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Abstract

Accurate mortality forecasts are essential for decision makers to plan for changing needs
of pension and other social security systems. Researchers have developed a variety of
methods with increasing methodological complexity to forecast mortality developments.
We introduce a method validation workflow designed for mortality forecasts. The aim of
our workflow is to assess the suitability of forecast method depending on the prevailing
mortality regime in the country of interest. For our analysis, we apply our workflow to
short-term Lee-Carter forecasts for 24 countries to showcase different mortality regimes.
We assess Lee-Carter’s forecast performance on the life expectancy and lifespan disparity
at birth. We show that the mortality regime in the country of interest plays a crucial role
for the performance of a forecast method. Thus, our method validation workflow helps
researchers to choose an appropriate mortality forecast method.
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1. Introduction

When forecasting age-specific mortality, one must choose among an ever growing body
of available methods – many of which are developments of the seminal Lee-Carter ap-
proach (Lee and Carter, 1992). Mortality forecasts inform policy decisions on pension
systems, health care and other social security domains. Thus, choosing a suitable method
and understanding its limits of applicability is crucial as the forecasts have real-world
consequences. Here, we introduce a method validation workflow specifically designed
for forecasts of mortality by age. This workflow aims at assessing the suitability of a
forecasting method depending on the prevailing mortality regime in the population of
interest.
Since the introduction of the Lee-Carter model in 1992 (Lee and Carter, 1992), several
extensions have been proposed (Booth et al., 2006; Booth and Tickle, 2008; Basellini
et al., 2022). For example, considering the advancement of survival improvements to
increasingly older ages (Rau et al., 2008), more recent approaches account for trends in
rates of mortality improvement and in the distribution of ages at death (Haberman and
Renshaw, 2012; Li et al., 2013; Ševčíková et al., 2016; Bohk-Ewald and Rau, 2017; de Beer
et al., 2017; Bardoutsos et al., 2018; Basellini and Camarda, 2019; Camarda, 2019). Other
methodological trends in mortality forecasting are to account for health behaviour such as
smoking, obesity and alcohol consumption (Vogt et al., 2017; Janssen et al., 2013; Wang
and Preston, 2009; Janssen et al., 2021) and for mortality developments in benchmark
countries (Li and Lee, 2005; Hyndman et al., 2013; Raftery et al., 2013).
The range of available methodology challenges the forecaster to choose the most suitable
model for the task at hand. While recent work on demographic and mortality forecasting
recognizes the importance of method validation (Rizzi et al., 2021; Basellini and Camarda,
2019; Camarda, 2019; Bohk-Ewald et al., 2018, 2017; Shang, 2015, 2012; Li et al., 2013;
Booth et al., 2006; Shang et al., 2011) there is no consensus on a universally optimal
mortality forecasting algorithm and it has been argued that the optimal model depends on
the population under consideration. Model selection algorithms have been developed to
automatically choose a suitable model based on the characteristics of the time series to
forecast (Poler and Mula, 2011; Hyndman et al., 2002; Venkatachalam and Sohl, 1999;
Sohl and Venkatachalam, 1995).
In contrast to the existing model selection literature, we are proposing a validation design
for model selection, specifically created for age-specific mortality forecasts. In our case,
the characteristics of the time series translate into a specific mortality regime. Thus, we
hypothesise that different mortality forecast models perform differently, depending on the
mortality regime of the research subject of interest.
To answer the suitability question, we develop an extensive validation workflow. We
validate a method’s forecast performance on two common measures of mortality: life
expectancy at birth and lifespan disparity at birth (van Raalte et al., 2018; Vaupel and
Romo, 2003). Further, we distinguish three analytical settings to analyse how much a
model’s forecast performance is influenced by
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High vs. low mortality regimes via the average level of life expectancy and lifespan
disparity in forecast years (as they represent mortality settings with distinct patterns
of mortality over age that may (or may not) be difficult to capture by a forecast
method).

Dynamic vs. static mortality regimes via the annual rate of change in life expectancy
and lifespan disparity in forecast years (as they represent mortality settings with
different levels of continuous mortality improvement that may (or may not) be
difficult to capture by a forecast method).

Monotonic vs. non-monotonic mortality regimes via the trend change in life expectancy
and lifespan disparity between observed years and forecast years (as they represent
mortality settings with abrupt changes in mortality improvement from observed to
forecast years that are difficult to capture for each forecast method).

In the remainder of this paper, we present our validation workflow and demonstrate its
application exemplary for one forecast method on a large data basis. We show that the
Lee-Carter method (Lee and Carter, 1992) is suitable to forecast the mortality of many
high-income, low-mortality countries, during the most recent years. However, there have
been mortality regimes in the past during which Lee-Carter’s forecasts performance was
unsatisfactory. This applies to the late nineteenth century to mid twentieth century, when
discontinuous mortality developments have been prevalent in many of those countries.
Further, we discuss limitations and validate our workflow using extended data sources and
methods.

2. Methods and Data

2.1 Conceptual Validation Workflow

Our validation workflow for increasing confidence in using (or not using) a mortality
forecast method for a country of interest consists of four aspects: the validation design,
the mortality measure, the mortality regime, and the forecast performance. Based on
these aspects, we will describe our conceptual validation workflow and further explore
the requirements for its successful application.

