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Abstract

Until the first decade of the 21st century, the Nordic countries maintained relatively
high fertility rates, cementing the idea that a generous welfare system was one of the
keys to preventing fertility from falling to unsettlingly low levels. This idea has been
called into question by the recent decline in period fertility in the region. Although this
trend has been observed across countries, Finland has clearly led the way, with its TFR
reaching an all-time low of 1.35 in 2019. In this article, we use a novel computational
modeling approach to look for insights into the factors that are driving this process, and
to asses the likelihood of various future fertility scenarios in Finland. Rather than ex-
trapolating from macro-level trends, our forecast is based on the simulation of individual
trajectories. The main advantage of this approach is that it enables us to generate future
fertility scenarios based on various hypotheses about the evolution of the main drivers of
fertility change and to better understand the mechanisms influencing fertility outcomes.
We find that the social processes that explained most of the variation in fertility rates in
the past, like the expansion of higher education or the transition of women into the labor
market, will play a diminishing role in the future trajectory of fertility rates, while indi-
vidual preferences will become the dominant driver. Our forecast does not differ much
from the predictions obtained with extrapolation methods in the short run, but it does
offer a more optimistic outlook in the long run.

Keywords— fertility, Finland, computational modeling, microsimulation, demography, reproductive
process.
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1 Introduction
By the end of the first decade of the 21st century, the trajectories of fertility rates in many of Europe’s
high-income nations were showing signs of strength. Demographic forecasts obtained at the time
predicted an increase in fertility levels in various regions, including in the Nordic countries and in
Finland in particular (Myrskylä et al., 2013; Schmertmann et al., 2014). About a decade later, the
scenario has changed drastically. Recent forecasts indicate that cohort fertility in Finland could fall
from 1.9 to under 1.6 children per woman in the next 10 years, with Norway and Iceland experiencing
similar declines (Hellstrand et al., 2020, 2021).

These recent developments have called into question the notion that a strong welfare state with pro-
gressive family policies and high levels of gender equality were preconditions for higher fertility levels
in post-transitional countries. The decline in fertility rates in Finland and in the Nordic region as a
whole remains puzzling, as it cannot be linked to a significant deterioration in living standards or a
meaningful change in public spending on children and families.

Although the global recession of 2008 appears to have initially triggered the downward trend in the
TFR, fertility rates in Finland continued to fall even after the economy began to recover around 2016
(Hiilamo, 2020).

In this context, a number of studies have focused their attention on different “subjective uncertainty"
measures. However, Hellstrand et al. (2022) have shown that fertility is declining much faster among
individuals in fields of activity characterized by higher uncertainty, which suggest that objective eco-
nomic uncertainty still plays a central role in the family formation decisions of young people in Fin-
land.

Although there is still uncertainty about its drivers, the decline has been extensively characterized
from a demographic perspective. Recent studies have shown that the largest contribution to the drop
in the TFR has come from a reduction in first births among women aged 25–29 (Hellstrand et al.,
2020). Far from being a new phenomenon, the decline in birth rates among the younger generations
is part of a long-term trend of fertility postponement that began at least four decades ago. However,
Hellstrand et al. (2020) have shown that the downward trend in birth rates now extends to women in
their thirties, a group whose fertility rates had been increasing since the mid-1970s.

Indeed, one of the most salient features of family formation dynamics in Finland after the global
recession has been the acceleration of the postponement of the transition to parenthood. The mean age
at birth has increased by 1.3 years since 2008, and set a new record in 2021, even though the TFR has
stabilized in the last couple of years.

What remains to be determined is whether this new trend represents a “second wave” of postponement,
or whether it is an expression of declining fertility preferences. By “second wave”, we mean a process
in which younger generations postpone childbearing even further, from the thirties to the early forties,
following a previous shift in which the majority of the change occurred from the twenties to the
thirties. If this is the case, the recent decline in the TFR may be largely a period phenomenon; i.e., a
momentary decline that will fade once the delayed births are actually realized. The second scenario
suggests a more long-lasting trend that is driven by a shift in preferences toward smaller families,
including a rise in voluntary childlessness.

2



These two scenarios have very different impacts on the ultimate number of children that the cohorts
who have not yet reached the end of their reproductive years will have in the future. This means that
when attempting to predict future fertility levels, the accuracy of the results will be greatly influenced
by the assumptions made about how fertility preferences will change in the future and the possibility
of birth rates recovering at older ages. However, because they rely solely on information on the past
trajectory of a given fertility indicator, traditional forecasting methods cannot account for any of these
factors.

In this paper, we use a novel approach to model and forecast fertility outcomes that will improve our
understanding of not only where fertility levels in Finland are likely to be in the near future, but also
why. In this framework, originally introduced by Ciganda and Todd (2021), reproductive trajectories
are modeled at the individual level, as an outcome of individual characteristics like educational attain-
ment and labor force participation. As a result, the evolution of fertility trends, from both a period and
a cohort perspective, can be directly linked to changes in the distribution of these individual charac-
teristics across cohorts. In other words, fertility trends can be modeled and forecasted as the outcome
of other social processes, like the expansion of higher education or the transition of women into the
labor market.

