
Konrad-Zuse-Strasse 1 · D-18057 Rostock · Germany · Tel +49 (0) 3 81 20 81 - 0 · Fax +49 (0) 3 81 20 81 - 202 · www.demogr.mpg.de

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review. Views or opinions expressed 

in working papers are attributable to the authors and do not necessarily  reflect those of the Institute.

MPIDR Working Paper WP 2022-028  l  Novmber 2022
https://doi.org/10.4054/MPIDR-WP-2022-028

Risto Conte Keivabu  l  contekeivabu@demogr.mpg.de
Ugofilippo Basellini  l  basellini@demogr.mpg.de
Emilio Zagheni  l  office-zagheni@demogr.mpg.de

Racial disparities in deaths related to 
extreme temperatures in the United 
States between 1993 and 2005



Racial disparities in deaths related to extreme temperatures in

the United States between 1993 and 2005

Risto Conte Keivabu1, Ugofilippo Basellini1, and Emilio Zagheni1

1Max Planck Institute for Demographic Research (MPIDR), Rostock, Germany

November 3, 2022

Abstract

Extreme temperatures are associated with higher overall mortality at the population
level, but some individuals are more vulnerable than others. Here, we investigate how
extreme temperatures affect mortality and how race stratifies this relationship in the United
States. We use highly granular administrative and census data on monthly mortality in over
3,000 counties from 1993 to 2005, and link them to precise meteorological information. We
find that extreme temperatures increase mortality risk, and that the extent of this increase
varies between racial groups. For example, an extra hot day increases the monthly mortality
rate of Blacks and Others by 6.3 and 11.3 per 1,000, respectively, but by just 2.4 per 1,000
among Whites. Conversely, of these groups, Blacks are the least vulnerable on cold days.
Moreover, we simulate the number of additional deaths that would have occurred in the
study period if temperatures had increased to those projected for the middle of the 21st
century. Our findings highlight disparities in mortality risks under these projected higher
temperatures. In particular, we show that excess mortality due to higher temperatures is six
times higher among Blacks than it is among Whites. Thus, climate change could exacerbate
existing racial inequalities in deaths related to extreme temperatures.

Climate change is predicted to increase the occurrence of extreme temperatures, which pose1

health and mortality risks throughout the United States (U.S.) and the entire world, especially2

for the most vulnerable populations. A growing body of literature has documented the impact3

of extreme temperatures on mortality1–6. A key question is how different demographic groups4

are affected by extreme temperatures,7 whether future climate change could affect specific5

subgroups disproportionately. 8.6

Extreme temperatures pose critical public health risks, especially for the elderly, who have7

a frail cardiovascular system9,10. A recent global study found that cold has long lagged effects8

(of up to 21 days) on mortality, and accounts for the largest share of temperature-related9

deaths11. For North America specifically, it has been shown that approximately 7% of premature10

deaths are related to temperature, of which 6.3% are cold-related and 0.7% are heat-related11.11

The larger share of temperature-related deaths associated with cold is explained by the higher12

number of deaths observed at moderately cold temperatures, which are rather common in many13

countries12. However, findings indicating that exposure to moderately cold temperatures causes14

mortality should be interpreted with caution, as the choice of thresholds for cool temperatures,15

and possible confounding factors (such as higher prevalence of infectious diseases determined16

by longer time spent indoors), could bias these results13. Conversely, deaths due to exposure to17

heat occur on days when the temperatures are high, leading to short-term spikes in mortality12.18

Notably, some racial groups face a greater risk of heat-related mortality than others.Thus,19

targeted policies could help to offset the expected increase in mortality due to climate change8.20
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In the U.S., race-based inequalities are ubiquitous across life domains, and environmental21

inequalities have significant consequences. . There is historical evidence of seasonal fluctuations22

in mortality by race in the 18th14 and 19th centuries15. Recent studies on racial disparities in23

the U.S. have found a higher mortality risk due to heat exposure among the Black population24

in North Carolina, South Carolina, and Georgia from 2007 to 201116; in four U.S. cities17; and25

during the 1995 heatwave in Chicago18. However, one analysis found no racial differences in26

temperature-related morbidity in 9 counties in California from 1999 to 2005,19 while another27

found some evidence of a lower risk of heat-related mortality among Hispanics and Asians20,21.28

The mechanisms that explain racial disparities in temperature-related mortality are rooted29

in differences in exposure, vulnerability and access to medical and social support22,23. Dis-30

parities in exposure are related to poorer housing conditions and access to air conditioning17.31

In addition, minority groups are more likely than the majority population to live in environ-32

mentally disadvantaged neighbourhoods, such as in the hottest areas of cities24. There are also33

disparities in vulnerability as some racial groups are more likely to have pre-existing health con-34

ditions that can be aggravated by extreme temperatures. For example, the Black population in35

the U.S. are more likely to suffer from cardiovascular diseases that increase their vulnerability to36

heat25. Moreover, Blacks may have less access to medical information or treatment, and often37

lack adequate social support26. Thus, concerns have been raised that future climate change38

could exacerbate existing racial disparities in temperature-related mortality.39

Recently, the so-called ‘Mortality Cost of Carbon’ metric has been proposed to quantify the40

number of lives lost in the future due to anthropogenic climate change27. On the one hand, an41

increase in average temperatures could lead to a decrease in the number of cold-related deaths42

in some geographical areas that are predicted to have high economic development28. On the43

other hand, global warming could result in a further increase in mortality in poorer and warmer44

countries28. Studies conducted in the European context have projected that climate change45

will lead to an increase in heat-related premature deaths29 and a decrease in life expectancy30.46

Similar effects are expected to occur in the U.S. and in other world regions31. Additionally, a47

study on 208 U.S. cities, based on a scenario in which temperatures increase by about 6°C called48

for greater efforts to mitigate the negative health effects of the projected increase in heat-related49

vulnerability32. At the same time, certain sub-populations, such as Blacks, may, on average,50

face an even higher risk of heat-related mortality. As Blacks are expected to bear a higher51

Mortality Cost of Carbon, policies aimed at protecting them and other vulnerable groups are52

needed8.53

In this paper, we go beyond the state of the art by investigating racial disparities in extreme54

temperature-related mortality at a detailed geographical level. Focusing on the contiguous55

U.S. between 1993 and 2005, we analyze the link between extreme temperatures and mortality56

within a solid statistical framework. To do so, we combine the Berkeley Unified Numident57

Mortality Database (BUNMD)33, a detailed individual-level dataset on mortality among older58

individuals in about 3,000 counties, with precise meteorological information. Our research59

advances the previous literature, in three main ways. First, we analyze the stratified effect of60

extreme temperatures on mortality by race for the entirety of the contiguous U.S., capturing the61

association in a broad spectrum of climatic and socio-economic contexts. Second, we provide62

results on racial disparities related to cold temperatures; an issue on which previous studies63

have failed to generate conclusive evidence. Third, we provide for the first time an assessment64

of expected excess deaths by racial group, based on projected future temperatures.65
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Results66

Racial inequalities in temperature-related mortality in the U.S.67

In our analysis, we employ Poisson regression to study the relationship between the monthly68

mortality rate and the temperatures at the county level, controlling for different covariates and69

fixed effects (see ‘Estimation method’ for additional details). Table A1 in the Supplementary70