2.1.1 Validation Design

We adopt a rolling out-of-sample validation design, also called rolling cross-validation,
to assess the suitability of a forecast method. In an out-of-sample validation design, the
available data is divided into a training data set and a testing data set. In our design, the
data from the training set is the input for a mortality forecast. We call the calendar years
of mortality data used as input the base period. The resulting mortality forecast stretches
over a period that we call the forecast horizon and that covers the same years as the
testing data set. Therefore, we can compare the forecast with the observed mortality in the
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forecast horizon. The last calendar year of the base period is called the jump-off year after
which the forecast horizon starts. Depending on the coverage of the available data, and the
chosen length of base period and forecast horizon, we then roll the observation window
across the calendar years. This results in several mortality forecasts with different jump-
off years that can be compared to the respective observed mortality data. For example,
given a country with available mortality data for 70 subsequent calendar years (𝑡1, ..., 𝑡70),
a chosen base period of 30 years, and a forecast horizon of 20 years, we would generate a
total of 22 forecasts starting after the jump-off years 𝑡29, 𝑡30, ..., 𝑡50.

2.1.2 Mortality Measures

In our workflow, the validation of a mortality forecast takes place on two measures of
mortality: life expectancy at birth (𝑒0) and life span disparity at birth (𝑒†0). Bohk-Ewald
et al. (2017) argue that mortality forecast methods not only need to capture the change in
life expectancy, but also the variation in the life span distribution e.g., the compression,
shifting, and expansion of mortality. Both mortality measures are calculated using period
life tables (see Preston et al. (2001, p. 49) for formulas of the life table and Zhang and
Vaupel (2009) for life span disparity) and are based on the forecast age-specific mortality
rates (𝑚𝑥).

2.1.3 Mortality Regimes

We consider three mortality regimes in which the evaluation of the forecast performance
takes place. For the high vs. low regimes, we analyse the forecast performance in relation
to the mean value of our mortality measures 𝑒0 and 𝑒

†
0 in the forecast horizon. Our goal

is to see whether a forecast method can capture different levels of mortality and their
associated age patterns. For the dynamic vs. static regimes, we assess whether the trend
of the mortality measures over time plays a role in the forecast performance, e.g. how
well can a forecast method capture moderate to strong shifts in the level and age pattern
of mortality in the forecast years? To do so, we calculate the annual rate of change of
the mortality measures in the forecast horizon and analyse it in relation to the forecast
performance. Lastly, we compare monotonic vs. non-monotonic regimes by comparing
forecast performance in relation to the trend change of 𝑒0 and 𝑒

†
0. We define the trend

change as the difference between the annual rate of change in the forecast horizon and the
annual rate of change in the base period. We perform all analyses separately for females
and males.

2.1.4 Forecast performance

We use the point estimates of a mortality forecast method to quantify the forecast perfor-
mance. First, we calculate the forecast error Δ𝑡 which is defined as the difference between
the forecast value 𝐹𝑡 and the observed value 𝑌𝑡 in year 𝑡,

Δ𝑡 = 𝐹𝑡 − 𝑌𝑡 . (1)
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From there, we calculate several error measures that quantify two aspects of the forecast
performance: bias and accuracy. Regarding forecast bias, the percentage error is a measure
that indicates overestimation of the observed mortality measures for values larger than
zero and underestimation, conversely:

PE𝑡 = 100 × Δ𝑡/𝑌𝑡 (2)

In terms of accuracy, Shcherbakov et al. (2013) recommend the use of more than one
measure. To quantify the forecast accuracy, we use the absolute percentage error (APE)

APE = |PE𝑡 | (3)

and two summarizing error measures based on the forecast error: the mean square error

MSE = mean(Δ2
𝑡 ) (4)

and the root mean square error

RMSE =

√︃
mean(Δ2

𝑡 ). (5)

2.2 Data Sources

Based on the data requirements for a successful application, we choose data from the open-
access Human Mortality Database (?) for the application of our validation workflow. The
HMD provides high-quality population and mortality data for 41 industrialised countries.
For women and men, we extracted mortality rates (𝑚) by single ages (𝑥) from zero to 110
and above, from life table data. However, data coverage across calendar years varies by
country, ranging from the longest time span of 267 years (1751 to 2017) for Sweden to 62
years (1956 to 2017) for Germany.
To validate on other mortality regimes and patterns beside the low-mortality countries
found in the HMD, we conduct additional validation on data from the latest edition
of the United Nations World Population Prospects (?). The UN provides mortality and
population data on 209 countries and regions of the world (for an overview of world regions,
subregions and countries see Table 3 in the Appendix) which allows for a comprehensive
application of our validation workflow.
However, the structure of the UN data forces us to perform additional data preparation
steps prior to the application of our validation workflow. Deaths and population counts
from the UN WPP 2019 are classified in age groups and groups of calendar years from
1950 to the present. Further, the provided data are estimates of the demographic changes,
based on numerous empirical data sources (for detailed methodology, see ?). The process
of un-grouping and preparing the data is documented in the Appendix.
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3. Results