Because of the abundance of information contained at the microlevel, this framework is well suited to
generating scenario-based forecasts. It is possible, for example, to forecast the evolution of fertility
levels based on a given assumption about the evolution of higher education or based on assumptions
about other key aspects of the reproductive process, such as family size preferences or the mean age
at birth. Modeling at the individual level also allows for the construction of any fertility indicator,
bridging the gap between cohort-based and period-based forecasts.

2 Approach
Building on the idea of fecundability, defined by Gini (1924) as the probability of conception in
the absence of contraceptive practices, Henry (1953) developed a model of reproductive trajectories
in a population that makes no attempt to limit births. In this type of setting, which Henry defined
as "natural fertility," the reproductive process can be roughly simulated by defining four fundamen-
tal components: fecundability (the probability of experiencing conception); the duration of the non-
susceptibility period; as well as the start and the end of the reproductive process, which are typically
defined as marriage and the onset of permanent sterility.

Using this model, it is possible to simulate the time from marriage until a first conception for a couple
i. Once this first conception is observed, the process is “paused" until the end of the non-susceptibility
period, which includes the length of the pregnancy plus the length of postpartum infertility experi-
enced by the woman in our couple i. After this period has elapsed, the couple becomes exposed to
the risk of a conception again. This phase is followed by another period of non-susceptibility, after
which the partners go back to being exposed to the risk of a new conception. This process continues
uninterrupted until the couple becomes permanently incapable of conceiving.

This straightforward model can be used to produce results that resemble the reproductive trajectory
of a non-contracepting couple from marriage until age 50. More specifically, the model will simulate
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each birth on the trajectory and the corresponding age of the mother at each birth, which is enough
data to calculate all commonly used fertility indicators.

Modeling this process in a regulated fertility context is slightly more challenging. One important
difference between a natural fertility and a regulated fertility regime is that in the latter there is a
dual risk: the risk of a conception when the couple intends to have a child, i.e., fecundability, and
the residual risk when the couple is actively trying to prevent a pregnancy, defined by Bongaarts and
Potter (1983) as residual fecundability.

However, there is another, more significant distinction. When effective contraceptive methods are
available, a couple’s final family size is primarily determined by the partner’s own preferences and
decisions rather than their biological capacity to conceive or their age at union formation.

A variety of personal traits influence these preferences and decisions, including the couple’s socioe-
conomic status, living arrangements, psychological characteristics, beliefs, among many others.

Following these ideas, Ciganda and Todd (2021) proposed a framework to model reproductive tra-
jectories in a regulated fertility context as an outcome of individual characteristics. The pseudo-code
presented below describes the basic operation of the model contained in that framework.

The reproductive process is represented using a discrete event simulation, in which time does not
advance at fixed time intervals, but rather with the realization of events (Zeigler et al., 2000). The
entire process is described by four events: starting a cohabiting union; evaluating whether to have a
child; having a child; and dying.

The distribution of education levels and labor force participation in the simulated population come
from empirical data (see Section 2.1). Based on these input data, the algorithm produces the birth
dates for the initial cohort: i.e, the group of women who were born the year the simulation begins.

The central part of the algorithm consists of a while loop that runs until the end of the observation
window. In the first operation inside the while loop, the algorithm selects the next event to be simu-
lated from a list of events ordered by their waiting times (the remaining time until their occurrence).
Once the next event and its corresponding waiting time are selected, the algorithm updates the simu-
lation clock and the rest of the variables that involve durations, including the age of all women in the
population and the remaining times for the events waiting to be simulated.

The births of the initial cohort during the first calendar year of the simulation are the first set of events
that the algorithm simulates. When a new birth is simulated, the algorithm first determines whether it
is a female birth and then adds the new baby to the population if it is. This newly simulated woman is
now assigned a number of characteristics and variables, such as the educational level she will attain,
her future labor force status, and the waiting times for other events she will experience in the future.

After increasing the simulated population by one member, the indicators for the mother are updated,
including her age at the time of the simulated birth, her current number of children, and the difference
between her current number of children and her desired number of children.

Because the formation of a union signals the start of the reproductive process, the first step following
union formation is to assign a desired family size to the corresponding woman/couple. The second
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operation defines the newly partnered woman’s intention to have a child. The intention is determined
by her educational attainment, employment status, and the time elapsed since the previous birth, if
there was one. The intention will determine whether or not the newly formed couple decides to have
a child within the next 12 months. If they do, the time it takes to conceive will be determined by the
woman’s fecundability f , which is a function of her age. If the woman and her partner decide to wait
another year, they will still be subject to a risk defined by residual fecundability rf , which is also
affected by calendar time, as is the efficacy and availability of contraceptive methods.