Materials (hereafter SM) presents the descriptive statistics for all the variables employed in71

our study. Figure 1 shows the estimated coefficients of the temperature covariate, describing72

how temperatures affect mortality in the general population of the United States. We observed73

positive coefficients for temperature percentiles outside the comfort zone (10th–90th percentiles,74

taken as the reference category), which corresponds to an increase in mortality rates for all75

temperatures outside of the comfort zone. The estimated temperature-mortality curve displays76

a U shape, with greater increases in mortality at more extreme (cold and hot) temperatures.77

These findings are in line with those of previous studies1,34. An additional day in the coldest78

percentile (< 1st) increased the monthly mortality rate by 1.9 per 1,000, while the figure is79

3.1 per 1,000 for the hottest percentile (> 99th). All estimated coefficients are statistically80

significant at the 95% level. The estimated coefficients for the other covariates in the model81

were also significant and had the expected sizes: mortality increased by age, it was higher for82

males than for females, and it was highest for Blacks, followed by Whites and than Others racial83

groups (for our definition of racial groups, see ‘Methods’). The full results from the model are84

provided in Table A2 of the SM.85

Importantly, we found that when the number of days with extreme temperatures in a single86

month increased the mortality rate rose. For example, five hot days occurring in a single month87

would lead to the mortality rate increasing by 3.1 × 5 = 15.5 per 1,000. However, caution is88

needed in interpreting these estimates as threshold effects could be present that resulted in an89

even steeper increase or decrease in mortality with additional days of extreme temperatures.90

For example, previous research has found that higher heat-related mortality in the early summer91

months could be followed by a harvesting effect35. Thus, successive hot days in a month may92

have a decreasing effect size.93

The results shown in Figure 1 might hide heterogeneous racial effects: some specific groups94

might be at higher or lower risk of temperature-related mortality. To investigate such racial95

disparities, we added an interaction between the temperature variables and race. Figure 296

presents the results of this interaction model. Like in the general model, we observe that cold97

and hot temperatures have an increasing effect on mortality. However, the magnitude of this98

increase was race-specific. On the coldest days (< 1st percentile), mortality increased by 2.1 and99

3.6 per 1,000 for Whites and Others, respectively; but decreased by -0.7 per 1,000 for Blacks100

(with the estimate being not statistically significant at the 95% level). An additional day in101

the hottest percentile (> 99th) increases the mortality rate by 2.4, 6.3 and 11.3 per 1,000 for102

Whites, Blacks and Others, respectively. As was already mentioned, when the number of days103

with extreme temperatures in a single month increased, the mortality rate also tended to rise.104

The results from the model are also provided in Table A3 of the SM.105

Some sociodemographic characteristics could compound racial disparities in temperature-106

related deaths. More precisely, gender and age categories could be associated with greater107

vulnerabilities that could differ between racial groups. Racial minorities may be particularly at108

risk as they are more likely than Whites to suffer from cardiovascular diseases and other chronic109

illnesses such as diabetes. In addition, older cohorts are more likely than younger cohorts to110

have lower educational attainment. To test for such compound racial disparities, we performed111

a three-way interaction between temperature exposures, age categories and racial groups (SM112

Table A4). The only significant effect detected by this analysis was that Blacks aged 85+ had a113
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Figure 1. Estimated coefficients with 95% confidence intervals of the temperature variable on
mortality.

higher mortality risk than other groups on hot days. When we examined a potential three-way114

interaction between temperature, race and gender, we found no substantial pattern (SM Table115

A5).116

Geographical differences in the impact of extreme temperatures on mortality are particularly117

relevant for understanding the racial disparities observed in Figure 2. On one hand, Blacks are118

mostly concentrated in the South and South East, which are two areas of the U.S. that are119

particularly susceptible to high temperatures. Moreover, Blacks often reside in the warmest120

areas of cities24. On the other hand, as individuals living in northern counties are less prepared121

to deal with unexpected heat spells36, Blacks in these counties could face even higher health122

risks.123

We investigated the geographic disparities in the relationship between extreme temperatures124

and mortality by performing a series of additional analysis. First, we ran an interaction between125

the temperature variables and the eight climatic regions. The results shown in Figure A3 in126

the SM indicate that hot days (> 99th percentile) had a larger impact in some of the colder127

regions. In particular, we observed that compared to the Central region, days with temperatures128

above the 99th percentile had a greater impact in the Northwestern and West North Central129

regions, which experienced an intense heatwave in 202137. Conversely, we found that exposure130

to cold days (< 1st percentile) had a more substantial impact in the South and East North131

Central regions. Thus, our results corroborate previous findings suggesting southern regions are132

the most adapted to warmer temperatures1,36,38. Nevertheless, racial disparities might differ133

depending on the climatic region and compound existing inequalities. Therefore, we explored134

geographical patterns in racial disparities with a three-way interaction between racial categories,135

climatic regions, and temperature exposures. The results (SM Table A6) show that relative to136

the Central region, the largest racial disparities for both minority groups in the impact of137

exposure to hot days (> 99th percentile) on mortality were in the East North Central region,138

but also that the mortality risk was lower in the Northwest for Blacks. Conversely, we did139

not observe any major differences between climatic regions in the impact of exposure to cold140
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Figure 2. Estimated coefficients with 95% confidence intervals of the temperature variable on
mortality by racial groups.

days (< 1st percentile) on mortality among different racial groups, with the exception of the141

Northwest where Blacks show a lower risk. Our observation that racial inequalities were larger142

in the East North Central region appears to corroborate previous studies that examined the143

impact of the 1995 heatwave and found a higher burden for Blacks18.144

Climate change and excess mortality by race145

We investigated the extent of future racial disparities in temperature-related mortality by sim-146

ulating the number of race-specific excess deaths in our study period that would have occurred147

if the temperatures were as high as the levels predicted for the middle of the 21st century. This148

counterfactual analysis was performed by replacing the observed temperatures with those pro-149

jected between 2051 and 2055, keeping fixed the estimated coefficients of the race interaction150

model. All other covariates were assumed to remain constant. Future temperature data were151

retrieved from the Multivariate Adaptive Constructed Analogs dataset based on the RCP4.5152

emissions scenario39,40 (see ‘Meteorological Data’).153

Table 1 shows the number of excess deaths and excess mortality rate that would have154

occurred if temperatures were to change to levels predicted for the years 2051-2055. This coun-155

terfactual analysis uncovered important racial disparities in the effect of temperature changes156

on mortality. In particular, we found that the excess mortality rate due to higher temperatures157

was much higher for Blacks and for Others, while the excess mortality rate for Whites increased158

more moderately. These racial disparities grew when we considered the mid-century RCP8.5159

emission scenario and the end of century scenarios (SM Tables A7-A9) and when we looked160
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at excess deaths by race and age category (SM Table A10). Figure 3 shows the excess deaths161

plotted on the U.S. map for all racial groups, as well as disaggregated by race. In the maps,162

we can observe a larger increase in excess deaths in the South and Southeast regions of the163

United States, and a slight decline in the Northeast. Moreover, different patterns emerge when164

we look at race-specific maps. These maps show, for example, that mortality increased almost165

everywhere for Blacks, but decreased in some areas for Whites and for Others. The largest mor-166

tality increases were among Blacks, particularly in the southern counties, where Others were167

also particularly vulnerable. While our findings for the entire U.S. population align well with168

the projections by Carleton Carleton et al. 28, we made a further contribution to the literature169

on future temperature-related mortality in the United States by adding the racial perspective.170

Additionally, we leveraged the three-way interaction between temperatures, racial groups and171

climatic regions (Table A6 in the SM) to provide estimates of excess deaths based on the RCP4.5172

projections by race and climatic regions. Table 2 shows that the Northwest, the Southeast and173

the South suffer the highest numbers of excess deaths. However, there could be substantial174

racial differences within regions. Table 3 deepens this analysis by looking at excess mortality by175

race and region. The results show that Blacks had the highest excess death rate in the South,176

Southeast and East North Central regions; whereas, Whites had the highest excess death rate177

in the Northwest.178

Table 1. Excess deaths and mortality rates in 1993-2005 if the temperatures were as high as
the mid-century levels projected in the RCP4.5 scenario.

