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ABSTRACT

Adult obesity has been increasing in the United States since the 1980s. For the cohorts now in

young adulthood, the future prevalence of obesity depends on current prevalence and future

increase in weight. In order to investigate the future of obesity, we pooled 92,615 body-mass

index (BMI) measures from 26,337 adults interviewed and examined by the National Health

and Nutrition Examination Survey (NHANES), aged between 25 and 55 in years 1998-2018.

We applied functional data analysis to probabilistically reconstruct individual BMI

trajectories. We found that the prevalence of obesity at age 55 is expected to reach 58% (95%

uncertainty interval [UI], 54%-61%) for females born in 1984-1988 and 57% (95% UI, 53%-

61%) for males born in the same cohort. The prevalence of severe obesity at age 55 will

increase rapidly in both sexes. Time spent being obese will increase, e.g. for females from

10.7 years (95% UI, 10.4–10.9 years) in the 1964-68 cohort to 14.7 years (95% UI, 14.2-15.3

years) in the 1984-88 birth cohort. Although obesity prevalence may level off in the coming

decades, higher prevalence of severe obesity as well as longer durations of obesity are

therefore expected to increase the burden of this disease.

KEYWORDS: projections, obesity, time spent obese, BMI trajectory reconstruction
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Introduction

The prevalence of obesity, defined as body mass index (BMI, weight / height2) above

30kg/m2, has been rising steeply among adults (aged ≥ 20) in the United States since the

1980s, from 15% in 1976-1980 to 42.5% in 2017-1018 [1, 2]. Obesity is a risk factor for

many major chronic diseases, notably type 2 diabetes,[3] cardiovascular diseases [4, 5] and

for some types of cancers [6]. Accordingly, obesity is associated with all-cause mortality [7,

8].  Obesity has been one of the most important contributors to slow health improvements in

the United States in recent decades [9] and is expected to continue exert a strong influence on

US life expectancy [10, 11]. Although BMI at the time of survey is the most accessible and,

therefore, the most widely used summary of an individual’s weight history, it is likely that the

effects of obesity on an individual’s health are cumulative. For this reason, other

characteristics of BMI trajectories have also been investigated. It has, for example, been

shown that duration of obesity [12] maximum BMI ever attained [13] and weight change [14]

are associated with changes in the risk of death.

Making accurate predictions of trends in several obesity metrics is crucial to assessing the

future burden of the obesity epidemic. This goal can only be achieved by using information

already available on obesity prevalence in younger birth cohorts, and reasonable assumptions

about its future evolution. The most common approach to obesity projection has been the

extrapolation of prevalence based on past trends [15-17]. However, this approach does not

recognize the fact that obesity may have a strong cohort component, as at the individual level

weight at a given age determines his or her weight at any subsequent age. In other words,

BMI is highly correlated over the life course. Integrating already observed cohort histories of

obesity is therefore key to increasing the accuracy of projections. Other projection methods
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have taken into account the cohort effect in obesity, but have discretized information on BMI

into classes prior to projection [11]. This results in a loss of information and in potentially

biased estimates. For example, future obesity prevalence may depend on whether mean BMI

among currently overweight individuals is closer to normal (25 kg/m2) or to obese (30

kg/m2). Moreover, an important assumption of the methods that account for cohort effects has

been the Markov property: the probability of being obese at a future point in time is assumed

to depend only on current status. In reality, the trajectory up to the current observation may

carry useful information. Finally, analyses that account for BMI histories have relied on

reported past weights without investigating recall bias [9, 11, 13].

A recent study by Ward et al. incorporated individual-level BMI data to construct projections

for children [18]. Using a “stitching” procedure on individual-level data pertaining to past

cohorts to establish the heterogeneity in BMI trajectories in children followed by quantile

regressions and calibration of individual-level trajectories against population-level trends,

these authors built a simulation model of the risk of obesity at age 35. This approach

indicated that 57.3% of today’s US children are expected to be obese at this age.