A couple must decide again (every year) whether to try to have a child after successfully avoiding
death or an unintended pregnancy in the previous year.
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The Comfert algorithm

read input data
educational attainment (cohort)
labor force participation by edu. (cohort)

initialization
generate wts to birth in the first year

While time < end time do

choose next event → n_event
update clock
update ages & waiting times

if n_event = birth then

if girl then
add to population
assign:
educational attainment
years in education
labor force participation
wt to union
wt to death
wt to evaluate == Inf

end
update indicators of mother:
age at birth
nr. children
Desired fam. size - nr. children
wt to evaluate

end

if n_event = death then
remove from the population

end

(continues at top of right column)

if n_event = union formation then
assign desired family size Di

compute intention Ii,t

if Ii,t > x ∼ U(0, 1) then
wt conception → fx

else
wt conception → rfx,t

end
if wt conception > 1 year then

wt evaluate == 1 year
end

end

if n.event = evaluate then
update intention Ii,t

if Ii,t > x ∼ U(0, 1) then
wt conception → fi,x

else
wt conception → rfi,x,t

end
if wt conception > 1 year then

wt evaluate == 1 year
end

end

if year change then
compute indicators.
remove those with age > max_age

end

end While

save output
age specific fert. rates; unplanned births;

desired fam. size.

end

wt = waiting time; n_event = next event; max_age = age at end of reproductive period (50); end time
= last year for which model is run; f = fecundability; rf = residual fecundability

The preceding description focused on the structure of the computational model; i.e., the set of steps
that allows us to generate synthetic reproductive trajectories for a cohort of women. While this is
essential to understand the operation of the model, it has to be complemented by the description of
the mechanisms and assumptions that translate individual characteristics into reproductive outcomes.
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While a detailed description can be found in Appendix A, below we provide a brief summary of the
most relevant mechanisms.

First, family size preferences are modeled as a function of a woman’s labor force participation status
in an attempt to capture the dynamics that lead dual-earner couples to prefer smaller families than
couples in which women do not actively participate in the labor force. Second, the risk of an unplanned
pregnancy is modeled as a function of women’s educational attainment with the aim of capturing the
relationship between excess fertility and lower educational attainment, specially among older cohorts.
Finally, given that most people wait until they have completed their education to start a family, the
transition to parenthood is also modeled as a function of educational attainment.

2.1 Long and Short-Term Drivers of Fertility Dynamics
The approach described in the previous section was originally conceived to model post-baby boom
fertility trends as the outcome of three long-term social processes that have radically transformed
family dynamics since the second half of the 20th century: the contraceptive transition, the expansion
of higher education, and the transition of women into the labor market - which could also be described
as the transition from a male-breadwinner model to a dual-earner model -.

Figure 1 depicts the evolution of the these three processes in Finland. While changes in educational
attainment and labor force participation are depicted across birth cohorts, the diffusion of modern
contraceptive methods is measured across calendar time. Regardless of the perspective used, the
magnitude and the speed of these changes are remarkable.

Although the available data only go back only to the early 1930s cohorts, our estimates suggest that
the proportions of women actively participating in the labor market more than doubled in the first four
decades of the 20th century, at least among women with less than tertiary education (Figure 1b).

The prevalence of modern contraceptive methods has also increased at an impressive pace (Figure 1c).
Although there is no information before 1971, the available data allow us to reconstruct the timing and
the speed of the diffusion of these methods, which went from being practically unknown at the end of
the 1950s to being used by roughly 80% of the population by the end of the 1980s.

The process of educational expansion has moved at a similar speed (Figure 1a). The percentage of
women with tertiary education increased from less than 10% among those born before 1930 to close
to 60% among those born in the late 1970s (Figure 1a). Interestingly, however, this process seems
to have peaked, or even reversed, in the last decade. For the first time in about 75 years, younger
generations are entering the labor force with levels of education that are the same or lower than those
of their predecessors.
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Figure 1: Proportion of Women by Education (a), Proportion of Women Actively Participating
in the Labor Force by Education (b), Prevalence of Modern Contraceptive Methods (c) | Fin-
land. The information on contraception comes from multiple sex and fertility surveys in Finland, as
processed by the United Nations Population Division (United Nations and Social Affairs, 2022). The
estimates relate to married or cohabiting women who were asked about the contraceptive method they
used the last time they had intercourse. Estimates for educational attainment and labor force participa-
tion by education were obtained using Finnish population register data compiled by Statistics Finland.
The data include women born in Finland and living in Finland for whom we could access complete
education histories. Personal identification numbers were used to link the register data to different
register sources, such as information on births, educational attainment, and employment status. This
information is available starting in 1987/1989. Educational attainment estimates were derived using
the highest educational attainment at age 30+ according to the ISCED 2011 classification. Primary
education refers to ISCED 0–2, secondary education to ISCED 3–4, and tertiary education to ISCED
5–8. Estimates of labor force participation by education level were derived based on activity status at
age 30–55 at the end of each calendar year.
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Taken together, the data in Figure 1 suggest that the three major transitions that have shaped fertility
rates since the second half of the 20th century have come to an end. If this is the case, and these
processes have indeed reached a long-term equilibrium, short-term shocks such as the shock associated
with the 2008 global recession may become the primary source of variation in fertility rates in the
future.

We model these dynamics by incorporating lagged period effects on the formation of family size
preferences and the timing of the transition to parenthood for the 2010-2018 period (see Appendix A
for more details). The resulting model incorporates both cohort dynamics associated with long-term
societal transformations as well as shorter-term effects associated with the economic cycle. In other
words, the reproductive trajectories of women in our simulated population will be shaped not only by
their socioeconomic characteristics but also by the timing of key events in their life course.

