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Abstract 

This paper lays out several new asymptotic inference results for discrete-time multistate models. First, it derives 

asymptotic covariance matrices for the outcome statistics of conditional and/or state expectancies, mean age at first 

entry, and lifetime risk. It then discusses group comparisons of these outcome measures, which require the calculation 

of a joint covariance matrix of two or more results. Finally, new procedures are presented for the estimation of multistate 

models over a partial age range, and how these subrange calculations relate to the result that is obtained from the full 

age range of the model. All newly derived expressions are compared against bootstrap results in order to verify 

correctness of results and to assess performance. 
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1 INTRODUCTION 

Discrete-time multistate models (DTMS) have increasingly been used in the social science, demographic, and public 

health literature.1 Used as a form of life-course analysis, they posit the lifetime of an individual as a succession of discrete 

states, the set of which comprises the "state-space". Based on estimated age-specific transition probabilities, the main 

outcome statistic of these models are state expectancies (expected sojourn times, in Markov chain theory parlance). They 

differ from continuous-time multistate models, which are amply applied, for example, in the medical literature, by 

assuming that state transitions occur only in accordance with a fixed time grid. Due to that assumption, research based 

on DTMS frequently uses longitudinal data on individuals that are sampled at (roughly) regular intervals. Studies using 

this method are numerous, and they have been applied to a variety of substantive areas. A list of example applications 

can be found in the introductory section of Dudel and Schneider (2021). 

All DTMS calculations take place under the Markov assumption, which posits that transition probabilities do not depend 

on any previous state visits other than the current one. One-step transition probabilities are the key magnitudes around 

which other calculations are centered. A suitable method for obtaining (estimating) transition probabilities is to base 

them on regressions, among which multinomial logistic regression is a popular choice since Millimet et al. (2003). Once 

transition probabilities have been predicted from the regression results, in a third step, formulas from standard Markov 

chain theory yield state and overall expectancies. A variety of other statistics and refinements have been developed (see, 

for example, Hunter and Caswell, 2005; Roth and Caswell, 2018; Dudel, 2021). Readers who are completely new to the 

method are referred to the appendix of Schneider, Myrskylä and van Raalte (2023), which provides an accessible 

exposition of the basic calculations. Further elaborations in this document assume basic familiarity with this material. 

When estimating state expectancies from data, it is of obvious interest to get a measure of how accurately these point 

estimates are. Most of the applied papers resort to bootstrap techniques for statistical inference, due to the fact that 

asymptotic formulas have not been derived. There are two exceptions to this. First, Lièvre, Brouard and Heathcote (2003) 

partially derive asymptotic expressions for variances and covariances of state expectancies. The main limitations of that 

paper are a) that formulas are not fully explicit, so that the derivates required by the delta method have to be approximated 

numerically and b) they are derived within a framework (interpolated Markov chains, IMaCh) which imposes many 

practical limits on the underlying regression. A second exception is Lynch and Brown (2005), who cast the problem in 

a Bayesian framework, which allows for statements using credible intervals. Here, the main problem lies, as is often the 

case with Bayesian analysis, in the computational cost of the procedure. 

The first contribution of this paper is to fill this gap and derive an expression for the asymptotic covariance matrix of 

state expectancies that is numerically efficient. All that is necessary to arrive at this result is a set of transition 

probabilities along with their covariance matrix. As an illustration of this computational requirement, section 2.6 lists 

(known) formulas of how a covariance matrix of transition probabilities can be obtained from a multinomial logistic 

regression model, but it must be emphasized that this is not the only method that is suitable. Subsequent calculations 

are, in principle, independent of how the transition probabilities and their covariance matrix have been obtained. One 

noteworthy implication of this is that the calculations of this paper are in accordance with complex survey design, which 

can simply be taken into account at the regression stage. Subsequent steps simply use this adjusted covariance matrix of 

the regression parameters and hence contain the relevant sampling information for the data. 

 
1 Other names and abbreviations for the same modelling technique found in the literature are, for example, DTMM, discrete-time 

multistate life tables (discrete-time MSLTs), or age-stage Markov models. 
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There are a number of additional contributions in this paper. Section 5 develops asymptotic formulas for a second 

outcome statistic, mean age at first entry. Section 6 develops formulas that allow for group comparisons, the basis of 

which are joint covariance matrices for two or more sets of transition probabilities. The only requirement is that all sets 

of transition probabilities are obtained from the same regression model. Finally, section 7 develops state expectancy 

results for partial age ranges. The results for partial age ranges are such that, when summing the results from a partition 

of the full age range, a) point estimates add up to what would have been obtained for the estimate of the entire age range, 

and b) they also add up in the statistical sense, in that a simple linear combination of the partial age ranges over the 

partition yields a covariance matrix that would have been obtained directly if the full age range had been used. 

2 PRELIMINARY REMARKS AND NOTATION 

2.1 ORDERING AND TIMING CONVENTIONS 

Since multistate models in the social sciences are typically cast in terms of the aging of subjects, this document uses the 

terminology "age" rather than the broader notion of "time", but this is just a naming convention. Whenever "age" is 

mentioned, it can be read as "time". Similarly, the cross-sectional units need not be human subjects but can be, e.g., 

firms. 

