kronecker product. For two matrices A and B, the Kronecker product is

A⊗B =

a11 ·B a12 ·B · · ·
a21 ·B a22 ·B

...
. . .
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eix1|j =
∑
k∈Ξ

f̃ij,k

In order to obtain life expectancies that are not conditional on the initial state, a weighted average is calculated,

using the initial state distribution as weights. Denoting the initial proportion of the population in state j by

gj , we have for the component (state-speci�c) life expectancies

eix1
=
∑
j∈S

gj · eix1|j

For state 2, this corresponds to a weighted average of the sums of elements contained in the small solid and

dashed rectangles. Similarly, the overall life expectancy is calculated as

ex1 =
∑
i∈S

eix1
=
∑
i∈S

∑
j∈S

gj · eix1|j =
∑
j∈S

gj ·
∑
i∈S

eix1|j =
∑
j∈S

gj · ex1|j

which corresponds to a weighted average of the sums of elements contained in the large solid and dashed

rectangles.

The above calculations assume end-of-period transitions and hence overestimate state expectancies since death

normally occurs around mid-period, on average. The assumption of mid-period transitions (i.e. transitions

at ages x1 + 1
2n, x2 + 1

2n, x3 + 1
2n, etc.) can be implemented for an evenly spaced age grid by rede�ning

F̃ = n
(
F− 1

2Iτω
)
with subsequent calculations unaltered.

It is worth restating the di�erence between F and F̃. While F contains probabilities of reaching a state, F̃

contains the expected lengths of stay in a state, which can be seen as expected time rewards. When turning

to the rewards framework in the next section, F is used instead of F̃. Time rewards enter the calculations via

separate, newly de�ned matrices.

1.1.3 Markov Chain with Rewards and Its Application to Transition Timing

Rewards calculations are based on rewards matrices Rm, which associate transitions with payo�s for state m.

Any transition can be modelled to yield payo�s towards any state or for any number of states. For example,

transitioning from state j to state i can result in a reward of n2 to both ejx1
and eix1

(via entries in Rj and Ri),

which is an obvious way of modelling the assumption of mid-interval transitions.

The block structure of Rm is identical to the one of P:

Rm =


Rm,11 · · · Rm,1τ 0

...
. . .

...
...

Rm,τ1 · · · Rm,ττ 0

r′m,d1 · · · r′m,dτ 0


with

Rm,ij =



0 0 · · · 0 0

rm,ij,2 0 · · · 0 0

0 rm,ij,3 · · · 0 0
...

...
. . .

...
...

0 0 · · · rm,ij,ω 0
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The scalar rm,ij,k quanti�es the reward towards state m for the transition from state j to i when turning xk.

r′m,dj are row vectors and reward transitions into death:

r′m,dj =
(
rm,dj,2 · · · rm,dj,ω rm,dj,ω+1

)
Note that rm,dj,ω+1 can be a positive magnitude, even though death is certain for the age ω to age ω+1 transition.

The last column of Rm consists entirely of zeros, re�ecting the fact that being dead is never rewarded. It is

important to keep in mind that all rewards-related matrices, vectors and scalars quantify rewards towards a

speci�c state, and hence receive all an additional state index m.

A convenient matrix formula for calculating lifetime rewards towards statem, derived in van Daalen and Caswell

(2017), is

emx1|· = (Iτ ⊗ u1,ω)F′Z (11,τω+1 · (P ◦Rm))
′

(3)

where u1,ω is a 1 × ω unit vector with one as the �rst element and zeroes elsewhere, and Z is de�ned as

[Iτω 0τω×1], and 11,τω+1 is an τω + 1 row vector of ones.5 The formula links F, which contains probabilities

of reaching a particular state, with (11,τω+1 · (P ◦Rm))
′
, which associates that state with rewards in terms of

possible transitions out of that state. The other matrices involved just select or drop elements. It is instructive

to have a closer look at the di�erent terms that make up the formula. (11,τω+1 · (P ◦Rm))
′
does an elementwise

multiplication ofP andRm, sums each column over the rows, and transposes the result. Let bm,ij,k = pij,k·rm,ij,k
denote the scalars of the elementwise multiplications. bm,ij,k is the expected reward for state m of transition ij

at age xk. Then we have

(11,τω+1 · (P ◦Rm))
′

=



∑
i∈S̃ bm,i1,2

...∑
i∈S̃ bm,i1,ω

rm,d1,ω+1

...