Naturally, these simulated trajectories must be simplified versions of their empirical counterparts.
While in reality people differ from one another in an almost infinite number of ways, in our model
people are heterogeneous with respect to a limited set of characteristics. More importantly, while
real individuals dissolve their unions, experience accidents, migrate, and have their plans delayed
or altered, our simulated individuals have fixed and distinct preferences and progress toward their
objectives in a rather straightforward manner. Given that simplification is an unavoidable part of
modeling, the important question is whether the simplified set of mechanisms and characteristics
described above can capture the key dynamics of fertility change in Finland. This question is answered
in Section 3. Before that we introduce the approach we use to estimate the model.

2.2 Estimation
The parameters of the model are estimated using an Approximate Bayesian Computation (ABC) ap-
proach. This approach enables statistical inference on large-scale computational models (see: Beau-
mont, 2010, 2019). The aim of ABC algorithms is to identify the distribution of parameter values that
best explains the observed data. This is typically accomplished by simulating realizations of a model’s
outcome at various parameter values and retaining those values that result in outcomes that are "close"
to the observed data; i.e., the combination of parameter values that reduce the prediction error.

Since we are working with a computationally expensive model, we follow the approach developed by
(Gutmann and Corander, 2016), which combines ABC with Bayesian Optimization with the objective
of reducing computation times. Their approach could be defined as follows:

Let X ⊂ Rd be the parameter space, where d is the number of parameters. At a given combination of
parameter values θ ∈ X , we compute ∆θ the Mean Squared Error (MSE) at this location as a weighted
mean of the MSEs for the following vectors:

• Age-specific fertility rates between 1960 and 2021. Obtained from the Human Fertility Database
(2011) for the 1960-2021 period and from Statistics Finland for 2021.

• Completed fertility by education for the cohorts born 1924 to 1970, obtained from Finland’s
national population register.
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• The average number of children desired by women of reproductive age from 1997 to 2018.
Available from multiple Family Barometer Surveys.

The objective of the algorithm is to find the region of the parameter space with the minimum dis-
tance ∆θ. This is achieved by means of a sequential procedure that starts with the computation of
∆θ1 , ...,∆θk at a sample of k locations θ1, ..., θk from X . This initial sample of locations and dis-
tances is then used to build an emulator; i.e., a model of the relationship between the values in X and
the distance ∆θ. We model this relationship non-parametrically, fitting a Gaussian Process regression
with the help of the mlegp R package (Dancik and Dorman, 2008).

The emulator allows us to obtain predictions of the distance ∆θ at any combination of parameters
values without the need to run the original model at each of these locations.

In the next step, a new set of predictions is obtained from the emulator. Out of this set, the algorithm
chooses the locations where either the error ∆θ is smallest or the uncertainty is highest. The intention
here is to focus on the regions of the parameter space where the minimum distances are more likely to
be found, without leaving any region under-explored. The weight given to more uncertain versus more
“promising" predictions is defined in the acquisition function A(·). In the final step, the algorithm
computes the distance ∆θ (runs the original model) at the locations selected with the acquisition
function. The resulting information is then used in the next iteration to continue training the emulator.

The following pseudo-code describes the basic operation of the algorithm:

Obtain an initial sample of X of size n0, θ1, ..., θn0

Compute ∆θ1 , ...,∆θn0

Set n = n0

While n ≤ N do

Map the relationship θ → ∆θ with a Gaussian Process emulator G(·)
Obtain a new sample of X of size n∗

Obtain predictions for G(θk) k = 1, ...., n∗

Compute acquisition function A(·)
Obtain the new locations to be explored θj
Compute ∆θj

Increment n

end While

Return:
The value of θ that minimizes ∆θ; or
A fraction p of θ values with lowest ∆θ

All the code and data needed to reproduce the results presented in the next section are available at
https://github.com/dciganda/comfert_nordic.
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3 Results

3.1 Model Fit
Figure 2 depicts the model’s fit in relation to period age-specific fertility rates for selected years. The
model is able to closely capture the evolution of the fertility age schedule over time, which is marked
by a general decline in the average number of births across ages and the postponement of the mean
age at birth, as evidenced by a shift in the mode of the distribution from the early twenties in 1960 to
the early thirties at the end of the observation window.

Figure 2: Observed vs. Simulated Period Age-Specific Fertility Rates with 95% Credible Inter-
vals, Selected Years, Finland.
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Figure 3 presents the model fit with respect to the total fertility rate (Fig. 3a), the completed fertility
of the cohorts born from 1925 to 1970 (fig. 3b), the desired number of children (Fig 3c) and the mean
age at birth (Fig 3d).