3.1 Application of Validation Workflow

To showcase the application of our validation workflow, we assess the suitability of the
Lee-Carter method (Lee and Carter, 1992) to forecast female mortality of 24 highly
developed countries 20 years ahead. The Human Mortality Database (HMD) provides at
least 50 consecutive years of data for these countries that we require to calculate forecast
errors 20 years ahead using a base period of 30 years (see Table 2 for list of countries and
data availability).
We selected the countries based on the data demands of our validation design. We need 50
consecutive years of data for the exemplary analysis of percentage errors (PE) for 20-years
forecasts using a base period (bp) of 30 years.
The general trend of mortality in the chosen high-income, low-mortality countries over
the available calendar years is characterized by increasing life expectancy at birth (see
Figure 1, a) and decreasing lifespan disparity at birth (b). The mortality development
of these countries follows a similar trajectory: after strong fluctuations in the nineteenth
century, life expectancy at birth has increased rapidly in the twentieth century, interrupted
by country-specific events like the Spanish flu from 1918 to 1920. Since the mid-nineteen-
hundreds, increases in life expectancy at birth are steady and smooth compared to earlier
centuries. In the year 2016, 𝑒0 ranged from 78.47 (Bulgaria) to 87.17 (Japan) years of life
for females. As life expectancy has improved, lifespan disparity at birth has decreased
in a reversed similar pattern: since the early twentieth century, 𝑒†0 has decreased rapidly,
interrupted by few major mortality shocks. Since the late twentieth century we find a
rather smooth and moderate decline in lifespan disparity. For females, 𝑒†0 ranged from
11.41 (USA) to 8.73 (Spain) life years lost in 2016.
The characteristics of the past mortality development will affect the performance of the
Lee-Carter forecasts. The Lee-Carter model is an extrapolative method that assumes that
past trends will continue in the future. Therefore, we expect higher forecast errors for
forecasts with jump-off years (JOY) lying in between periods of mortality development
with different slopes. E.g., a Lee-Carter forecast of life span disparity for Sweden using
data from 1920 to 1949 and trying to forecast life span disparity in 1970 will likely
overestimate the mortality improvement and therefore underestimate the actual observed
life span disparity, resulting in a higher, negative percentage error.
Figure 2 shows the visual analysis of the three mortality regimes for Lee-Carter forecasts
20 years ahead according to our validation workflow for females. The colour gradient from
black over purple and orange to yellow depicts the range of JOY from 1780 to 1997. Only
a few countries with the longest periods of available data (Sweden, Denmark, Norway,
Netherlands) are represented in the earliest JOY while all 24 countries are represented
in the more recent JOY. In all six individual panels of the figure, we display the forecast
percentage error (PE) on the vertical axis. A PE larger than zero indicates overestimation
and a value smaller than zero shows underestimation. We show the PE for life expectancy
at birth (𝑒0) in the left column and for lifespan disparity (𝑒†0) in the right column.
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Figure 1: Female mortality development of 24 industrialised countries from 1751 to
2019. Data source: Human Mortality Database (HMD).

(a) Life Expectancy at Birth (b) Life Span Disparity at Birth

High vs. low mortality regimes: PE vs. average level of 𝑒0 and 𝑒
†
0 in forecast years

In the top row of Figure 2, we plot the PE in relation to the mean value of mortality in
the forecast horizon of 20 years (horizontal axis) for life expectancy at birth and lifespan
disparity. Overall, we find that the mean level of 𝑒0 appears to have a smaller effect on
the PE of Lee-Carter forecasts than the mean level of 𝑒†0. Specifically, the overall small
PE of 𝑒0 shifts horizontally to the right from earlier to recent JOY (purple to yellow)
and from low to high average levels of 𝑒0 (35 to 85 years). At the same time, we find
that the variance of the PE for 𝑒0 decreases for later JOY: while the Lee-Carter method
mostly underestimates life expectancy at birth slightly for mid-level JOY (red and orange)
it performs well in terms of forecast accuracy and bias for the most recent JOY (yellow).
Regarding the PE for 𝑒†0, we find a backward shift, in the form of an arch, from high levels
(25 years) to low levels (10 years) of life years lost from earlier to later JOY (black to
yellow). We find that the Lee-Carter method cannot properly capture the strong decrease
in lifespan disparity in the mid-level JOY (red and orange) and, consequently, tends to
overestimate 𝑒

†
0. Here, bias and inaccuracy are even more accentuated than for 𝑒0 (PE up

to +80% as opposed to +20%). However, for the earliest and most recent JOY (purple and
yellow), the Lee-Carter method produces accurate and unbiased results for 𝑒†0.

Dynamic vs. static mortality regimes: PE vs. annual rate of change of 𝑒0 and 𝑒
†
0 in

forecast years The middle row of Figure 2 shows the relationship of the PE with the
annual rate of change of 𝑒0 and 𝑒

†
0 in the forecast horizon (fh) 20 years ahead. If the rate

is smaller than zero, 𝑒0 resp. 𝑒†0 have decreased in the forecast horizon. For values larger
than zero, 𝑒0 and 𝑒

†
0 have increased. The larger the absolute value of the annual rate of
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change, the stronger is the change in 𝑒0 and 𝑒
†
0 (positive or negative) in the forecast years.