The present study develops a method of projection that, like Ward et al., builds on the fact

that an individual’s BMI is a function of age, and can indeed be treated as such. By contrast,

the proposed Bayesian hierarchical model probabilistically reconstructs an individual’s BMI

trajectory based on knowledge of its reporting error-corrected value at specific ages, and on

observations of common patterns across individuals. Thus, for any birth cohort, the method

both preserves the available information (the part of the BMI trajectory that has already been

observed) and utilizes information collected on earlier cohorts, who were observed to older

ages. The approach accounts for changes in the population distribution when estimating total
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population patterns; corrects for self-reporting bias; allows past history to influence the

future, thereby removing the common Markov assumption on obesity projections; and

enables the simultaneous projection of any BMI metric of interest. We investigated four

among the cohorts born between 1943 and 1993: the prevalence of obesity and severe obesity

at age 55, and the time spent being obese and being severely obese between ages 25 and 55.

Methods

Data source

We use data from the National Health and Nutrition Examination Survey (NHANES), which

is a series of nationally representative surveys of the US civilian non-institutionalized

population conducted by the National Center for Health Statistics [19]. The surveys include a

physical examination by trained technicians in a mobile examination center, during which the

height and the weight of participants are measured. During a home interview, participants are

asked to report their current weight, as well as their weight one year before the survey (if

aged 16 or older), 10 years before the survey (if aged 36 or above), and at age 25 (if aged 27

or older). The data have been collected on a continuous basis since 1999 (continuous

NHANES), and are released in two-year cycles. We pooled all of the available cycles of

continuous NHANES (1999-2018). The dataset analyzed included all of the participants

examined between ages 25 and 55, with no missing data on education or smoking status at

age 25 (N = 26,337).

Correction for misreporting of past weights
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It is well-known that height and weight are often misreported [20-22]. We therefore

computed all of the BMIs using the individual’s measured height, and used the individual’s

measured weight for the current BMI. We first computed past BMIs using reported weights.

We then corrected each individual’s past BMIs by adding to them the difference between the

current measured BMI and the reported BMIs. Of note, this correction is participant-specific

and quantitatively more important for obese participants, who tend to under report more their

current weight. We then added an age-, cohort-, and sex-specific corrective term matching the

mean of corrected past BMIs to means of values measured at previous NHANES cycles. A

detailed description of the procedure is given in the eMethods.

Functional data analysis

Since we expected weight gain over time to differ between these groups, we defined strata

based on sex, race/ethnicity (non-Hispanic Black, non-Hispanic White, Hispanic, other race),

educational attainment (high school or less, some college, college graduate), and smoking

status at age 25 (smoker/non-smoker). The aggregation of stratum-specific projections

allowed us to account for the changes in the population distribution in national-level

projections.

In each stratum, we applied a recently developed Bayesian hierarchical model for the

smoothing of functional data [23]. The method assumes that within each stratum, individual

BMI trajectories are independent realizations of a Gaussian process measured with

independent normally distributed errors. A Gaussian process prior is set for the mean

function, and an Inverse-Wishart process prior is set for the covariance function of the

Gaussian process.

To obtain unbiased national projections, for each individual i in the sample, the posterior

distribution of the Gaussian process for i is taken as the expected value of the BMI trajectory
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of the wi individuals, who are represented by individual i in the sample (where wi is i’s

NHANES examination weight).

Obesity metrics considered

We considered four obesity metrics: the prevalence of obesity at age 55 (BMI > 30 kg/m2),

the prevalence of severe obesity at age 55 (BMI > 40 kg/m2), the time spent being obese

between ages 25 and 55, and the time spent being severely obese between ages 25 and 55.

Sensitivity analyses

We repeated the projection exercise with the older, low-obesity prevalence cohorts (born in

1943-1954) removed from the dataset in order to check their influence on our projections.

Curve reconstruction was performed using the MATLAB toolbox BFDA [24]. All other

analyses were conducted using R [25]. NHANES data are freely available at

https://wwwn.cdc.gov/nchs/nhanes/. All computer codes used to generate the results reported

in this study will be posted in an open archive upon publication.
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Results

Characteristics of participants analyzed

Table 1 presents summary characteristics of the N=26,337 participants analyzed. A simple

comparison of the proportions currently obese and obese at age 25 in the sample serves to

illustrate the importance of weight gain in adulthood. The continuation of smoking was found

to be highly predicted by smoking at age 25, our measure of smoking status (eFigure 3).