Both sets of results (in Figures 2 and Figure 3) indicate that the underlying reproductive trajectories
generated by the model reproduce the essential features of the observed reproductive trajectories of
Finnish women, as well as their general evolution across age and time.
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Figure 3: Observed and Simulated Total Fertility Rate (a) Completed Cohort Fertility (b) Family
Size Preferences (c) and Mean Age at Birth (d) with 95% Credible Intervals | Finland
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Unlike the rest of the information displayed in Figure 3, the information on family size preferences
(Figure 3c) comes from surveys with a limited sample size, which explains the large year-to-year
variations. As a result, the precise value of the estimates is less informative than the overall pattern of
the data. This pattern shows a slight increase in the desired number of children until 2008 followed by
a steep decline until around 2017 when the pattern stabilizes, albeit below its pre-recession level.

As shown in Figure 3d, the model also closely tracks the evolution of the mean age at birth. The
sustained increase in the time spent in school accounts for most of the variation in the mean age at
birth until 2008. Following the recession, the model picks up strong period effects leading to the
acceleration of the postponement process. Interestingly, this slight change of pace, together with
a slight decrease in the desired number of children, result in a very significant change in the total
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fertility rate (Figure 3a).

3.2 Forecast
Figure 4 presents the future evolution of the TFR, Cohort Completed Fertility (CCF), mean age at birth
and the desired family size under the most likely scenario according to our model. These forecasts
are based on the assumption that educational attainment trends will follow the trajectory shown in
Figure 1.

Although the observed trend in the mean age at birth does not indicate an impending end to the post-
ponement process, the deceleration, or even reversal, of the educational expansion process suggests
this is a very likely scenario. As Figure 4d shows, the model predicts this outcome. If this prediction
is accurate, the TFR might recover its pre-recession levels in the next decade or so (Figure 4a). But
rather than leading to an actual increase in the level of fertility, this recovery will be an artifact that
can be linked to the well-known limitations of period fertility rates rates.

As the evolution of cohort rates indicates, in the most likely scenario the average number of children
at the end of the reproductive period will continue to decrease slowly for about two decades, dropping
slightly below 1.6 children per woman for the cohorts born at the end of the 1980s. Thereafter, it will
recover slightly, and stabilize at between 1.6 and 1.7 children per woman.

Both the TFR and the CCF trajectories are heavily dependent on the expected trajectory of family size
preferences. As shown in Figure 4c, the average desired number of children is expected to decline
gradually for about a decade before stabilizing at a level slightly above 1.9. While we assume that
the effect of the economic recession on fertility preferences eventually wanes, the resulting downward
trend has its own momentum as existing preferences act as a reference (a baseline) for the new gener-
ation reaching childbearing ages. This generates a path-dependent process that extends the decline of
family size preferences beyond the immediate aftermath of the recession (see Appendix A for more
details on how fertility preferences are modeled).
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Figure 4: Forecasted Total Fertility Rate (a) Completed Cohort Fertility (b) Ideal Family Size
(c) and Mean Age at Birth (d) | Finland
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Finally, in Figure 5, we compare our forecast for the mean cohort number of children with the fore-
casts obtained using three of the best-performing extrapolation methods (Bohk-Ewald et al., 2018).
Although these three methods approach the problem from different angles, they all rely exclusively on
information about the past trajectory of fertility rates to produce their forecasts.

While the expected trajectory of cohort fertility rates is similar in all four models over the short term,
it begins to diverge significantly for the cohorts born after 1990. The expected stabilization of family
size preferences and the deceleration of the postponement process result in higher expected fertility
rates for younger cohorts in our model.
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Figure 5: Cohort Completed Fertility. Comparison of Approaches | Finland The five-year extrap-
olation method by Myrskylä et al. (2013) takes the previous five-year trend, extrapolates it into the
future and freezes the rates. The Bayesian method developed by Schmertmann et al. (2014) produces
a probabilistic forecast by extrapolating trends in fertility rates over time and age, using information
on the previous trajectories of age-specific fertility rates in a large number of countries as prior data.
Finally, the freeze rate method extrapolates the latest set of observed age-specific fertility rates into
the future.
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3.3 Scenarios
As was mentioned earlier, our approach allows us to generate a wide range of hypothetical future
scenarios in the form of “what if" statements by modifying the assumed future evolution of the main
drivers of fertility change in Finland. For example, what if education resumes its upward trend? What
if it experiences a reversal? But we could also analyze how fertility levels would evolve under alter-
native trajectories of other dimensions of the reproductive process. For example, what if preferences
go back to replacement level? What if they continue to decline?

To answer these questions, we developed two sets of scenarios: one corresponding to two alterna-
tive trajectories of educational attainment and another corresponding to two alternative trajectories of
family size preferences. Figure 6 depicts the two sets of scenarios.

Figure 6a shows the two alternative trajectories of the proportion of women by education level and
birth cohort. In our first scenario, the recent decline is only temporary and the progress toward higher
levels of education continues after a brief interruption. In our second scenario the process of educa-
tional expansion indeed reverses, with future generations attaining, on average, lower and lower levels
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of education than their predecessors.