Overall, we observe a strong effect of the annual rate of change of 𝑒0 and 𝑒
†
0 on accuracy

and bias of the Lee-Carter forecasts.
For early and mid-level jump-off years (purple to orange), the Lee-Carter method cannot
capture the strong increase in life expectancy (+0.5 to +1 years of life) in the forecast
horizon. This results in forecast inaccuracy and mostly underestimation. However, the
Lee-Carter method performs well for the most recent jump-off years (yellow) where there
is a more moderate increase in life expectancy (+0 to +0.3 years of life) in many countries.
We see a similar relationship between the annual rate of change and PE for lifespan
disparity at birth. The larger the decrease in 𝑒

†
0 is (up to -0.5 years of life lost), the heavier

is the overestimation of the Lee-Carter forecasts (PE up to 80%). Moving towards an
annual rate of change of zero in the earliest and most recent jump-off years (purple and
yellow), the Lee-Carter forecasts become more accurate.

Monotonic vs. non-monotonic mortality regimes: PE vs. trend change in 𝑒0 and
𝑒
†
0 between observed and forecast years In the bottom row of Figure 2, we show the

relationship of the PE with the trend change in mortality from the base period (bp) to
the forecast horizon (fh). If the annual rate of change in the forecast horizon is smaller
than the rate in the base period, the trend change is smaller than zero. If the annual rate
of change in the forecast horizon exceeds the rate in the base period, the trend change is
larger than zero. Trend changes in mortality are especially hard to capture in forecasts as
they are always unexpected. Overall, we find that trend changes appear to have a strong
impact on the PE of 𝑒0 and 𝑒

†
0.

As we see from the figures, trend changes have happened for both life expectancy and
lifespan disparity, resulting in higher forecast inaccuracy especially in the early and middle
jump-off years (purple to orange). However, a trend change from smaller increases in life
expectancy in the base period to larger increases in life expectancy in the forecast horizon
(positive trend change) effects the PE of 𝑒0 more strongly than a negative trend change.
Further, positive trend changes in 𝑒0 are related to underestimation (PE up to -70%) while
negative trend changes rather cause overestimation (PE up to +40%). For the most recent
jump-off years (yellow), the Lee-Carter method gives more accurate results as the trend
change is closer to zero.
Trend changes in lifespan disparity take place particularly for mid-level jump-off years and
range from -0.4 to 0.4 (orange). Here, the negative relationship between PE 𝑒

†
0 and trend

change is even more accentuated than for 𝑒0. The Lee-Carter method penalizes strong
negative trend changes with severe overestimation (PE up to +60%) and positive trend
changes with underestimation (PE up to -20%). As the trend change for the most recent
jump-off years is close to zero (yellow), Lee-Carter performs well in terms of forecast
accuracy. However, we observe slight overestimation of 𝑒†0.

Initial Recommendation Overall, the analyses above show that the Lee-Carter method
is suitable for forecasting mortality of the 24 HMD countries in the most recent jump-off
years 1980 to 1997. For these cases, judging from the forecast percentage error, the
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forecast results are mostly accurate and unbiased. The Lee-Carter method cannot capture
drastic changes in the annual rate of change and strong trend changes, resulting in bias
and loss of accuracy. These characteristics apply to the mid-level jump-off years, where
a transition from high-level to low-level mortality has taken place. Therefore, we would
recommend the Lee-Carter method for high or low, rather static and monotonic mortality
regimes.

3.2 Sensitivity of Results

We check the sensitivity of our results for the Lee-Carter method in several ways. First,
we perform the previous analysis for male mortality. Figure 3 shows the percentage errors
in the three analytical settings for males and can be found in the Appendix. We observe
similar patterns in the relationship of the PE with the mean level, the annual rate of change,
and the trend change of 𝑒0 and 𝑒

†
0. However, the overall level of mortality is higher for

males than for females. The variance in the PE for both 𝑒0 and 𝑒
†
0 is larger for males

compared to females.
Second, we use additional forecast error measures to judge the forecast performance.
Table 1 shows three additional forecast error measures that give an insight on the overall
bias and accuracy of forecast for 𝑒0 and 𝑒

†
0. The mean percentage error (MPE), the

mean absolute percentage error (MAPE) and the root mean square error (RMSE) were
calculated for 20-years Lee-Carter forecasts over all possible JOY for each country. Then
we took the arithmetic mean over the error measures for countries belonging to each world
region (see Table 2 in the Appendix for classification of HMD countries into regions). In
general, we find that the choice of error measure influences the results. Regarding the
forecast bias, the MPE shows that the forecasts mainly underestimate 𝑒0 and overestimate
𝑒
†
0. Only exceptions are Japan and Northern American females for which the opposite

is the case. There are differences between the accuracy measures MAPE and RMSE.
The RMSE indicates higher accuracy for forecasts of 𝑒†0, compared to the accuracy for
𝑒0. However, the MAPE shows more inaccurate results for 𝑒

†
0 than for 𝑒0. Regarding

the different world regions, the error measures indicate different world regions as the best
(highlighted in italic font) and worst (highlighted in bold font) forecast performance. For
example, judging from the RMSE, forecasts for Southern Europe are most inaccurate for
both 𝑒0 and 𝑒

†
0. However, by the MPE, forecast errors for Japan are the lowest for 𝑒0 but

the highest for 𝑒†0. In addition, Table 1 confirms the results from the graphical analysis of
analytical setting that forecasts of male mortality are generally more inaccurate compared
to forecasts of female mortality.
Third, we use data from the United Nations World Population Prospects (?) to assess the
forecast performance of Lee-Carter for other mortality regimes. The data from the UN
had to be prepared in several aspects before forecasts could be estimated and assessed. For
the full procedure of data preparation and classification of countries into world regions,
see the Appendix.
Figure 4 in the Appendix shows the mortality development from 1950 to 2019 by different
world regions measured by 𝑒0 and 𝑒

†
0. In contrast to the mortality of countries from the
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Table 1: Forecast accuracy and bias of 20-years Lee-Carter forecast by world region and
sex over all possible Jump-off years.