Observed
deaths

Simulated
deaths

Excess
deaths

Total
exposure

Excess rate
(per 100,000)

White 19,633,036 19,682,144 49,107 374,910,266 13
Black 2,128,672 2,158,969 30,296 36,189,517 84
Other 797,371 810,464 13,093 32,797,250 40

Total 22,559,081 22,651,579 92,497 443,897,033 21

Notes: Estimates are obtained by predicting the number of the deaths based on Equation (2) using
mid-century temperatures (2051-2055) based on the RCP4.5 emission scenario.

Table 2. Excess deaths and mortality rates in 1993-2005 by climatic region if the temperatures
were as high as the mid-century levels projected in the RCP4.5 scenario.

Climate region Obs. deaths Sim. deaths Ex. deaths Tot. Exposure Excess rate

Center 4,229,926 4,242,000 12,074 77,063,491 15
East North Central 1,891,892 1,891,367 -525 37,887,249 -1

Northeast 5,397,985 5,401,414 3,429 103,057,827 3
Northwest 809,709 821,054 11,344 16,940,384 67

South 2,822,465 2,833,668 11,202 52,669,445 21
Southeast 3,912,396 3,938,074 25,677 80,652,557 32
Southwest 817,373 820,568 3,195 18,951,795 17

West North Central 2,677,332 2,688,208 10,876 5,6674,282 19

Total 22,559,081 22,636,354 77,271 443,897,033 17

Notes: Estimates are obtained by predicting the number of deaths by extending Equation (2) to a
three-way interaction (temperature-race-climatic regions) using the mid-century temperatures
(2051-2055) projected in the RCP4.5 emission scenario.
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Figure 3. Excess deaths (per 100,000) by counties based on the mid-century RCP4.5 scenario
for the full sample and for different racial groups.

Note: Estimates are obtained by predicting the excess deaths (per 100,000) by counties based on temperatures
projected for 2051 to 2055 in the RCP4.5 scenario.
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Table 3. Excess deaths and mortality rate in 1993-2005 by race and climatic region if temper-
ature were as high as the mid-century levels projected in the RCP4.5 scenario.

Race Climatic region Obs. deaths Sim. deaths Ex. deaths Tot. Exposure Excess rate
White Central 3,801,807 3,809,184 7,377 69,134,654 10
Black Central 387,598 392,253 4,655 6,253,957 74
Other Central 40,520 40,562 42 1,674,879 2
White East North Central 1,762,313 1,760,030 -2,283 35,358,065 -6
Black East North Central 111,082 112,757 1,675 1,882,099 89
Other East North Central 18,497 18,580 82 647,084 13
White Northeast 4,809,850 4,808,946 -904 89,054,074 -1
Black Northeast 444,741 449,027 4,286 8,253,992 52
Other Northeast 143,394 143,441 47 5,749,760 1
White Northwest 742,737 753,331 10,594 15,284,043 69
Black Northwest 43,074 43,536 463 807,227 57
Other Northwest 23,898 24,186 287 849,114 34
White South 2,322,188 2,324,645 2,458 41,245,657 6
Black South 375,599 381,970 6,371 5,776,551 110
Other South 124,678 127,052 2,373 5,647,238 42
White Southeast 3,212,733 3,210,461 -2,272 66,166,605 -3
Black Southeast 607,798 617,288 9,490 10,349,823 92
Other Southeast 91,865 110,323 18,458 4,136,129 446
White Southwest 749,981 753,912 3,931 16,074,882 24
Black Southwest 15,567 15,555 -11 303,617 -4
Other Southwest 51,825 51,100 -725 2,573,295 -28
White West North Central 2,231,427 2,238,147 6,720 42,592,285 16
Black West North Central 143,213 144,960 1746 2,562,250 68
Other West North Central 302,690 305,100 2,410 11,519,747 21
Total 22,559,081 22,636,354 77,271 443,897,033 17

Notes: Estimates are obtained by predicting the number of deaths by extending Equation (2) to a
three-way interaction (temperature-race-climatic regions) using the mid-century temperatures
(2051-2055) projected in the RCP4.5 emission scenario.
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Conclusion179

In this article, we have analyzed the impact of extreme temperatures on mortality, and the180

related disparities by race, using data on the contiguous United States from 1993 to 2005. We181

provided further evidence of the impact of extreme temperatures on mortality, while highlighting182

the greater vulnerability to heat of minority groups, and especially Blacks. Importantly, for183

the first time, we provided evidence of the stratified effect of temperature by race using a184

comprehensive sample of more than 3,000 counties. Thus, we added to the previous literature,185

which focused on only a partial sample of the U.S. territory. Additionally, we provided estimates186

of excess deaths based on several RCP scenarios, and mapped the counties where temperature-187

related deaths are expected to increase the most.188

In line with the existing evidence, we observed that exposure to extreme cold and hot189

temperatures led to an increase in mortality risk.1,6. Our findings on the impact of temperature190

on mortality by race indicated that the effects differed for heat and cold. We found that relative191

to the effects on Whites, moderate temperatures were deadlier for Others, but not for Blacks.192

Conversely, we found that heat was consistently deadlier for Blacks and for Others. It is193

possible that the higher risk of mortality due to cold observed for people of color in northern194

cities in the 18th and 19th century was peculiar to the historical context, which was heavily195

influenced by slavery and discrimination against people of color15. The abolition of slavery,196

economic growth and the broader availability of cheaper heating may explain why cold-related197

mortality is no longer higher among Blacks in contemporary U.S. society41. However, we also198

found evidence of the persistence in heat-related deaths affecting Blacks in particular which199

corroborates the results of existing studies16–18 and highlights the existence of important racial200

inequalities in vulnerability to high temperatures. Accordingly, when we analyzed excess deaths201

by racial group based on RCP4.5 temperature projections for the middle of the 21st century,202

we observed a larger increase in excess deaths for Blacks and Others, and a smaller increase203

for Whites. When we analyzed excess deaths by race and age category we observed Blacks204

aged 85 or older were the most at risk. Additionally, we found that Blacks in the East North205

Central area faced the highest risk of excess mortality. However, we also observed that the206

projected increase in temperatures is expected to lead to a greater increase in excess deaths207

among Blacks in the South and Southeast. Importantly, when we tested the effects of larger208

increases in temperature using the RCP8.5 end-of-century scenario, we observed a widening of209

the racial gap and an increased risk for the Black population.210

This study has three main limitations. The first limitation is related to the data on mortality.211

We employed the BUNMD dataset, as it provided us with precise information on the main212

characteristics of interests. Unfortunately, the information covered only the years 1993 to213