Expected historical trends were observed in the composition of the birth cohorts analyzed:

e.g., declining prevalence of smoking, increasing size of the Hispanic group, and rising

educational attainment among females (eFigures 4-6).

Individual-level trajectories between ages 25 and 55

Figure 1A plots the BMI curves of selected members of the same stratum, but who were

interviewed by NHANES at different ages. The figure shows that while the reconstruction of

an individual’s BMI trajectory uses information specific to that trajectory, it is also informed

by the trajectories of the other members of the same stratum, and, in particular, of those who

were observed to the oldest age considered, namely age 55.

Average BMI trajectory between ages 25 and 55

Examples of group-level age trends (posterior distribution of the Gaussian process mean

function) are shown in Figure 1B for the eight selected strata, that of non-smokers with the

lowest educational attainment. Although starting with similar values of mean BMI at age 25,

weight gain with age was found accelerated among non-Hispanic Black women compared to

non-Hispanic White and Hispanic women (Figure 1B, left panel). By contrast, little evidence

could be found that the pace of weight gain varied by race/ethnicity in men (Figure 1B, right
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panel). Among both males and females, the “other race” group, that includes Asian

Americans, showed markedly lower mean BMI values across the age span investigated. See

eFigure 7 in the Supplement for results on all strata.

Obesity prevalence at age 55

Obesity prevalence at age 55 will continue to increase, and is predicted to cross the 50% line

in both males and females (Figure 2, top panels). In females, it is 46.6% (95% uncertainty

interval [UI], 44.4 % - 48.8%) for the cohort currently aged 55 (the 1959-1963 birth cohort),

but it is expected to reach 57.5% (95% UI, 53.8% - 61.2%) for those born in 1984-1988. The

predicted plateauing of female obesity prevalence at age 55 for the younger cohorts (born

after 1980) echoes the plateauing of obesity prevalence already observed at younger ages in

these cohorts (eFigure 8) and was also observed when older cohorts were removed from the

analysis (eFigure 9). The model predicts that 57.4% (95% UI, 53.3% - 61.4%) of men of the

1984-1988 birth cohort will be obese at age 55.

Large differences were found in the projection by race/ethnicity (Figure 3). For instance, for

the 1979-1983 birth cohort, obesity prevalence at age 55 is expected to reach 78.2% (95% UI,

72.2% - 83.7%) among non-Hispanic Black women, but just 53.6% (95% UI, 48.9% - 58.1%)

among non-Hispanic White women.

Severe obesity prevalence at age 55

The model predicts that severe obesity at age 55 will increase rapidly among females, from

9.0% (95% UI, 7.8% - 10.3%) in the 1959-1963 to 16.0% (95% UI, 13.5% - 18.6%) for those

born in 1984-88 (Figure 2, lower panels). Similarly, among males, severe obesity at age 55



10

will increase over the next two decades, from its current value of 5.3 % (95% UI, 4.5% –

6.2%) to 12.1% (95% UI, 9.8% – 14.7%) for the 1984-88 birth cohort.

Time spent being obese by age 55

The time spent being obese between ages 25 and 55 is expected to increase rapidly over the

next two decades among both males and females (Figure 4, upper panels). On average, a

woman of the 1984-88 birth cohort is expected to spend 14.7 years (95% UI, 14.2-15.3 years)

being obese between ages 25 and 55, while the corresponding figure for a woman of the

1964-68 cohort was 10.7 years (95% UI, 10.4 – 10.9 years). These findings reflect both the

increased prevalence of obesity and the longer durations of obesity for obese individuals.

Indeed, in the same cohort (females born in 1984-88), the average time spent being obese

between ages 25 and 55 by those who are obese at age 55 is expected to reach 22.8 years

(95% UI, 22.0 – 23.6 years), compared to 19.1 years (95% UI, 18.4 – 19.7 years) for the

1964-68 cohort. The same pattern was observed for severe obesity in both sexes, with an

expected steep increase in time spent above 40 kg/m2 for young adult cohorts (Figure 4,

lower panels).