World Region Sex MPE MAPE RMSE
e0 ed e0 ed e0 ed

Eastern Europe female -2,4 1,2 2,9 6,9 2,5 0,8
male -6,5 4,2 7,3 8,1 5,6 1,1

Northern Europe female -3,0 3,8 4,2 8,6 3,5 1,5
male -4,3 3,5 5,9 7,3 4,9 1,5

Western Europe female -2,5 3,1 3,1 5,4 2,9 1,0
male -4,3 4,7 5,8 6,7 4,9 1,3

Southern Europe female -3,6 4,7 3,6 8,4 4,3 1,7
male -5,4 6,9 6,0 11,6 6,7 2,4

Northern America female 0,5 -2,1 0,9 3,7 0,9 0,5
male -2,1 1,4 2,2 3,8 1,9 0,6

Australia & New Zealand female -1,9 5,3 1,9 7,2 1,7 0,8
male -4,7 5,0 4,8 6,5 3,9 0,8

Japan female 0,1 -13,1 0,9 13,1 0,9 1,3
male 1,3 -7,6 1,3 7,6 1,1 1,0

Source: Own calculations with data from the HMD ?

HMD, there are differences in the trajectories of the world regions. While the overall trend
is increasing for 𝑒0 and decreasing for 𝑒†0 for all world regions, there are differences in the
onset and slope of mortality improvements. E.g., we observe a stagnation of 𝑒0 in Africa
from approximately 1990 to 2000 and unmatched strong declines of 𝑒†0 in Europe in the
1950s. Further, there are difference in the general level of mortality. Europe, Northern
America, and Oceania have the highest life expectancy and lowest life span disparity
throughout the observed period. Africa’s mortality is declining the slowest, compared
to the other world regions. Northern America, and Latin America and the Caribbean
are catching up to the mortality levels of Oceania. However, a gap remains in the latest
observed years.
We performed the graphical analysis of percentage errors in the three analytical settings
in the same way as for the HMD data. Figure 5 in the Appendix shows the Percentage
Error (PE) of 20-years forecasts for females in relation to a) the mean level of mortality
in the forecast horizon (fh), b) the annual rate of change in mortality in the fh, and c)
the trend change in mortality from base period (bp) to fh, for 𝑒0 (left panels) and 𝑒

†
0

(right panels). The results show that there are differences in the forecast performance
of Lee-Carter depending on world region. Lee-Carter produces the most unbiased and
accurate results for Jump-off years that range between 1985 and 1995 for 𝑒0 depending on
world region. Forecasts with the earliest or latest jump-off years tend to be the most biased
and inaccurate, with a few exceptions. However, in general, the forecast performance for
Lee-Carter is acceptable for most of the world regions with a PE ranging between -5 and
5 for 𝑒0 and -10 and 10 for 𝑒†0 (excluding the errors for Africa).
Regarding the PE vs. the mean level of mortality in the forecast horizon (Figure 5 in
Appendix), we do not observe the same decrease of PE with increasing JOY as for the
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HMD data for 𝑒0, nor the arch-shaped trajectory of PE over time for 𝑒
†
0. There is an

effect of the level of 𝑒0 and 𝑒
†
0 on the PE visible for Africa. Compared to the other world

regions, the forecasts for Africa are more inaccurate for the earliest and latest jump-off
years. Further, the world regions follow different trajectories: for 𝑒0, PE is decreasing
with increasing JOY for Africa, Asia, and Europe but increasing for Latin America and
the Caribbean. Oceania and Northern America have periods of increasing and decreasing
PE, although for low ranges of PE. Regarding 𝑒

†
0, there is an increasing trend of PE with

increasing JOY for most of the world regions with exception of Latin America and the
Caribbean, and Northern America.
We do not observe an effect of the rate of change on the PE. The annual rate of change of
𝑒0 in the forecast horizon (Figure 5) is positive for all world regions. For 𝑒†0, the rate of
change is negative, besides for the two most recent JOYs for Northern America.
Regarding the trend change from the base period to the forecast horizon, the effect is visible
as a diagonal line: the higher the trend change, the more severe is the underestimation. The
smaller the trend change, the more severe is the overestimation of the mortality measures.
The PE is the smallest for forecasts with a trend change close to zero, which is especially
visible for 𝑒†0. The findings for the third analytical setting are in line with the results from
the HMD data.