2005, which limited the scope of our analysis. Additionally, the dataset has several missing214

observations due to the lack of comprehensive information on the full sample of individuals.215

Nevertheless, we addressed the existence of missing values by adjusting the BUNMD dataset216

based on the HMD database (see the “Mortality and Population Data” subsection). Second, we217

were unable to directly test the mechanisms that explain racial disparities. Thus, we attempted218

to explain the observed disparities based on previous theoretical and empirical studies. Similarly,219

due to the high correlation between socioeconomic status (SES) and race, we were not able220

to rule out the possibility that the observed disparities were partly determined by a racial221

gradient in educational attainment. While a smaller database with information on several222

SES measures (including educational attainment) is available, we lacked population estimates223

at the county level for the period of our analysis. Consequently, we were not able to test224

whether the findings by race would have differed from those by SES. Third, our calculation of225

excess deaths should be interpreted with caution, as we assumed that all factors other than226

temperature remained constant over time. On the one hand, we may have overestimated the227

increase in heat-related deaths, as we did not consider economic development, higher educational228
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attainment, and adaptation to high temperatures. On the other hand, population aging is229

expected to enlarge the pool of older individuals who are at higher risk of death when exposed230

to heat. Future studies could address some of the drawbacks of the current study. First, data231

on mortality in the past 15 years would allow researchers to compare the estimates we found232

with the impact of temperatures in more recent years, in which extreme heat events have been233

rather common. Second, testing mechanisms could provide further evidence on the policies that234

might be most effective in reducing disparities. For example, evidence that preexisting medical235

conditions or neighborhood segregation are the main causes of the observed disparities could236

indicate which public health interventions are required. Third, further analysis of the impact237

of climate change on race disparities in mortality in the future could incorporate population238

projections and differential adaptations.239

We conclude by noting that the dangers posed by climate change are likely to exacerbate240

the existing racial disparities in the United States. Compared to White Americans, Blacks241

contribute less to the total carbon emissions derived from the consumption of goods42 and use242

of household energy43; however, studies suggest that they will bear a higher Mortality Cost of243

Carbon27. Thus, policies should particularly target Black communities living in heat islands,244

which are expected to be the most affected by future climate change8. In sum, as the effects245

of climate change continue to unfold, the existing disparities in exposure and vulnerability to246

extreme temperatures, and in the access to resources could become even wider in the future,247

exacerbating existing environmental inequalities. This would have dire consequences for the248

racial gap in life expectancy, and would pose substantial challenges for the Black population in249

particular.250

Methods251

Mortality and Population Data252

In this study we use three main datasets to construct mortality rates: the Berkeley Unified253

Numident Mortality Database, the Human Mortality Database and Population Estimates from254

the National Center for Health Statistics (NCHS) Bridged-Race Population Estimates.255

The Berkeley Unified Numident Mortality Database (BUNMD) is a unique dataset covering256

approximately 50 million individuals who were listed in the 1940 Census and who died from257

1988 to 200533. The BUNMD is the harmonized version of information collected by the Social258

Security Administration on the individuals in the dataset with a social security number. It is259

stored by the National Archives and Records Administration (NARA)33. The dataset is unique260

as it provides individual-level data with key characteristics on the deceased individuals. For our261

purposes, we retained the age at death, sex, the racial group as well as the ZIP code of residence,262

which allowed us to accurately identify the sociodemographic characteristics and geographical263

location at the time of death for each individual. For race, we used three categories based264

on the classification used prior to 1980: White, Black or Others. The BUNMD dataset also265

contains the classification used after 1980 with five categories: White, Black, Asian American266

or Pacific Islander, Hispanic and North American Indian or Alaskan native33. However, due to267

the small sample size resulting from using the latter categorization, we used the three categories268

in our analysis. For each sex and race group, we aggregated death counts at the county level269

by connecting the zip codes to county identifiers using information from the Housing & Urban270

Development Office (HUD), allocating zip codes to a county if more than 50% of the residential271

addresses were part of that county.272

In our dataset, we only included individuals aged above 65 for two main reasons. First,273

the elderly are the most vulnerable to extreme temperatures9,10,44. Secondly, the BUNMD274

covers a substantial proportion (above 95%) of all elderly deaths (aged 65+) occurred in the275

10



United States during this time period33, while coverage at younger ages is more limited. More276

precisely, it has been estimated to cover around 50 to 75% of individuals under age 6533.277

Consequently, we focused on three main age groups comprised of individuals who died at ages278

65–74, 75–84, and 85+, respectively. To further reduce bias due to missing values, we limited279

the analysis to the years 1993 to 2005. Still, 95% coverage for individuals aged 65+ was not280

achieved after we dropped missing values for certain individual characteristics. For example,281

the race categorization was missing for approximately 30% of the sample33. Figure A1 in the282

Supplementary Materials compares our sample of death counts with the observed data in the283

U.S. (derived from the Human Mortality Database45). It shows that the coverage was greater284

from 1993 to 2005. We thus derived our main dependent variable composed of monthly death285

counts by sex, age, race and county. Finally, in order to further reduce the discrepancy of the286

BUNMD with respect to the observed deaths in the United States, we adjusted death counts287

so that they match the observed ones in the Human Mortality Database45 for each year, sex288

and age-group. We display the results of the adjustment in Figure A2 in the Supplementary289

Materials.290

We then linked our dependent variable to the corresponding population estimates provided291

by the U.S. National Center for Health Statistics46, which are available by age, sex, race and292

county and that we used to construct population exposures. This allowed us to compute, for293

each subgroup in our analysis, monthly mortality rates as the ratio between death counts and294

corresponding monthly exposures. The latter was computed by dividing annual population295

estimates by 12 (the number of months) and by using linear interpolation between consecutive296

years, hence obtaining an estimate of the monthly exposure to the risk of death for all months297

considered in the analysis.298

Meteorological Data299

We combined our mortality estimates with precise meteorological data provided by gridMet47.300

The gridMet dataset provides daily information on several climatic variables such as maximum301

temperature, minimum temperature, precipitation, specific humidity, wind velocity and short-302

wave radiation at a 4x4km resolution. The high quality of the data has been validated using303

information from local weather stations47. We computed the average minimum and maximum304

temperature of the grid cells falling within each county boundaries and used it to compute: i) the305

daily average temperature proxied as the mean between minimum and maximum temperatures,306

and ii) the monthly temperature bins counting the number of days in 7 categories capturing the307

percentiles of the county temperature distribution, respectively: days below and equal to the 1st308

percentile; from the 1st to the 5th percentile; from the 5th to the 10th percentile ; from the 10th309

to the 90th (comfort zone); from the 90th to the 95th percentile; from the 95th to the 99th per-310

centile; above the 99th percentile. We considered this approach preferable to computing groups311

from raw temperatures as it allowed us to capture the county-specific local climatic condition,312

which have been shown to vary36 and to better capture the relationship between temperature313

and mortality48. However, we performed further analysis using alternative temperature bins314

(see Tables A13-A15 in the Supplementary materials). Additionally, we include meteorological315

information provided by gridMet on monthly average solar radiation, precipitation, wind speed316

and specific humidity for each county.317

For the projected temperatures, we used a dataset that provided gridded downscaled es-318

timates of future meteorological observations at a 4km resolution constructed based on the319

historical gridMet data and the Coupled Model Intercomparison Project 5 (CMIP5) Global320