Discussion

After increasing for several years, obesity prevalence at age 55 is expected to level off in the

coming decades. This projection is in line with recent reports that obesity prevalence is
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starting to stabilize in younger age groups [26, 27]. The examination of metrics other than

obesity prevalence reveals more worrisome developments, since the prevalence of severe

obesity at age 55 and the time spent being obese in adulthood are expected to increase more

steeply in the coming decades.

In addition, there is considerable heterogeneity in the level at which the stabilization is

expected to occur, in particular with respect to race/ethnicity. This heterogeneity is especially

visible in females, as we predict that for the cohorts who are now in their twenties, half of

non-Hispanic White women, but four out five non-Hispanic Black women, will be obese at

age 55.

Our estimation of future obesity prevalence seems somewhat more optimistic than others that

have recently been published: while we expect that 59.6% (females) and 51.3% (males) of the

1989-1993 birth cohort will be obese at age 55, Ward and coauthors predicted that 57.3% of

today’s children (aged 19 or younger) will already be obese at age 35. This discrepancy might

be due in part to a true intensification of obesity between the cohorts who are currently in

young adulthood and those who are still in childhood or adolescence. Another potential

explanation is that the linear quantile regression of weights on calendar time treats distant and

recent changes in weight quantiles as equally informative regarding future trends, which

makes it difficult to capture plateau-like phenomena. Indeed, linear regression predicts some

quantiles of the BMI distribution that have not shown recent signs of evolution will increase

in the future, simply because of increases that occurred prior to 2000. More recent work

appears more in line with our estimates [28].
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Because obesity will continue to be one of the most important determinants of health trends

in the US in the near future, accurate estimation of its future magnitude is needed. Of

particular relevance here is the fact that obesity is highly correlated across the life course:

most of the information on future obesity of a birth cohort can be found in the current status

of its members.

The approach that we propose has several distinct strengths. We have tackled the problem of

misreporting of past weights and have directly addressed both the challenges and the

opportunities presented by correlated weight status over the life course by applying a flexible

functional data analysis technique that enables the full reconstruction of individual BMI

trajectories. Our approach naturally implements two conditions that should be met when

making obesity predictions. First, closely related health metrics such as obesity and severe

obesity prevalence should not be projected using separate procedures. By feeding all of the

available information for the reconstruction of BMI trajectories into a single, comprehensive

Bayesian framework, we allow for the simultaneous projection of any quantity of interest in a

single procedure. Second, recent observations should be given more weight than distant ones.

If met, this condition notably translates into the fact that as we progressively move away from

the present, uncertainty about the projected quantities increases. This is naturally the case

with Gaussian processes, but not with simpler methods that make stronger assumptions.

Among the other strengths of our approach are that by stratifying the projections, we account

for changes in the population distribution when estimating total population patterns; and that

the procedure allows history to influence the future, thereby removing the common Markov

assumption on obesity projections.
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We also acknowledge the limitations of our approach. We limit the reconstruction of the BMI

trajectories to ages 25-55 in order to avoid selection due to rising mortality among older

individuals. The projection horizon is therefore limited. A common metric such as obesity

prevalence among all adults cannot be estimated without additional assumptions being made

about the cohorts who are currently in childhood. In addition, we assume that individuals

with identical observed BMI trajectories will follow similar BMI paths at older ages,

irrespective of birth cohort.

In conclusion, we find that although the prevalence of obesity is expected to stop rising at the

national level, there is an alarming degree of heterogeneity in the levels at which this is

expected to occur. Moreover, the time spent being obese and the time spent being severely

obese are expected to increase rapidly in the next two decades. Obesity duration is highly

likely to be a crucial determinant for the increased susceptibility of obese people to late

adulthood diseases such as type 2 diabetes. Our predictions for time spent obese therefore

suggest a sharp increase in the prevalence of obesity-induced diseases will occur. An accurate

assessment of the future burden of obesity requires us to move beyond the focus on obesity

prevalence.
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Current BMI and bias of current reported BMI

All BMIs were computed using measured height. For each individual, current BMI could be

computed using either measured or reported weight (“measured BMI” and “reported BMI” for short).

As expected from earlier studies, weight was found misreported in females, and hence reported BMI

was found biased (Table S2, first column). For each individual, we used measured BMI for current

BMI in subsequent curve reconstruction. For each individual, we also computed the difference

between measured and reported current BMIs (current bias).