3.3 Final Recommendation

Taking all sensitivity checks into account, we can reassess our recommendation for Lee-
Carter forecasts. The suitability of the Lee-Carter method varies with the country or
world region of interest. Further, different error measures allow for different implications
regarding the forecast performance compared between world regions. Based on this
exemplary application for 20-years forecasts with a base period of 30 years, we would
recommend using Lee-Carter for mortality forecasts only for high-income, low-mortality
countries, e.g. in Europe, Northern America, Asia and Oceania. Further, the mortality
measure of interest influences the assessment of the forecast performance. The forecast
performance of Lee-Carter forecasts assessed on 𝑒

†
0 are generally worse than for 𝑒0.
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Figure 2: Percentage error (PE) of Lee-Carter forecasts of female mortality with a base period
(bp) of 30 years and a forecast horizon (fh) of 20 years by jump-off year (dark purple to yellow)
plotted against three measures of life expectancy at birth (𝑒0, left column) and life span disparity
at birth (𝑒†0, right column): (a) against the mean value in the fh, (b) against the annual rate of
change in the fh and (c) against the trend change from bp to fh. Data source: Human Mortality
Database (?).
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4. Discussion

4.1 Summary

How can we objectively decide if a method is suitable to forecast mortality in a country
of interest? In recent decades, researchers have developed numerous mortality forecast
approaches with increasing levels of methodological complexity. Considering that so
many simple and complex methods are available, our study’s main goal is to establish
validation as a test prior to mortality forecasting to make sure a method is selected that
is suitable for the particular forecast setting. In this paper, we have validated if the basic
assumption of the Lee-Carter 1992 method holds in a country of interest. Namely, that
mortality changes in the forecast horizon will develop in the same way they have had in the
base period. Therefore, we have applied the Lee-Carter method to all available mortality
data for 24 countries of the Human Mortality Database according to our own validation
design. We have assessed forecast accuracy and bias of life expectancy and lifespan
disparity at birth over all countries by jump-off year in three analytical settings. First,
we have analysed the forecast percentage error in relation to the mean level of mortality
in the forecast horizon. Second, we have examined how the percentage error reacts to
mortality changes in the forecast horizon. Third, we have shown the relationship between
the percentage error and mortality trend changes from base period to forecast horizon.
Based on these validation results, we have found that the Lee-Carter method is indeed
suitable for forecasting mortality for many high-income countries in most recent years.
However, there have been mortality regimes in the past, during which Lee-Carter’s fore-
casts performance was unsatisfactory. This applies to jump-off years ranging from the
late nineteenth century to approximately 1960, when discontinuous mortality develop-
ments have been prevalent in many of those countries. Caused by, for example, mortality
developments such as the advancement of large survival improvements from younger to
increasingly older ages with ongoing time.
Further, we have checked the sensitivity of our validation results by performing additional
analyses. We have looked at bias, accuracy and uncertainty of the Lee-Carter forecasts
using additional error measures and an additional data source. With data from the UN
World Population Prospects (2019 edition) we have been able to explore the forecast
performance in other mortality regimes. The results show that mortality forecasts are
slightly more inaccurate for men. Further, comparing several error measures has shown
that the assessment of the forecast performance is influenced by the chosen measure.
Regarding the data from the UN WPP 2019, our analyses have shown that the forecast
performance of the Lee-Carter model varies by world region.
Based on the initial results and the sensitivity checks, we have argued that the suitability
of Lee-Carter to forecast mortality depends on the country of interest and the mortality
measure of interest. Lee-Carter’s forecast performance is adequate for high-income, low-
mortality countries with a smooth mortality development and for life expectancy at birth as
the mortality outcome. In contrast, the Lee-Carter model is not able to produce adequate
results for mortality regimes with discontinuous development observed e.g., in countries
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of Africa and the forecast performance is worse for life span disparity at birth, compared
to life expectancy at birth.

4.2 Limitations

Our design is suitable to validate mortality forecast methods that use an extrapolation
approach. These methods have the same underlying assumption as the assumption that
our recommendation after validation is based on: The past mortality trajectories are
assumed to continue in the future. However, researchers developed other approaches
to forecast mortality. Booth and Tickle (2008) classify the different approaches into
three groups: extrapolation methods, explanation models, and methods based on expert
opinions. Forecasts build on expert opinions follow a different approach that is based on
subjective expectations, e.g. the method of targeting of life expectancy (Pollard, 1987).
In principal, our validation design can be used for this type of models, as well. However,
it would require an extensive history of forecasts using the same approach. Further, our
validation design is not applicable for models that use an explanation approach. Such
models use specific causes of death and their risk factors to forecast mortality. In contrast
to the extrapolation approach, mortality is not forecasted directly, but the relationship
between risk factors and mortality is modelled and the risk factors are forecast. Therefore,
the assumption of continuing mortality development is omitted and assessing the forecast
performance using our validation design is unreasonable.
The evaluation of the Lee-Carter model served as an exemplary choice to showcase the
application of our validation design. The Lee-Carter model itself has proven problems
that have been addressed and solved by multiple extensions (for a review of models see
Basellini et al. (2022)). However, the comparison of different models was not in the scope
of this research.

4.3 Conclusion

In conclusion, we have shown that validation serves as a meaningful first test to decide
whether a method is likely to be appropriate to forecast mortality in a country of interest.
Our results for the exemplary application of our validation design have shown that the
validation process needs to take the mortality development of the population of interest
into account. Further, conclusions drawn from different forecast performance measures
and analytical settings emphasize the importance of a comprehensive validation design.
However, applying the showcased steps, method validation is an extra effort in the research
process. Therefore, researchers might want to balance the effort of method validation
against the impact or consequences of the forecast results. E.g., mortality forecasts that
will be used for political decisions and forecast many years would certainly benefit from
prior method validation.
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A. Data from the Human Mortality Database (HMD)
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Table 2: Chosen countries and data availability in HMD with classification into world
regions.