Climate Models (GCM)49. We used this dataset to construct the average count of days in321

the temperature bins described above based on the RCP4.5 and RCP8.5 mid(2051-2055) and322

end(2086-2100) of century scenarios.323
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Air pollution and socioeconomic indicators324

In addition to the meteorological variables, we added other covariates at the county level to325

control for biases emerging from omitted variables that might correlate with temperature and326

mortality. First, we retrieved information on the monthly average level of the air pollutant327

particulate matter 2.5 (PM2.5) at the county level from the Atmospheric Composition Anal-328

ysis Group dataset50. Moreover, we collected three socioeconomic indicators at the county329

level provided by the Federal Reserve Bank of St. Louis51. The indicators we retrieved are the330

monthly unemployment rate, the yearly percentage of Supplemental Nutrition Assistance Pro-331

gramme (SNAP) beneficiaries and the median household income. For the latter two indicators332

we interpolated values across years to create the monthly values.333

Estimation method334

Let c = 1, . . . , 3083 denote the U.S. counties, r = W,B,O denote race, s = F,M denote sex,335

and a = 1, 2, 3 denote age groups (65–74, 75–84, 85+). To ease notation, let j denote a given336

combination of county, race, sex and age group. Furthermore, let t = 1, . . . , 156 denote the time337

observations in the dataset, corresponding to twelve monthly observations from year 1993 to338

2005. We assume that deaths Yjt in group j at time t are realizations of a Poisson distribution339

with expected value equal to the product of exposures Ejt and force of mortality µjt
52.340

In our analysis, we model Poisson death counts in the standard Generalized Linear Model341

(GLM) framework using a log-link function and exposures as an offset. In particular, the342

expected value of the Poisson distribution E (Yjt) can be described as:343

ln [E (Yjt)] = ln (Ejt) +
∑
k

θkTEMPk
jt +Xjtβjt + αt + γjt , (1)

where ln (Ejt) is the offset term, TEMPk
ct denotes the number of days in the k-th of the 7344

temperature bins to which individuals in county c were exposed at time t. Days in the comfort345

zone are not introduced in the model, so that this group becomes the baseline to which other346

bins are compared to. The coefficients θk is then interpreted as the effect on mortality of347

exchanging one day in the comfort zone for a day in the k-th bin.348

We add a 1 × 11 matrix of both time-unvarying and time varying covariates Xjt with349

associated coefficients βjt. The three time-unvarying covariates include three demographic350

variables: sex, age group and race. The eight time-varying covariates include five environmental351

variables at the county level: the monthly average level of the air pollutant particulate matter352

2.5 (PM2.5), average solar radiation, precipitation, wind speed and specific humidity; and353

three socioeconomic indicators: unemployment rate, SNAP beneficiaries and median household354

income. The inclusion of meteorological covariates, air pollution and socioeconomic indicators355

is common in the literature1,53 and allows to adjust for possible biases. For example, previous356

studies have highlighted air pollution to reduce the estimates of cold-related mortality in an357

urban context54 or to modify heat-related mortality55. The demographic covariates are specified358

as categorical variables corresponding to the groups r, s and a. Furthermore, we include month-359

by-year and county-by-month fixed effects to capture specific yearly and seasonal variations in360

mortality in each county that could affect the outcome variable (as in, for example, Barreca361

et al.1) Specifically, αt captures the month-by-year fixed effects for each time t in the dataset,362

and γjt is the county-by-month fixed effect, corresponding to the county in group j and the363

month m = 1, . . . , 12 corresponding to time t. Finally, we cluster standard errors at the county364

level assuming them to correlate within units over time56,57. We tested alternative model365

specifications adding common or state-specific time trends to the analysis. We decided not to366

include these as results did not substantially change, while computation time highly increased.367
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We also tested clustering standard errors at the state level as performed in previous research57,368

and results did not differ. Moreover, we run a placebo test with temperatures in the 5 months369

after and did not find any significant or sizable results (SM Table A16).370

Finally, in order to investigate racial disparities in temperature related mortality, we con-371

sidered a modification of Eq. (1), where we include a model matrix Zjt that corresponds to the372

interaction between the temperature variable TEMPk
jt and the race variable Rj . Specifically,373

the model can be expressed as:374

ln [E (Yjt)] = ln (Ejt) +Zjtθjt +Xjtβjt + αt + γjt , (2)

where the other covariates (excluding temperature and race) are the same as in Eq. (1) and375

contained in the model matrix Xjt.376

Data availability377

• Data on meteorological information is accessible here: https://www.climatologylab.378

org/gridmet.html379

• Data on air pollution is accessible here: https://sites.wustl.edu/acag/datasets/380

historical-pm2-5-across-north-america/381

• Data used to correct death and population counts is accessible here: https://www.382

mortality.org/383

• Data to connect zip codes to counties is provided here: https://www.huduser.gov/384

portal/datasets/usps_crosswalk.html#codebook385

• Data on projected temperature is accessible here: https://www.climatologylab.org/386

maca.html387

• Data on the individual deaths are accessible here: https://censoc.berkeley.edu/388

• Data on population counts are accessible here: https://www.cdc.gov/nchs/nvss/bridged_389

race.htm390

• Data on socioeconomic control variables are accessible here: https://fred.stlouisfed.391

org/392

Code availability393

The code necessary for data management and analysis to reproduce the main results is provided394

at: https://osf.io/k5dcx/?view_only=26a3caee0a4e4ffdb43bfd109f7a4e68395
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tality estimates after accounting for the cumulative effects of air pollution in an urban area.654

Environmental Health, 15(1):73, 2016. ISSN 1476-069X. doi: 10.1186/s12940-016-0164-6.655

URL https://doi.org/10.1186/s12940-016-0164-6.656

[55] Xin Hu, Wenxing Han, Yuxin Wang, Kristin Aunan, Xiaochuan Pan, Jing Huang, and657

Guoxing Li. Does air pollution modify temperature-related mortality? a systematic review658

and meta-analysis. Environmental Research, 210:112898, 2022. ISSN 0013-9351. doi: 10.659

1016/j.envres.2022.112898. URL https://www.sciencedirect.com/science/article/660

pii/S0013935122002250.661

[56] A. Colin Cameron, Jonah B. Gelbach, and Douglas L. Miller. Robust Inference With662

Multiway Clustering. Journal of Business & Economic Statistics, 29(2):238–249, 2011.663

ISSN 0735-0015. URL https://www.jstor.org/stable/25800796. Publisher: American664

Statistical Association.665

[57] Solomon Hsiang. Climate econometrics. Annual Review of Resource Economics, 8(1):43–666

75, 2016. ISSN 1941-1340, 1941-1359. doi: 10.1146/annurev-resource-100815-095343. URL667

http://www.annualreviews.org/doi/10.1146/annurev-resource-100815-095343.668

19

https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.2312
https://doi.org/10.1021/acs.est.0c01764
https://doi.org/10.1021/acs.est.0c01764
https://doi.org/10.1021/acs.est.0c01764
https://geofred.stlouisfed.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304207/
https://doi.org/10.1186/s12940-016-0164-6
https://www.sciencedirect.com/science/article/pii/S0013935122002250
https://www.sciencedirect.com/science/article/pii/S0013935122002250
https://www.sciencedirect.com/science/article/pii/S0013935122002250
https://www.jstor.org/stable/25800796
http://www.annualreviews.org/doi/10.1146/annurev-resource-100815-095343