...

∑
i∈S̃ bm,iτ,2

...∑
i∈S̃ bm,iτ,ω

rm,dτ,ω+1

0


Each element of the above vector contains the expected reward6 of being in a particular state at a particular

age, where this magnitude is calculated as the sum of the expected rewards for all possible transitions out of the

state. Premultiplication by Z just cuts o� the last element, which is zero. To understand the premultiplication

by F′, consider the product implied by the �rst column of F only, which is

5The formula uses the Hadamard product, denoted by ◦, which indicates elementwise multiplication: For two matrices A and
B, [A ◦B]ij = aij · bij .

6The last element of each state block j lacks a p..,. term since it is equal to one.
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f11,1 ·
∑
i∈S̃

bm,i1,2 + f11,2 ·
∑
i∈S̃

bm,i1,3 + · · ·+ f11,ω · rm,d1,ω+1

+f21,1 ·
∑
i∈S̃

bm,i2,2 + f21,2 ·
∑
i∈S̃

bm,i2,3 + · · ·+ f21,ω · rm,d2,ω+1

+ . . .

+fτ1,1 ·
∑
i∈S̃

bm,iτ,2 + fτ1,2 ·
∑
i∈S̃

bm,iτ,3 + · · ·+ fτ1,ω · rm,dτ,ω+1

The �rst column of F refers to those being in state 1 (at baseline age x1). Consequently, the above expression

only contains elements f·1,·. Looking at the �rst product term, f11,1 denotes the probability of reaching state 1

at age x1 when starting out in state 1 at age x1 (which equals one, as a quick check of Eq. (2) con�rms). This

probability is multiplied by the expected reward of being in that state, calculated as the sum of the expected

rewards of all out-transitions, weighted by the transition probabilities. This calculation is repeated for all

elements fi1,k, summing over all ages xk (within each line) and summing over all possible transient states i

(across lines). In general, the probabilities of reaching future states are multiplied by the expected rewards for

these states, and the sum of these numbers over all possible states that a subject can go through yield emx1|1,

i.e. the overall reward for state m, conditional on initial state 1.

Lastly, the premultiplication of F′ by (Iτ ⊗ e1,ω) selects those columns of F that are relevant, namely the age

class 1 columns for all possible initial states. The overall result is

emx1|· =


emx1|1
...

emx1|τ


The calculation of the unconditional magnitudes emx1

and ex1
is then as laid out in the previous section, using

initial state proportions for obtaining weighted averages.

It is worth reiterating that the above formula for calculating rewards contains F, not F̃. Any time rewards that

account for age intervals di�erent from one and for irregularly spaced age intervals are modelled via the Rm

matrices.

1.2 Equivalence to Standard Life Table Calculations

A notational note must precede the following elaborations. There is a slight di�erence between notation used in

this paper and conventional demographic notation. The former is geared towards transitions at points in time,

whereas the latter refers to intervals. For example, the probability of dying within the age interval xk to xk+1 is

nqxk
= 1−n pxk

in demographic notation, but pdi,xk+1
in the notation used so far in this paper. The important

point to note is that the age index di�ers by one. Since we now focus on life table formulas and check the two

methods for numerical equivalence, it will be useful to adhere to demographic notation in this section.

Assume that there is only one transient state (alive) and one absorbing state (death). Then the rewards

calculations coincide with standard life table calculations if survival probabilities and the values for Chiang's a

(the average time lived within the age interval by those who die in the age interval) are known. Suppose we

had survival probabilities and values for Chiang's a, denoted by the conventional demographic symbols npx and

nax, respectively. We allow for irregularly spaced age intervals, denoted nk, but drop the k-index when n itself
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is in the left index of a variable. The formula for the life expectancy then is

ω∑
k=1

(
k−1∏
h=1

npxh

)
(npxk

· nk + (1− npxk
)naxk

) (4)