World Region (n=7) Country (n=24) Code Available Years

Northern America Canada CAN 1921 – 2016
USA USA 1933 – 2017

Australia & New Zealand Australia AUS 1921 – 2016
New Zealand NZL_NP 1948 – 2013

Japan Japan JPN 1947 – 2017

Eastern Europe

Bulgaria BGR 1947 – 2010
Czechia CZE 1950 – 2017
Hungary HUN 1950 – 2017
Slovakia SVK 1950 – 2017

Northern Europe

Denmark DNK 1835 – 2016
Finland FIN 1878 – 2015
Ireland IRL 1950 – 2014
Norway NOR 1846 – 2014
Sweden SWE 1751 – 2017
United Kingdom GBR_NP 1922 – 2016

Southern Europe
Italy ITA 1872 – 2014
Portugal PRT 1940 – 2015
Spain ESP 1908 – 2016

Western Europe

Austria AUT 1947 – 2017
France FRATNP 1816 – 2017
Germany West DEUTE 1956 – 2017
Germany East DEUTW 1956 – 2017
Netherlands NLD 1850 – 2016
Switzerland CHE 1876 – 2016

Note: Classification follows United Nations Geoscheme (United Nations 1999)
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Figure 3: Percentage error (PE) of Lee-Carter forecasts of male mortality with a base period (bp)
of 30 years and a forecast horizon (fh) of 20 years by jump-off year (dark purple to yellow)
plotted against three measures of life expectancy at birth (𝑒0, left column) and life span disparity
at birth (𝑒†0, right column): (a) against the mean value in the fh, (b) against the annual rate of
change in the fh and (c) against the trend change from bp to fh. Data source: Human Mortality
Database (?).

Overestimation

Underestimation

−80

−40

0

40

80

30 40 50 60 70 80
Mean life expectancy in forecast horizon

PE

1800

1850

1900

1950

1997
Jump−off year

(a) PE vs. mean  e0 in fh

Overestimation
Underestimation

−90

−60

−30

0

30

60

90

10 12 15 18 20 22 25
Mean life span disparity in forecast horizon

PE

1800

1850

1900

1950

1997
Jump−off year

(a) PE vs. mean  e0
† in fh

Decreasing e0
fh Increasing e0

fh

Overestimation

Underestimation

−80

−60

−40

−20

0

20

40

60

80

−1.0 −0.5 0.0 0.5 1.0 1.5
Annual rate of change of life expectancy in forecast horizon

PE

1800

1850

1900

1950

1997
Jump−off year

(b) PE vs. annual rate of change of  e0 in fh

Decreasing e0
† fh Increasing e0

† fh

Overestimation
Underestimation

−80

−60

−40

−20

0

20

40

60

80

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2
Annual rate of change of life span disparity over forecast horizon

PE

1800

1850

1900

1950

1997
Jump−off year

(b) PE vs. annual rate of change of  e0
† in fh

∆e0
fh < ∆e0

bp ∆e0
fh > ∆e0

bp

Overestimation
Underestimation

−80

−40

0

40

80

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Trend change of life expectancy from base period to forecast horizon

PE

1800

1850

1900

1950

1997
Jump−off year

(c) PE vs. trend change of  e0 from bp to fh

∆e0
† fh < ∆e0

† bp ∆e0
† fh > ∆e0

† bp

Overestimation
Underestimation

−80

−60

−40

−20

0

20

40

60

80

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
Trend change of life span disparity from base period to forecast horizon

PE

1800

1850

1900

1950

1997
Jump−off year

(c) PE vs. trend change of  e0
† from bp to fh

20



B. Data from the United Nations World Population Prospects (UN
WPP 2019)
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Preparing and Un-Grouping Data from the UN World Population Prospects It is
necessary to prepare and un-group the data from the United Nations World Population
Prospects 2019 (UN WPP 2019) to use them for mortality forecast validation (?). The
original data for population counts is available annually from 1950 to 2020 by five-year
age groups and sex. However, death counts by sex are published in period groups of five
years from 1950-1954 to 2015-2019 by five-year age groups and sex. Further, there are
differences in the highest age groups: the last open age interval starts at age 95 for death
counts and for population counts at age 100. Therefore, we need to alter the data sets to,
first, achieve the same data format for death counts and population counts and second,
to un-group period groups and age groups. The preparation steps 1, 2, 3, 4 and 9 are
necessary for all available countries and world regions. However, the preparation steps 5,
6, 7, 8 and 10 are applicable to exceptional cases. For an overview of these exceptions,
see Table 4.
To obtain annual age-specific mortality rates by single ages and sex, the following steps
were applied using the statistical software R (version 4.0.2), separately for females and
males:

1. Contrary to the deaths counts, the data on population exposures has information for
the year 2020. Therefore, we excluded the population exposure data for the year
2020.

2. To achieve the same data format of the annual population exposures as for the death
counts, first, we grouped the population exposures into five-year periods starting
with 1950-1954 and ending with 2015-2019. Second, we summarized the age
groups 95-99 and 100+ into one open age group 95+.