First correction of past BMIs

We began by computing past BMIs (1 year before survey, 10 years before survey, and at age 25)

using past reported weights. We thereafter constructed a first set of corrected past BMIs by adding the

aforementioned current bias to this first series of past BMIs. This first correction is therefore specific

to each individual.

Second correction of past BMIs

To assess whether a bias existed for past BMIs even after the first correction, we compared

(separately for males and females) age and cohort specific mean BMIs estimated using these corrected

past BMIs and using BMIs measured during NHANES II (1976-1980), NHANES III (1988-1994) and

continuous NHANES. For example, the average BMI of the 1960 birth cohort at age 30 years could

be estimated using average BMI 10 years before survey as reported in 2000 by members of this birth

cohort, but was also using BMI actually measured in 1990, during NHANES II. This enabled the

assessment of a specific misreporting of past BMIs. The regions of the Cohort x Age plane in which

average BMI could be estimated using measured BMIs and reported BMIs 1 and 10 years before

survey are given on eFigure 1.

We found evidence for misreporting of past BMIs even after the first correction. Most notably, for

women, the mean BMI surface estimated using BMI 10 years before survey was systematically below

the surface estimated using measured BMIs (eFigure 2). For each sex, we therefore constructed a
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second set of BMIs 1 year and 10 years before survey by adding to the first set of corrected BMIs the

age, cohort and sex specific difference between the two relevant surfaces. We proceeded in a similar

fashion for BMI at 25.

Corrections brought to past BMIs are summarized in eTable 2. The proportion of observations above

30 kg/m2 for each BMI series (uncorrected, first correction, second correction) is given in eTable 3.
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eFigure 1. Domains of the Cohort x Age plane where average BMI can be estimated using

measured BMIs (blue) and reported past BMIs (red).

Left panel: the red region corresponds to reporting of BMI 1 year before survey.

Right panel: the red region corresponds to reporting of BMI 10 before survey. Reported BMIs can be

compared with BMIs measured at both continuous NHANES (right-hand blue domain) and NHANES

III (left-hand blue domain).
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eFigure 2. Mean female BMI surface, estimated using either measured BMI (blue) or reported

BMI 10 years before survey after first correction (red). In each case, the BMI surface was

estimated with a Generalized Additive Model with a Gamma distribution, using survey weights for

unbiasedness.
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Bias of current

reported BMI

Global correction for BMI

1y before survey
10y before

survey
at 25

Females 0.52 (1.70) 0.45 (1.68) 1.17 (1.68) 1.45 (1.72)

Males 0.04 (1.62) -0.17 (1.61) 0.11 (1.52) 0.26 (1.56)

eTable 1. Mean (SD) bias of current reported BMI, and mean correction (SD) applied to

reported past BMIs.

Data: All members of the final dataset analyzed (N=26,337).

Uncorrected  First correction Second correction

Current BMIs 35.1% 36.7% -

BMIs 1y before

survey

34.7% 36.2% 35.5%

BMIs 10y before

survey

22.6% 24.5% 26.1%

BMIs at 25s 13.2% 15.0% 16.6%

eTable 2. Proportion of data points in the ‘obese’ category (>30kg/m2), for each series of BMIs

(uncorrected, first correction, second correction).
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eFigure 3. Probability of smoking at age 51-55 according to smoking status at age 25 and sex.

Data : individuals aged 51-55 at continuous NHANES interview.

Proportion ± standard error (s.e.).
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eFigure 4. Proportion smoking at age 25, by birth cohort and sex.

Proportions ± s.e.
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eFigure 5. Ethnic composition of birth cohorts, by sex.

Data: individuals 25 years and older at NHANES interview.

Proportions ± s.e.
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eFigure 6. Educational attainments by birth cohort and sex.

Data: individuals 25 years and older at NHANES interview.

Proportions ± s.e.
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eFigure 7. Average posterior of the mean BMI function for strata defined by sex, race/ethnicity,

educational attainment and smoking status at age 25.
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eFigure 8. Obesity and severe obesity at age 35, by sex.