For each age xk, we calculate the survival probability up to that age (the product term) and multiply it by the

sum of the probability of surviving the age interval times the length of the age interval and the expected time

contribution of those who die in the age interval.7

We now show that corresponding rewards calculations in (3) are identical. The relevant matrices are:

P =



0 0 · · · 0 0

npx1 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · npω−1 0 0

1−n px1 · · · 1−n pω−1 1 1


The last two columns say that the probability of dying when being in the highest age interval is one, as is the

probability of remaining dead once the dead state has been entered. U is the submatrix that results when

dropping the last column and the last row of P, and

R =



0 0 · · · 0 0

n1 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · nω−1 0 0

nax1
· · · naω−1 naω 0



From the argument leading up to Eq. (1), it is easily seen that, for the single-state case, F is

F =



1 0 0 · · ·

npx1
1 0 · · ·

npx1 · npx2 npx2 1 · · ·

npx1
· npx2

· npx3 npx2
· npx3 npx3

· · ·
...

...
... · · ·∏ω−1

i=1 npxi · · · · · · · · ·


If we focus on life expecancy at the �rst age, only the �rst column is relevant. Its entries corresponds to the

product term in Eq. (4). This column is isolated by the selection term on the left of Eq. (3). The second

parenthesis in Eq. (4) corresponds to the elements of the second parenthesis in Eq. (3). Finally, The matrix

product of (Iτ ⊗ e1,ω)F′ and Z (11,τω+1 · (P ◦Rm))
′
does the appropriate sum of products, as in Eq. (4).

As an illustration, the HMD values for the demographic 5-year age spacing for Spain and the year 2000 are

0.996, 0.999, 0.999, ..., 0.032, 0.000 for npxk
and 0.14, 1.62, 2.36, ..., 1.42, 1.33 for naxk

. Using these values,

each of the equations (3) and (4) yield e0 = 79.42321813, which rounds to e0 = 79.42, the value cited in the

HMD.8

7It is understood implicitly that the product term equals one for the �rst age group.
8Data retrieved on November 2, 2018. Current, revised values may di�er slightly.
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1.3 Multistate Application: Retirement Life Expectancies

This section adapts the general expressions of the previous section for the retirement application of the main

article, whose basic parameters are described in the table below:

symbol meaning value

ω number of age classes 61

x1 minimum (baseline) age in model 50

Ξ set of age classes {50, . . . , 110}
n length of age interval 1

τ number of transient states 3

S set of transient states {w, u, r}
S̃ set of all states: S̃ = S ∪ {d} {w, u, r, d}

In particular, the model incorporates three transient states: working, unemployed, and retired, denoted as w,

u, r, respectively.9 The transition matrix is

P =


Pww Pwu Pwr 0

Puw Puu Pur 0

Prw Pru Prr 0

p′dw p′du p′dr 1


and has the following, detailed structure:

i \ j · · · · · · w · · · · · · · · · u · · · · · · · · · r · · · d

xk 50 · · · 109 110 50 · · · 109 110 50 · · · 109 110 .
... 50

w 51 p p p
...

...
. . .

. . .
. . .

... 110 p p p

... 50

u 51 p p p
...

...
. . .

. . .
. . .

... 110 p p p

... 50

r 51 p p p
...

...
. . .

. . .
. . .

... 110 p p p

d . p p p 1 p p p 1 p p p 1 1

The calculation of the fundamental matrix F is based on the submatrix U of P:

U =


Pww Pwu Pwr

Puw Puu Pur

Prw Pru Prr


9The symbol r now has two di�erent meanings: It may refer to a particular state (being retired), or to rewards magnitudes.

What is meant will be clear from the context, however.
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The detailed structure of F is

F = (I61·3 −U)
−1

=


Fww Fwu Fwr

Fuw Fuu Fur

Frw Fru Frr



=

i \ j · · · · · · w · · · · · · · · · u · · · · · · · · · r · · ·
xk 50 · · · 109 110 50 · · · 109 110 50 · · · 109 110

... 50 1

w 51 f 1 f f
...

...
...

. . . 1
...

. . .
...

. . .

... 110 f · · · f 1 f · · · f f · · · f

... 50 1

u 51 f f 1 f
...

...
...

. . .
...

. . . 1
...

. . .