Figure 6b, displays the alternative family size preferences scenarios. In the first scenario, preferences
recover and stabilize at replacement level (an average of 2.1 desired children per woman), while in
the second scenario, preferences continue to decline below the levels expected in the most likely
scenario represented in our initial forecast. The question of how economic uncertainty affects on
family formation behavior has long attracted attention in the fertility literature (Vignoli et al., 2020;
Matysiak et al., 2021). The exacerbation of these uncertainties, combined with potential feedback
mechanisms leading to a low fertility trap (Lutz et al., 2006), can increase the likelihood of our low
preferences scenario becoming reality. Conversely, the implementation of policies aimed at reducing
these uncertainties in early adulthood and facilitating work-family balance may increase the chances
that our high preferences scenario will prove accurate.

Figure 6: Education Scenario (a) Family Size Preferences Scenario (b) | Finland
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Figure 7 displays the resulting cohort mean number of children under the two sets of scenarios. The
evolution of the level of fertility under the alternative education scenarios is rather similar. This is not
surprising considering that some of the mechanisms by which education influences family formation
are no longer as relevant as they previously were given the stage of the fertility transition that Finland
is currently in. For example, a higher education level is associated with a higher likelihood of labor
force participation and, as a result, a smaller desired family size. However, as shown in Figure 1, In
Finland, the transition of women into the labor market is almost complete for women of all education
levels. A similar patter can be observed for the use of contraception, which is assumed to differ less
between women with different levels of education than it might have varied earlier in the contraceptive
transition.

The differences in the two scenarios are more visible when adopting a period perspective. Figure 8
shows the evolution of the TFR under the two alternative scenarios. As expected the TFR is consis-
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tently lower in the scenario in which the educational expansion resumes its upward trajectory. This is
explained by the fact that the mean age at birth continues to rise in this scenario.

Figure 7: Forecasted Completed Cohort Fertility. Education Scenario (a) Family Size Prefer-
ences Scenario (b) | Finland
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Figure 8: Forecasted Total Fertility Rate. Education Scenario (a) Family Size Preferences Sce-
nario (b) | Finland
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The trajectories of both period and cohort rates (Figures 8b and 7b ) under the alternative preferences

17



scenarios display more notable differences. In the scenario in which preferences return to replacement
level, the cohort mean number of children is expected to recover as well, stabilizing at around the 1.8
level; while in the scenario in which preferences continuously decline, fertility levels are expected to
follow a similar path until they reach a very low level of 1.1 children per woman on average.

The sensitivity of fertility indicators to family size preferences is not unexpected. As explained earlier,
the main determinant of fertility levels in societies at very advanced stages of the fertility transition
are individual preferences.

4 Discussion
The main goal of our article was to illustrate how an individual-level, computational approach to
demographic forecasting can broaden our understanding of potential fertility scenarios. Finland pro-
vided us with an interesting and challenging case study, as it has recently experienced an unexpected,
pronounced downward trend in the TFR, which might hold clues for the future trajectory of fertility
rates in other highly developed countries.

Our approach allowed us to place recent developments within the longer-term fertility transition that
began in the latter half of the 20th century.

Our analysis suggests that the recent drop in fertility levels is more likely a permanent trend driven by
a reduction in the number of children people actually want to have, rather than a temporary event as-
sociated to the postponement of births. Moreover, we showed how modest, but simultaneous changes
in key aspects of the family formation process can lead to momentous changes in period fertility
indicators like the total fertility rate.

A second main insight from our analysis is that the recent reduction in family size preferences does
not appear to be driven by the same set of factors than those that explained the majority of the variation
in birth rates over the preceding decades.

The early transition of Finnish women into the labor force has drastically reduced one of the main
sources of variability in family formation behavior among recent cohorts.

The expansion of higher education, the second major driver of fertility change since the second half
of the 20th century, appears to have stalled as well. This is an extremely interesting and surprising
development. While the transition of women into the labor force and the adoption of modern con-
traceptive methods have reached saturation points, the expansion of higher education appears to have
peaked sooner than expected, with the proportion of women with tertiary education remaining below
the 60% threshold.

The completion of the three transitions that drove fertility change since the second half of the 20th

century has important implications for our understanding of family formation dynamics. Researchers
have recently highlighted the limitations of established theories to explain recent fertility dynamics
in Finland (Hiilamo, 2020). This is not surprising considering that the underlying drivers of fertility
change are themselves changing.
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Despite the limitations in the quality of the available information, recent data suggest that the post-
recession decline in family size preferences may have reached a plateau. As a result, our most likely
scenario predicts that the average number of children born to each woman will stabilize in the medium
to long term, without recovering its pre-recession level.

When interpreting these results it is important to keep in mind that, as was mentioned earlier, the
model we use in this article attempts to capture the stylized facts of fertility change over a relatively
long time horizon, therefore it has to rely on a number of simplifying assumptions. Furthermore, while
our model is able to reconstruct observed patterns in key dimensions of family formation dynamics,
this does not imply that it is the only model capable of explaining the data. Indeed, some of the
questions we leave open can be tackled with more narrowly defined models, or with models that
incorporate more complex mechanisms or other sources of heterogeneity. In other words, beyond the
value and limitations of the specific model presented here, what we would really like to highlight is
the advantages of an individual-level computational approach in a forecasting setting.