1 Supplementary Materials for: Racial disparities in temperature-
related deaths in the United States between 1993 and 2005

Contents

1 Supplementary Materials for: Racial disparities in temperature-related deaths
in the United States between 1993 and 2005 1

1.a Mortality Data, descriptives and main analysis . . . . . . . . . . . . . . . . . . . 1

1.b Temperature, age, gender and climatic regions . . . . . . . . . . . . . . . . . . . . 6

1.c Alternative RCP scenarios and excess deaths . . . . . . . . . . . . . . . . . . . . 10

1.d Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.a Mortality Data, descriptives and main analysis

Figure A1 shows the total number of deaths occurred in the U.S. (as reported by the Human
Mortality Database) along with the deaths contained in the BUNMD. In order to remove the
bias in the data, we adjust the BUMND mortality rate by age and sex using the Human
Mortality Database (HMD). Figure A2 shows the original BUNMD death rates by sex and
age-group for the years analysed, as well as the adjusted rates to match those derived from the
HMD. From the figure, it clearly emerges that the original BUMND death series underestimates
mortality, especially for the older age groups and the first years of analysis. It should be noted
that the BUNMD provides weights to match deaths to the HMD, but these do not include
missing values resulting from other variables such as the location of death. Consequently, we
did not use the BUNMD weights and performed the adjustment to make our sample match the
HMD. Our correction is not free from limitations. Similar caveats are shared by the weights
available in the BUNMD3. The sub-populations included in the HMD allow us to have a good
estimate of mortality by age categories and sex, but we do not have data by race categories or
county of death determining the risk of biases emerging from the different likelihood of being
excluded from the sample. For example, the missing values for race are of around 30% in the
BUNMD3, but we did not observe any substantial variation in the proportions of each race
group when accounting for the additional missing observations. Nevertheless, our correction
procedure permit us to work with death counts and exposures that are more representative of
the observed mortality developments in the populations considered, allowing to compute more
accurate estimates of excess mortality.

Table A1 shows the descriptive statistics for the main variables used in our analysis.

Tables A2 and A3 report results from the main analysis.
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Figure A1. BUNMD after accounting for missings

Note: The figure exposes the total sample of death counts for individuals aged above 65 from 1980 to 2007 in
the BUNMD dataset after accounting for missing values and compared to the estimates from the HMD.

Figure A2. BUNMD and HMD mortality rates (per 1,000) by sex and age-groups for the
years 1993-2005, and BUNMD adjusted rates (BUNMD adj) to match those of the HMD.
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Table A1. Descriptive Statistics

Mean SD Min Max

Mortality and population:
Sum death adjusted 3.21 13.24 0.00 1,086.30

Tot population adjusted 63.18 266.36 0.01 14246.93

Temperature bins:
< 1st percentile 0.25 0.93 0.00 15.00

1st to 5th percentile 1.18 2.54 0.00 21.00

5th to 10th percentile 1.56 2.65 0.00 19.00

10th to 90th percentile 24.60 6.49 0.00 31.00

90th to 95th percentile 1.47 2.78 0.00 23.00

95th to 99th percentile 1.14 2.77 0.00 29.00

> 99th percentile 0.25 1.08 0.00 20.00

Control Variables:
PM2.5 10.68 4.52 0.18 54.99

Solar radiation 186.28 71.50 33.14 369.77

Wind 3.94 0.79 1.30 10.41

Precipitation 2.83 2.04 0.00 36.25

Specific Humidity 0.01 0.00 0.00 0.02

Unemployment rate 5.67 2.79 0.40 43.00

Median household income 34,952.86 9,526.19 10,510.00 100,077.58

SNAP beneficiaries 8,454.20 29,334.87 1.00 1,045,474.00
Observations:
N. Counties 3,084
N. County-years 7,026,032

Note: We report summary statistics for the monthly values of the variables in our main analysis.
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Table A2. Temperature and mortality

(1)

Temperature bins:
< 1st percentile 0.0019*

(0.0008)
1st to 5th percentile 0.0016*

(0.0007)
5th to 10th percentile 0.0023*

(0.0004)
90th to 95th percentile 0.0016*

(0.0003)
95th to 99th percentile 0.0015*

(0.0003)
> 99th percentile 0.0031*

(0.0006)
Control Variables:
Male 0.3567*

(0.0026)
75-84 0.8803*

(0.0028)
85+ 1.938*

(0.0060)
Black 0.1372*

(0.0094)
Other -0.6991*

(0.0407)
Precipitation 0.0002

(0.0005)
Solar Radiation -0.00004

(0.00004)
Specific Humidity -11.00***

(1.389)
Wind -0.0073***

(0.0018)
Log PM25 0.0140***

(0.0031)
Log Unemployment rate -0.0189*

(0.0080)
Log SNAP beneficiaries 0.0500***

(0.0105)
Log Median household income -0.0534

(0.0457)

Counties 3,084

Observations 7,026,032
Note: Estimates are obtained by estimating Equation (1). Standard errors clustered at the county level and

reported in parenthesis. Constant present but not reported. Moreover, we introduced month-year and
county-month FE. * p<0.05
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Table A3. Temperature and mortality by race

(1)

< 1st percentile 0.0021**
(0.0008)

< 1st percentile*Black -0.0029
(0.0016)

< 1st percentile*Other 0.0015
(0.0025)

1st to 5th percentile 0.0016*
(0.0007)

1st to 5th percentile*Black 0.0007
(0.0007)

1st to 5th percentile*Other -0.0028
(0.0015)

5th to 10th percentile 0.0016*
(0.0007)

5th to 10th percentile*Black -0.0029*
(0.0006)

5th to 10th percentile*Other 0.0028*
(0.0012)

90th to 95th percentile 0.0015*
(0.0003)

90th to 95th percentile*Black 0.0017*
(0.0006)

90th to 95th percentile*Other -0.0010
(0.0010)

95th to 99th percentile 0.0014*
(0.0004)

90th to 95th percentile*Black 0.0022*
(0.0008)

90th to 95th percentile*Other -0.0027
(0.0016)

> 99th percentile 0.0024*
(0.0006)

99th percentile*Black 0.0039*
(0.0016)

99th percentile*Other 0.0089
(0.0051)

Counties 3,084

Observations 7,026,032

Note: Estimates are obtained by estimating Equation (2). Whites are the baseline category. Standard errors
clustered at the county level and reported in parenthesis. Constant present but not reported. The model

includes all control variables but these are not reported. Moreover, we introduced month-year and
county-month FE. * p<0.05
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1.b Temperature, age, gender and climatic regions

In this section, we test how the effect of temperature is stratified by race and other relevant
characteristics. An individual characteristic that determines a higher risk to extreme temper-
ature is age. Adding a three way interaction with race we find a larger effect of heat on the
eldest Blacks in Table A4. Previous studies have shown women to be more vulnerable to the
exposure to heat1, but there is also contrasting evidence7. We tested a three-way interaction
with gender, race and temperature but did not find any substantive results (Table A5). Finally,
we run analysis with an interaction with the climatic regions in Figure A3 observing the highest
increase in mortality in North West relative to the center. In Table A6 we provide the three-way
interaction with climatic regions, temperature and race that we described in the main text.
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Table A4. Temperature and mortality by age categories and race

(1)