Top panels: obesity prevalence at age 35 by birth cohort, for females and males separately. Lower

panels: severe obesity prevalence at age 35. On each plot, a vertical line separates retrospective

estimates from ‘true’ projections.

The shaded regions are 50% UIs; the outer regions are 95% UIs.
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eFigure 9. Obesity and severe obesity at age 55, by sex, with older cohorts (1943-54) removed

from the dataset.



31

TABLES AND FIGURES

Females
N = 13,811

Males
N = 12,526

Year of birth (mean, range) 1969 (1943-1993) 1968 (1943-1993)
Race

Hispanic
Non-Hispanic Black
Non-Hispanic White
Other Race

3,747 (27.1%) [15.0%]
3,011 (21.8%) [12.9%]
5,537 (40.1%) [64.3%]
1,516 (11.0%) [7.8%]

3,312 (26.4%) [16.1%]
2,625 (21.0%) [10.9%]
5,226 (41.7%) [65.5%]
1,363 (10.9%) [7.5%]

Education
High school or less
Some college
College graduates

5,785 (41.9%) [35.1%]
4,346  (31.5%) [32.6%]
3,680  (26.6%) [32.3%]

6,115 (48.8%) [41.6%]
3,398 (27.1%) [28.3%]
3,013 (24.1%) [29.5%]

Smokers at 25
Yes
No

3,825 (27.7%) [30.7%]
9,986 (72.3%) [69.3%]

5,050 (40.3%) [39.2%]
7,476 (59.7%) [60.8%]

Currently obese
Yes
No
Not available*

5,364 (38.8%)
8,271 (59.9%)

176 (1.3%)

4,234 (33.8%)
8,292 (66.2%)

0 (0.0%)
Obese at 25

Yes
No
Not available

2,414 (17.5%)
10,979 (79.5%)

418 (3.0%)

2,009 (16.0%)
10,156 (81.1%)

361 (2.9%)
Number of observations (mean, SD) 3.5 (0.7) 3.5 (0.6)

Table 1. Characteristics of participants analyzed.

Percentages in parentheses are unweighted proportions; percentages in brackets are proportions

weighted by sampling weights and therefore estimate the composition of the US population for the

variables we stratify the analysis on.

*except at cycle A, pregnant women were asked to report their weight before pregnancy, which can

be used in the present analysis as the current BMI (but with no individual-level correction); current

weight of the N=169 pregnant women of cycle A was removed from the analysis, while there was

non-response of N=s7 pregnant women interviewed at other cycles.
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Figure 1A and 1B. Example reconstructions of BMI trajectories
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Panel A shows examples of the BMI trajectories (average posterior and 95% uncertainty

interval [UI]) of NHANES participants who all belong to the same stratum (that of Black

non-smoking females with the lowest educational attainment). BMIs based on uncorrected

reported weights are shown in gray. BMIs corrected for misreporting, which are used in the

analysis, are shown in black. The reconstruction of the trajectory of individuals interviewed

at younger ages (bottom plots) is informed by both the available information on their own

BMI histories (e.g., normal or elevated BMI), as well as on the trajectories of older

individuals (top plots). Once the BMI trajectory of an individual has been reconstructed, all

metrics of interest, e.g., the probability of being above some threshold value or time spent

above this threshold, can be computed.

Panel B shows the average posterior (with 95% UI) of the mean BMI function for non-

smoking females (left) and males (right) with the lowest educational attainment (high school

or less). See eFigure 7 in the Supplement for the average posterior of the mean BMI function

for all strata.
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Figure 2. Projection of obesity and severe obesity at age 55, by sex.

The top panels show obesity prevalence at age 55 by birth cohort, for females and males

separately; similarly, the lower panels show severe obesity (BMI > 40) prevalence at age 55.

On each plot, a vertical line separates retrospective estimates (estimates for cohorts who have

already attained age 55) from “true” projections (estimates for cohorts still below age 55).

The shaded regions are 50% UIs; the outer regions are 95% UIs.
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Figure 3. Obesity prevalence at age 55 (with 95% UI) by cohort of birth, sex, and major

race/ethnicity.
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Figure 4. Average fraction of adulthood spent being obese by age 55.

The shaded regions are 50% UIs; the outer regions are 95% UIs.
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