Compared to aggregate approaches, individual-level modeling allows for a much richer analysis, as it
enables us to consider fertility dynamics as a system of interrelationships between key social processes
and the various aspects of the reproductive process. As well as helping us asses the likelihood of
future scenarios, this modeling approach can facilitate the communication of the dynamics behind
each scenario to non-academic audiences.

In this specific case, the inclusion of complementary information like the deceleration of the process
of educational expansion or the stabilization of family size preferences allowed us to obtain a slightly
less pessimistic forecast than the majority of the forecasts obtained by methods that rely exclusively
on information on the past trajectory of a given fertility indicator.

Although forecasts based on expert opinions tend to implicitly incorporate social dynamics, having an
explicit model of these relationships also seems like a clear step forward, as it allows us to compare,
combine and assess models based on the accuracy of their predictions.

In sum, thanks to advances in computing technology and infrastructure, as well as advances in com-
putational statistics, demographic forecasting can now leverage the scenario-generating capabilities of
simulation modeling within a solid, data-driven statistical framework.

A Appendix

A.1 Desired Family Size
The desired family size Di of woman i in the simulation is formed immediately after a union is
established, and is derived from a Gamma distribution. Based on the assumption that couples in which
both partners work will tend to prefer a smaller family, we make the desired family size dependent
on the labor force participation (active/inactive) of the woman. Our model for Di also takes into
account the fact that individuals live in a society with a given set of norms, and that these social norms
influence their preferences as much as their individual characteristics.

In practice, the desired family size Di of couple i in the model is obtained by rounding to the nearest
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integer a number drawn from a truncated Gamma distribution with expected value:

EG = Dt[i] ·
(
1 + (-1)wi · (1− pt[i]) · δ

)
· δ′ (1)

where t[i] is the time at union formation for woman i, and Dt[i] is the average desired family size for
all women of reproductive age at time t[i].

Dt[i] represents the existing social norm regarding the ideal family size at a given time. The amount by
which EG departs from this norm is given by (-1)wi · (1− pt[i]) · δ, where wi is a dummy variable that
indicates the labor force status of woman i (0 = inactive, 1 = active), pt[i] is the proportion of women
in the population who share her labor force participation status, and δ is therefore the maximum
proportional departure from the norm. The implication of the (1 − pt[i]) term is that the larger the
fraction of the population who share her labor force participation status is, the closer to the existing
social norm the woman will be. For instance, in the extreme case of a homogeneous population of
inactive women, the deviation from the norm is zero if newly-cohabiting woman i is inactive and is
equal to δ if she is active.

The first two terms of equation 1 model the decline and stabilization of family size preferences driven
by cohort changes in labor force participation. The last term, δ

′
, captures period effects. We distin-

guish two periods in which we allow the value of δ
′

to be different than 1: 1975-1995 and 2010-2018.
Table 1, at the end of this section, presents the estimated value of δ

′
along with the rest of the param-

eters of the model.

A.2 Intentions
While the desired family size Di determines the attempted final parity, we define an intention Ii,t,
which plays a role in determining the timing and the likelihood of each specific birth. More specifi-
cally, the intention Ii,t is the probability that a couple will decide to try to have a child in the next year.
The strength of the intention depends not only on individual, fixed characteristics, but also on the time
elapsed since the previous birth.

For a couple who have achieved their desired family size, Ii,t = 0. Otherwise, the intention is given
by:

Ii,t = (βi − ωi · wi)(1− e−λ·di,t) (2)

where βi is a baseline that represents the probability of deciding to have a child in a given year for
a non-working woman who has not had a child recently and has not yet achieved her desired family
size.

For working women, the intention also depends on education through ωi, which we define as:

ωi =
η

1 + exp(ϵ · (yi − τ))
(3)
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This formulation implies that a penalty on the intention Ii,t exists for women who work, but that this
penalty is reduced for those who are more educated. Larger values of τ imply that more years of
education are needed to reduce the penalty. A very large value of τ implies there is no positive effect
of education on the intention to have a child.

Allowing education to have a neutral to positive effect on the intention to have a child, we account
for the mechanisms through which having higher educational attainment eases the decision to have
a child for a woman who works and has not yet achieved her desired family size. These include the
increased ability to outsource childcare, to reduce economic uncertainty, to negotiate the division of
housework, and mobilize personal and familial resources to strike a better balance between work and
family.

Finally, the last term in equation 2 models how the intention is affected by di,t, the time elapsed since
the last birth. In this case, we assume that there is a strong penalty immediately after childbirth that
decays over time.

A.3 Conception Risks
When a couple decides to have a child, the partners’ waiting time to conception wtc is determined by
their risk of conception. This implies, as in the real world, that a couple’s intention is independent of
their actual risk, or ability, to conceive. Following earlier models, we represent the risk of conception
through the notion of fecundability. In the absence of contraception, fecundability is highest among
young couples, and decreases with age as the frequency of intercourse and the biological capacity to
conceive decline.