Cold(< 1st):
x 65-74 0.0021* (0.0010)
x 65-74 x Blacks -0.0056** (0.0021)
x 65-74 x Other -0.0009 (0.0044)
x 75-84 -0.0016. (0.0008)
x 75-84 x Blacks 0.0024 (0.0024)
x 75-84 x Others -0.0007 (0.0052)
x 85+ 0.0017 (0.0012)
x 85+ x Blacks 0.0055 (0.0039)
x 85+ x Others 0.0059 (0.0065)

Heat(> 99th):
x 65-74 0.0019* (0.0007)
x 65-74 x Blacks 0.0017 (0.0021)
x 65-74 x Other 0.0066 (0.0053)
x 75-84 5.37e-5 (0.0008)
x 75-84 x Blacks -0.0010 (0.0025)
x 75-84 x Others -0.0018 (0.0041)
x 85+ 0.0014 (0.0012)
x 85+ x Blacks 0.0073* (0.0033)
x 85+ x Other 0.0079 (0.0059)

Counties 3,084

Observations 7,026,032
Note: Estimates are obtained by estimating Equation (2), but with an interaction with age categories and race.
Standard errors clustered at the county level and reported in parenthesis. Whites are the reference category.
For simplicity only the three-way interactions for temperatures < 1st and >99th percentile are reported. The

age category 65 to 74 is at the baseline. Constant present but not reported. Moreover, we introduced
month-year and county-month FE. * p<0.05

Table A5. Temperature and mortality by gender and race

(1)

Cold(<1st percentile):
x Male -0.0016. (0.0008)
x Male x Black 0.0049. (0.0028)
x Male x Other 0.0006 (0.0050)
Heat(>99th percentile):
x Male 0.0005 (0.0008)
x Male x Black -0.0022 (0.0026)
x Male x Other 0.0086 (0.0050)

Counties 3,084

County-months 7,026,032
Note: Estimates are obtained by estimating Equation (2), but with an interaction with gender and race.

Standard errors clustered at the county level and reported in parenthesis. For simplicity only the three-way
interactions for temperatures < 1st and >99th percentile are reported. Constant present but not reported. We
introduce all control variables but these are not reported. Moreover, we use month-year and county-month FE.

The category female is the baseline level. * p<0.05
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Figure A3. Effect of days <1st and >99th percentile on mortality by climatic regions

Note: The figure exposes estimates are obtained by estimating Equation (2), but with an interaction with
climatic regions. Standard errors clustered at the county level. 95% Confidence intervals. The category Central

is the baseline level.
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Table A6. Temperature and mortality by race and climatic regions

(1)

Cold(< 1st):
East North Central x < 1st -0.0028 (0.0020)
x Blacks x <1st -0.0007 (0.0061)
x Others x < 1st 0.0154 (0.0191)
Northeast x < 1st -0.0059* (0.0022)
x Blacks x < 1st -0.0082 (0.0051)
x Others x < 1st -0.0196 (0.0132)
Northwest x < 1st -0.0083* (0.0037)
x Blacks x < 1st -0.0156* (0.0070)
x Other x < 1st 0.0067 (0.0174)
South x < 1st -0.0030 (0.0020)
x Blacks x < 1st 0.0042 (0.0051)
x Other x < 1st -0.0050 (0.0141)
Southeast x <1st -0.0115* (0.0019)
x Blacks x < 1st 0.0057 (0.0044)
x Other x < 1st 0.0014 (0.0130)
Southwest -0.0091* (0.0034)
x Blacks x < 1st 0.0098 (0.0260)
x Other x < 1st -0.0397* (0.0189)
West North Central x < 1st -0.0062* (0.0022)
x Blacks x < 1st 0.0083 (0.0058)
x Other x < 1st x dr1 0.0104 (0.0127)

Heat(> 99th):
East North Central x > 99th 0.0037 (0.0021)
x Blacks x >99th 0.0106* (0.0040)
x Other x >99th 0.0293* (0.0137)
Northeast x >99th 0.0002 (0.0014)
x Blacks x >99th -0.0012 (0.0034)
x Other x >99th -0.0086 (0.0086)
Northwest x >99th 0.0065* (0.0022)
x Blacks x >99th -0.0054 (0.0070)
x Other x >99th -0.0143 (0.0164)
South x >99th -0.0020 (0.0016)
x Blacks x >99th -0.0027 (0.0040)
x Other x >99th -0.0045 (0.0086)
Southeast x >99th -0.0042 (0.0022)
x Blacks x >99th -0.0001 (0.0058)
x Other x >99th 0.0230 (0.0142)
Southwest x >99th 0.0023 (0.0026)
x Blacks x >99th -0.0204* (0.0100)
x Other x >99th -0.0242* (0.0089)
West North Central x >99th 0.0034 (0.0021)
x Blacks x >99th 0.0004 (0.0047)
x Other x >99th 0.0010 (0.0091)
Counties 3,084

Observations 7,026,032

Note: Estimates are obtained by estimating Equation (2) with an additional interaction with the climatic
regions. Whites are the baseline race category. Moreover, central is the baseline climatic region and coefficients
should be interpreted relative to it. For simplicity only the three-way interactions for temperatures < 1st and

>99th percentile are reported. Standard errors clustered at the county level and reported in parenthesis.
Constant present but not reported. The model includes all control variables but these are not reported.

Moreover, we introduced month-year and county-month FE. * p<0.05
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1.c Alternative RCP scenarios and excess deaths

Table A7. Excess deaths and mortality rate in 1993-2005 if temperature were to raise to mid
century RCP4.5 projected levels. Notes: Estimates are obtained by predicting the number of
deaths based on Equation (2) using data on end of century temperatures(2051-2055) based on
the RCP8.5 emission scenario.

Observed
deaths

Simulated
deaths

Excess
deaths

Total
exposure

Excess rate
(per 100,000)

White 19,633,036 19,719,715 86,678 374,910,265 23
Black 2,128,672 2,173,325 44,652 36,189,516 123
Other 797,371 819,485 22,114 32,797,250 67

Total 22,559,081 22,712,527 153,446 443,897,033 35

Table A8. Excess deaths and mortality rate in 1993-2005 if temperature were to raise to end
of century projected levels. Notes: Estimates are obtained by predicting the number of deaths
based on Equation (2) using data on end of century temperatures(2086-2100) based on the
RCP4.5 emission scenario.

Observed
deaths

Simulated
deaths

Excess
deaths

Total
exposure

Excess rate
(per 100,000)

White 19,633,036 19,688,679 55,642 374,910,265 14
Black 2,128,672 2,157,231 28,559 36,189,516 78
Other 797,371 809,578 12,207 32,797,250 37

Total 22,559,081 22,655,489 96,408 443,897,033 21

Table A9. Excess deaths and mortality rate in 1993-2005 if temperature were to raise to end
century projected levels. Notes: Estimates are obtained by predicting the number of deaths
based on Equation (2) using data on end of century temperatures(2086-2100) based on the
RCP8.5 emission scenario.

Observed
deaths

Simulated
deaths

Excess
deaths

Total
exposure

Excess rate
(per 100,000)

White 19,633,036 19,809,730 176,693 374,910,265 47
Black 2,128,672 2,207,419 78,746 36,189,516 217
Other 797,371 842,450 45,079 32,797,250 137

Total 22,559,081 22,859,599 300,519 443,897,033 67
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Table A10. Excess deaths and mortality rate in 1993-2005 if temperature were to raise to mid
century projected levels based on RCP4.5 scenario by race and age categories.