3. Using the number of deaths 𝑑 (𝑥, 𝑛) and number of person-years lived 𝐿 (𝑥, 𝑛) from
life table data from the UN WPP 2019, we calculated the proportion of deaths
and person-years lived in the age groups 0 and 1-4. Then, we multiplicated these
proportions with the first age group 0-4 of death counts 𝐷 (𝑥, 𝑛) and population
exposures 𝑃𝑜𝑝(𝑥, 𝑛) to obtain values for the age groups 0 and 1-4. This was done
to account for the larger variability in this age group due to infant mortality. The
following formula is exemplary for this procedure and shows the calculation of the
death counts in age 0 𝐷 (0, 1):

𝐷 (0, 1) = 𝐷 (0, 5) ∗ 𝑑 (0, 1)
𝑑 (0, 1) + 𝑑 (1, 4) (6)

4. For death counts and population exposures, we un-grouped the five-year period
groups into single years using a cubic smoothing spline with the smooth.spline
function from the R Stats package (R Core Team 2020).

5. For countries with small populations, we inflated the data which allowed us to
obtain results for some of the smallest countries, e.g. Kiribati. We multiplicated
the absolute case numbers of death counts and population exposures with 100,000
if, at any point in time, the population in age-group 75-79 was smaller than 100 (see
Table 4).
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Table 4: UN Data Preparation Steps and their Application

Step No. of Countries /
Subregions

Ages (n=5) Years

5 184 / 21 - -
6, 𝐷𝑥 28 / 12 5-30, 85-95 1950-2019
6, Pop𝑥 32 / 13 80-95 1950-2019, 2005, 2008-2012
7 40 / 14 90, 95 1950-1987, 1992-1999, 2003-2007, 2013, 2019
8 143 / 19 40-95 1950-2019
10 5 / 5 90, 95 1950-2019
Note: Full table with information on each individual country available on request.

6. In few cases (see Table 4), the smooth.spline procedure produced negative and 0
values for death counts and population exposures. We replaced these implausible
values with the last positive non-zero value from age-groups before.

7. Further, smooth.spline produced values for death counts and population exposures
that resulted in implausible age-specific mortality rates (𝑚𝑥 =

𝐷𝑥

𝑃𝑜𝑝𝑥
) >= 1 in the

highest age groups. If 𝑚𝑥 in age groups 90-94 and 95+ were >= 1, we replaced the
corresponding death counts with a value that corresponds to a value of probability
of death 𝑎𝑥 = 0.5 (Gampe, 2010).

8. We assume that mortality after reaching the adult ages increases. However,
smooth.spline produced cases, for which the age-specific mortality rates 𝑚𝑥 in
the age groups 40-44 to 95+ are decreasing. We replaced the corresponding death
counts with a value so that 𝑚𝑥 in this age group equals 𝑚𝑥 in the age group before.

9. We un-grouped the five-year age groups of death counts and population exposures
and simultaneously obtained age-specific mortality rates using a Penalized Com-
posite Link Model (Rizzi et al., 2015). We used the pclm function from the R
package ungroup (D. Pascariu et al., 2018) with an optimization interval for the
smoothing parameter lambda of [0, 0.0001] and with the population exposures as
offset. For a detailed description of the process of choosing the most suitable value
for the highest single age, see the following section “Selecting suitable parameters
for pclm”.

10. In some cases, pclm produced decreasing age-specific mortality rates 𝑚𝑥 in the
higher ages. Under the assumption that mortality is not decreasing after reaching
the adult age, we replaced the decreasing 𝑚𝑥 values (starting from age 40) with the
last positive value from the age before.

Selecting suitable parameters for pclm When applying the the pclm function from
the R package ungroup (D. Pascariu et al., 2018), one must define the parameter nlast,
the length of the last age interval of the un-grouped data. Let Ω be the highest age that
determines the length of this last age interval. Depending on Ω, the results of the un-
grouping differ substantially. Therefore, we selected four different ages (100, 110, 125,

24



and 130) and applied the pclm function to data for the world regions (see Table 3 for list
of world regions).
Our decision for the most suitable Ω to un-group the mortality data of the world regions
and each of their countries is based on three different criteria. First, we face-validated
the age-specific mortality rates resulting from pclm using the different value from Ω.
Second, we compared the step-wise age-specific mortality rates for five-year age groups
calculated from the input data for pclm with the age-specific mortality rates resulting from
pclm to check whether the same mortality patterns can be found. Third, we calculated
the difference in life expectancy at birth resulting from the age-specific mortality rates for
five-year age groups and for single ages resulting from pclm. The selection of Ω for data
on individual countries was based on the results for the respective world regions.

Figure 4: Female mortality development by world region from 1751 to 2019.
Data source: UN WPP 2019.
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Figure 5: Percentage error (PE) of Lee-Carter forecasts of female mortality with a base period
(bp) of 30 years and a forecast horizon (fh) of 20 years by jump-off year (dark purple to yellow)
plotted against three measures of life expectancy at birth (𝑒0, left column) and life span disparity
at birth (𝑒†0, right column): (a) against the mean value in the fh, (b) against the annual rate of
change in the fh and (c) against the trend change from bp to fh. Data source: UN WPP 2019.
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Figure 6: Percentage error (PE) of Lee-Carter forecasts of male mortality with a base period (bp)
of 30 years and a forecast horizon (fh) of 20 years by jump-off year (dark purple to yellow)
plotted against three measures of life expectancy at birth (𝑒0, left column) and life span disparity
at birth (𝑒†0, right column): (a) against the mean value in the fh, (b) against the annual rate of
change in the fh and (c) against the trend change from bp to fh. Data source: UN WPP 2019.
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