As we model in continuous time, we define fecundability as the instantaneous risk of conception. We
assume it constant, and therefore draw the waiting time to conception from an exponential distribution.
Specifically, instantaneous fecundability is defined as:

fi,x =
ϕ

1 + exp(κ · (xi − γ))
(4)

We fix at 0.22 mo−1 the value of ϕ, the maximum instantaneous fecundability, so as to obtain a 0.93
probability of conceiving within a year (= 1−e−12·ϕ). This corresponds to a monthly fecundability of
0.20 (= 1−e−ϕ), a value consistent with what has been reported in the literature for non contracepting,
young couples (Bongaarts and Potter, 1983; Leridon, 2004). Equation 4 specifies that instantaneous
fecundability decreases with rate κ as the age xi of woman i starts to approach age γ. The values for
κ and γ were calibrated to fit the pattern of the evolution of fecundability with age proposed by Coale
and Trussell (1974).

If the partners decide not to have a child in the next 12 months, they will be at risk of an unplanned
conception during this period due to residual fecundability, defined as:

rfi,x,t = fi,x · ci,t · ai (5)
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where ci,t ∈ [0, 1] represents the fecundability-reducing effect (effectiveness) of the contraceptive
methods available to woman i at time t. ci,t = 0 represents perfect effectiveness while ci,t = 1 means
complete ineffectiveness. ci,t is defined by:

ci,t =
(ρ/yi)

α

1 + er·(t−(ψ−yi))
+ υ (6)

For a given educational attainment level (fixed yi), the evolution of ci,t through calendar time is simply
a decreasing logistic function with maximum value (ρ/yi)

α, inflection point ψ − yi and steepness r
to which is added a constant υ, the effectiveness of the best contraceptive methods. This definition
reflects the notion that while the effectiveness of contraceptive methods improves over time for all
women, better educated women more readily adopt efficient contraceptive methods.

Finally, the last term in equation 5, ai is equal to one if couple i have not yet achieved their desired
family size; and fixed value a if the couple have already achieved their desired family size. The
assumption here is that the partners will intensify their efforts to prevent additional births after they
have reached their goal.

If the waiting time until conception (planned or unplanned) CT is shorter than 12 months, a waiting
time until birth BT is created by adding 270 days of gestation to CT . Following the birth, there will
be a period of six months that corresponds to the period of postpartum subfecundity, abstinence, and
increased contraceptive use with the aim of avoiding dangerously close births. After this period of
time, the couple will go back to being exposed to the risk of a new conception.

If no conception occurs within the next 12 months, our couple will update their intentions again at the
end of that period. Thus, the partners will either decide to try to have a child in the next year, or they
will be subject to the risk of an unplanned birth.

A.4 Age at Union Formation
To keep things simple, the preferences, intentions, and risks that control the process described so far
are assumed to operate only after the formation of a cohabitation union. The age at which this event
occurs is therefore of considerable importance. We follow previous studies that have successfully
approached the empirical distribution in the age at marriage using the log-normal distribution (Mode,
1985).

ln(Mi) ∼ N (µi, σ
2) (7)

with µi = yi+(ξ · ξ′), where yi is the numbers of years of education of woman i, and ξ is the average
waiting time (in years) to the formation of a cohabiting union after the end of the schooling period. ξ

′

is equal to 1 except for the birth cohorts born 1990 to 2000, those reaching adulthood at the beginning
of the 2008 global recession.
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A.5 Death
The waiting time until death is sampled using the inverse distribution function method (for a de-
scription of the method see: Willekens, 2009), where the distribution of waiting times until death is
reconstructed using age-specific cohort mortality rates available at (HMD, 2015).

A.6 Estimated Parameter values
Table 1 shows the combination of parameters values that generates simulated output that that is closer
to our data in terms of mean squared error.

Name Domain Eq. Description Value Source

δ desired fam. size 1 effect on Di of working 0.59 estimated
δ
′ desired fam. size 1 period effects on Di (2010 - 2018) 0.81 estimated
β intention 2 baseline intention 0.8 fixed
λ intention 2 rate of reduction penalty after pregnancy 2.5e−8 s−1 fixed
η intention 3 penalty on intention of working 0.54 estimated
τ intention 3 years of edu. after which η is reduced 13.6 yr estimated
ϵ intention 3 speed at which η is reduced 0.5 yr−1 fixed
ϕ fecundability 4 maximum fecundability 0.22 mo−1 fixed
γ fecundability 4 inflection point of decline (age) 38.5 yr fixed
κ fecundability 4 speed of decline with age 0.6 yr−1 fixed
A contraception 5 additional effect due to achieved D 0.07 fixed
ρ contraception 6 minimum effect on conception risk 0.11 estimated
υ contraception 6 maximum effect on conception risk 0.66 estimated
ψ contraception 6 inflection year in the diffusion process 1973.3 estimated
r contraception 6 speed of the diffusion 1.2 yr−1 estimated
α contraception 6 differential access/use by education 0.15 estimated
ξ age union form. 7 time to union after schooling 4.8 yr estimated
ξ
′ age union form. 7 period effects on age at union 1.5 estimated

Table 1 | Model parameters and best-fitting values to data from Finland. Available estimates used
in the case of ϕ, γ and κ. The rest of the fixed parameters were obtained by calibration. The baseline
intention β was set a value lower than 1 to consider other effects not explicitly modeled that might
impose a penalty on the intention.
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