Race Age group Obs. death Simulated deaths Excess deaths Total Exposure Excess rate

White 65-74 4,868,686 4,881,273 12,586 197,921,199 6
White 75-84 7,663,153 7,682,685 19,532 132,526,098 15
White 85+ 7,101,197 7,118,185 16,988 44,462,967 38
Black 65-74 622,618 631,366 8,748 21,128,774 41
Black 75-84 792,204 803,372 11,167 11,383,775 98
Black 85+ 713,850 724,230 10,380 3,676,966 282
Other 65-74 269,815 273,967 4,152 20,663,325 20
Other 75-84 299,811 304,749 4,938 9,574,592 52
Other 85+ 227,745 231,747 4,002 2,559,332 156

Total 22,559,081 22,648,574 89,493 443,897,033 20

Notes: Estimates are obtained by predicting the number of deaths based on Equation(2) using mid
century temperatures(2051-2055) based on the RCP4.5 emission scenario by age groups and race. The
excess rate is multiplied by 100,000.
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1.d Sensitivity analysis

In the literature different operationalizations of extreme temperatures have been used. For ex-
ample, the highest and lowest percentiles have been alternatively used as the 10th and 90th4;
1st and 99th8; 5th and 95th5. We show results using 5th and 95th percentile bins as the ex-
treme categories in Table A11. As expected, estimates show to be in the same direction but
smaller to those found in the main analysis of Table A2 and Table A3. Additionally, several
studies have captured exposure to temperature using fixed ranges for the whole national ter-
ritory, instead of percentiles for the local temperature. For example, Barreca et al., (2016)2

captured exposure to cold days with temperatures below 40°F(4.4°C), warm days with temper-
ature between 80°F(26.6) to 89°F(31.6°C) and hot days with temperature above 90°F(32.2°C).
We report results in Table A12. Our estimates for days above 90°F show an increase in the
monthly mortality rate of 5 per 1,000 and are higher to the estimate of 3.4 per 1,000 found by
Barreca et al., (2016)2. Similarly, for days betwen 80 to 89°F estimates show an increase in
the monthly mortality rate of 3.4 per 1,000 that is larger to the 1.2 per 1,000 found by Barreca
et al., (2016)2. Moreover, we found a smaller estimate for cold compared to the increase in
monthly mortality of 3.4 per 1,000 of Barreca et al., (2016)2 for days below 40°F. Possibly,
the difference is determined by the addition of control variables such as race, specific humidity
and air pollution that we included in our analysis, the broader number of temperature bins
considered and the slighlty different time period.

Finally, we conducted a placebo test replicating results of Table A2 measuring the effect of
temperatures in the 5 months after the actual death has been recorded. Results (Table A14 in
Appendix) show opposite or not substantive effects corroborating our main results.

Table A11. Temperature and mortality with 5th and 95th percentile as extremes

(1)

< 5th percentile 0.0017*
(0.0006)

5th to 10th percentile 0.0023
(0.0004)

90th to 95th percentile 0.0015*
(0.0003)

> 95th percentile 0.0019*
(0.0002)

Counties 3,084

Observations 7,026,032
Note: Estimates are obtained by estimating Equation 1. Standard errors clustered at the county level and

reported in parenthesis. Constant present but not reported. We introduce all control variables but these are not
reported. Moreover, we use month-year and county-month FE. * p<0.05
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Table A12. Temperature and mortality with temperature ranges

(1)

<30°F 0.0007
(0.0004)

30 to 40°F 0.0005
(0.0003)

70 to 80°F 0.0020*
(0.0003)

80 to 89°F 0.0034*
(0.0004)

>90°F 0.0050*
(0.0008)

Counties 3,084

Observations 7,026,032
Note: Estimates are obtained by estimating Equation 1. Standard errors clustered at the county level and

reported in parenthesis. Constant present but not reported. We introduce all control variables but these are not
reported. Moreover, we use month-year and county-month FE. * p<0.05
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Table A13. Temperature and mortality with alternative temperature bins

(1)

<30°F 0.0005
(0.0004)

<30°F*Black 0.0004
(0.0004)

<30°F*Other 0.0060*
(0.0016)

30 to 40°F 0.0006*
(0.0003)

30 to 40°F*Black -0.0013*
(0.0006)

30 to 40°F*Other -0.0012
(0.0018)

70 to 80°F 0.0023*
(0.0004)

70 to 80°F*Black -0.0005
(0.0004)

70 to 80°F*Other -0.0057
(0.0032)

80 to 89°F 0.0040*
(0.0005)

80 to 89°F*Black 0.0008
(0.0012)

80 to 89°F*Other -0.0142*
(0.0025)

>90°F 0.0037*
(0.0009)

>90°F*Black 0.0077*
(0.0038)

>90°F*Other 0.0087
(0.0056)

Counties 3,084

Observations 7,026,032
Note: Estimates are obtained by estimating Equation 2, but with an interaction with race categories. Standard

errors clustered at the county level and reported in parenthesis. Constant present but not reported. We
introduce all control variables but these are not reported. White at the baseline level. Moreover, we use

month-year and county-month FE. * p<0.05

14



Table A14. Temperature and mortality placebo

(1)
Placebo temperature

Placebo <1st percentile 0.0006
(0.0006)

Placebo 1st to 5th percentile -0.0005
(0.0003)

Placebo 5th to 10th percentile 0.0008*
(0.0004)

Placebo 90th to 95th percentile 0.0001
(0.0003)

Placebo 95th to 99th percentile 0.0003
(0.0003)

Placebo >99th percentile 0.0001
(0.0006)

Counties 3,084

Observations 7,026,032
Note: Estimates are obtained by estimating Equation 1 with lead values of 5 months for exposure to

temperature. Standard errors clustered at the county level and reported in parenthesis. Constant present but
not reported. We introduce all control variables but these are not reported. Moreover, we use month-year and

county-month FE. * p<0.05
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H., Tobias, A., Íñiguez, C., Forsberg, B., Åström, D. O., Guo, Y. L., Chen, B.-Y., Zanobetti,
A., Schwartz, J., Dang, T. N., Van, D. D., Bell, M. L., Armstrong, B., Ebi, K. L., and Tong,
S. (2018). Quantifying excess deaths related to heatwaves under climate change scenarios: A
multicountry time series modelling study. PLOS Medicine, 15(7):e1002629.

[6] HMD (2021). Human Mortality Database. University of California, Berkeley (USA), and
Max Planck Institute for Demographic Research (Germany).

[7] Son, J.-Y., Liu, J. C., and Bell, M. L. (2019). Temperature-related mortality: a systematic
review and investigation of effect modifiers. Environmental Research Letters, 14(7):073004.

[8] Zanobetti, A., O’Neill, M. S., Gronlund, C. J., and Schwartz, J. D. (2013). Susceptibility to
Mortality in Weather Extremes: Effect Modification by Personal and Small Area Character-
istics In a Multi-City Case-Only Analysis. Epidemiology (Cambridge, Mass.), 24(6):809–819.

16


	wp-2022-028-text
	3c880f71-3147-4f10-a18e-8e8ba8ab42f4.pdf
	Supplementary Materials for: Racial disparities in temperature-related deaths in the United States between 1993 and 2005
	Mortality Data, descriptives and main analysis
	Temperature, age, gender and climatic regions
	Alternative RCP scenarios and excess deaths
	Sensitivity analysis