... 110 f · · · f f · · · f 1 f · · · f

... 50 1

r 51 f f f 1
...

...
...

. . .
...

. . .
...

. . . 1
... 110 f · · · f f · · · f f · · · f 1

Denoting by fij,k the probability of reaching state i at age xk conditional on starting in state j at age 50,10 the

formulas for life expectancy numbers from section 1.1.2 can be directly applied.

Turning to rewards calculations, the matrix that speci�es rewards towards state m, m ∈ S, becomes

Rm =


Rm,ww Rm,wu Rm,wr 0

Rm,uw Rm,uu Rm,ur 0

Rm,rw Rm,ru Rm,rr 0

r′m,dw r′m,du r′m,dr 0


For di�erent timing assumptions, we de�ne di�erent rewards matrices. In the matrices below, non-speci�ed

10Since we have a regular age grid with all age intervals of length one, this is equal to the expected length of stay.
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elements are zero. For the end-of-period replication, de�ne

Rw = Ru = Rr =

1 1 1

. . .
. . .

. . .

1 1 1

1 1 1

. . .
. . .

. . .

1 1 1

1 1 1

. . .
. . .

. . .

1 1 1

1 · · · 1 1 1 · · · 1 1 1 · · · 1 1 0

For the mid-period speci�cation, de�ne

Rw =

1 0.5 0.5

. . .
. . .

. . .

1 0.5 0.5

0.5 0 0

. . .
. . .

. . .

0.5 0 0

0.5 0 0

. . .
. . .

. . .

0.5 0 0

0.5 · · · 0.5 0.5 0 · · · 0 0 0 · · · 0 0 0

Ru =

0 0.5 0

. . .
. . .

. . .

0 0.5 0

0.5 1 0.5

. . .
. . .

. . .

0.5 1 0.5

0 0.5 0

. . .
. . .

. . .

0 0.5 0

0 · · · 0 0 0.5 · · · 0.5 0.5 0 · · · 0 0 0
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Rr =

0 0 0

. . .
. . .

. . .

0 0 0

0 0 0

. . .
. . .

. . .

0 0 0

0.5 0.5 1

. . .
. . .

. . .

0.5 0.5 1

0 · · · 0 0 0 · · · 0 0 0.5 · · · 0.5 0.5 0

If, in addition to the mid-period transitions, we use exact retirement rewards, the matrices become

Rw =

1 0.5 0.5

. . .
. . .

. . .

1 0.5 0.5

0.5 0 0

. . .
. . .

. . .

0.5 0 0

ν2 0 0

. . .
. . .

. . .

νω 0 0

0.5 · · · 0.5 0.5 0 · · · 0 0 0 · · · 0 0 0

Ru =

0 0.5 0

. . .
. . .

. . .

0 0.5 0

0.5 1 0.5

. . .
. . .

. . .

0.5 1 0.5

0 ν2 0

. . .
. . .

. . .

0 νω 0

0 · · · 0 0 0.5 · · · 0.5 0.5 0 · · · 0 0 0
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Rr =

0 0 0

. . .
. . .

. . .

0 0 0

0 0 0

. . .
. . .

. . .

0 0 0

1− ν2 1− ν2 1

. . .
. . .

. . .

1− νω 1− νω 1

0 · · · 0 0 0 · · · 0 0 0.5 · · · 0.5 0.5 0

where νk denotes the fraction of the retirement age-year spent working when moving into retirement in age class

k.

For any of the above scenarios, life expectancies can be calculated according to the formula

em50|· =


em50|w

em50|u

em50|r

 = (I3 ⊗ e1,61)F′Z (11,4 · (P ◦Rm))
′

followed by the usual weighting by initial proportions in order to obtain unconditional state and overall ex-

pectancies.

1.4 Software with Worked Examples

We provide Stata and R packages that carry out rewards calculations in a �exible manner. The help entries

of both packages contain extensive example sections which elaborate on applications very similar to the ones

above. The packages allow interactive inspection of the matrices involved. Package installation is done via the

repositories CRAN (R) and SSC (Stata):
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> install.packages("mcwr")

. ssc install mcwr

https://osf.io/tzyh9/?view_only=a444d38ce94249a99be9d86e5dae9de6
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