2.1.1 Age-within-Stage, Stage-within-Age, and the ji-Convention 

Markov transition matrices can either be written as row-stochastic matrices (rows sum to one) or column-stochastic 

matrices (columns sum to one). In this document, we use the latter convention. 

In the context of multistate modelling, transition matrices can be ordered "age-within-stage" or "stage-within-age". For 

example, for a model that contains �̅� transient states and �̅� ages, we define the matrix 𝑼 as the Markov transition matrix 

among transient states only: 

 𝑼 =

[
 
 
 
 
𝟎 𝟎 𝟎 ⋯ 𝟎
𝑼2 𝟎 𝟎 𝟎

0 𝑼3 𝟎 𝟎

⋮ ⋱ ⋱ ⋮
𝟎 ⋯ 𝟎 𝑼�̅�−1 𝟎]

 
 
 
 

 (stage-within-age) (1) 

The ordering here, which will be used exclusively throughout the text, is "stage-within-age": Each submatrix 𝑼𝑎 is �̅� × �̅� 

and has the transition probabilities among the transient states for a particular age 𝑧𝑎. The alternative ordering ("age-

within-stage") is 

 𝑼 = [

𝑼11 𝑼12 ⋯ 𝑼1𝑠̅

𝑼21 𝑼22 𝑼2𝑠̅

⋮ ⋱ ⋮
𝑼𝑠̅1 𝑼𝑠̅2 ⋯ 𝑼𝑠̅𝑠̅

] (age-within-stage) (2) 

where 𝑼𝑖𝑗 now is a �̅�−1 × �̅�−1 matrix: 

𝑼𝑖𝑗 =

[
 
 
 
 
 
0 0 ⋯ 0 0

𝑝𝑖𝑗,2 0 0 0

0 𝑝𝑖𝑗,3 0 0

⋮ ⋱ ⋮ 0
0 0 ⋯ 𝑝𝑖𝑗,�̅�−1 0]
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As a general rule, i is a state index that always refers to the destination state. Index j refers to the origin state or to the 

initial state. Equation (2) follows the convention to denote matrix row and column indexes by i and j, respectively, and 

that double subscripts refer first to rows and then to columns. We call this order of subscripts the ij-convention or ij-

notation. Symbols in this text, however, sometimes follow what we call the ji-convention if it allows for a more 

convenient ordering of elements. Then the first subscript refers to the origin state and the second subscript to the 

destination state. Which convention is used is always stated in the text. 

2.1.2 Timing in Markov-related table-like matrices 

There are �̅� ages in the model and �̅� − 1 age intervals (contained in the vector 𝒛, in the notation of this article, see 

below). Irregular age intervals are allowed (but probably difficult to reconcile with estimation from the data). The first 

age is called the base age. The last age is called the exit age. At the exit age, all subjects are assumed to enter the 

absorbing state. Corresponding transition probabilities are set to one. 

This can be illustrated in a matrix that contains all relevant information on transition probabilities in a table-like format. 

A similar matrix is defined in section 2.6 more formally. The structure is illustrated by the following example numbers 

for transition probabilities: 

�̀� =

𝒑𝟏𝟏 𝒑𝟏𝟐 𝒑𝟏𝟑 𝒑𝟐𝟏 𝒑𝟐𝟐 𝒑𝟐𝟑
−− −− −− −− −− −−

𝟓𝟎 | . . . . . .
𝟔𝟎 | 0.95 0.04 0.01 0.35 0.61 0.04
𝟕𝟎 | 0.93 0.06 0.01 0.25 0.68 0.06
𝟖𝟎 | 0.86 0.10 0.04 0.15 0.74 0.12
𝟗𝟎 | 0.67 0.18 0.16 0.06 0.69 0.25
𝟏𝟎𝟎 | . . 1 . . 1

 

where orange labels indicate the meaning of columns and rows. The subscripts of the transition probabilities are in 𝑗𝑖-

format. A dot in the matrix indicates that that matrix element is never used in any calculations. In this example, there 

are three states. States 1 and 2 are transient and state 3 is absorbing. The model contains ages 𝒛 = [50, 60,… ,100] and 

�̅� = 6. 50 is the base age and 100 the exit age. All quantities are stochastic (estimated) except for the entries in the rows 

corresponding to the base age and the exit age. In the example, the row 3, column 2 number of 0.06 indicates the 

probability of being in state 2 at age 70, given state 1 at age 60. When exactly this transition takes place is, at this point, 

still undefined. 

2.1.3 Timing in the Data Set and in the Regression 

The data set that is used to estimate transition probabilities, e.g., by means of a multinomial logistic model, needs to 

contain information on the current state and age of subjects. The age value should denote the exact age at observation 

of the state, not the age at transition. Estimation requires, except for special cases, that the data are equally spaced. In 

the above example, observations are (should be) roughly ten years apart. Since the unit of observation is a transition, 

one also needs an (independent) variable that records the origin state. This can just be the lagged dependent variable. 

The transition probabilities predicted from such a multinomial regression are to be interpreted as the probability that a 

subject is in state 𝑖 (not: enters state 𝑖) at exact (!) age 𝑧𝑎 (see below for notation), given that that subject was in state 𝑗 

ten years earlier. We call the ages at which such probabilities are predicted the prediction ages. These are the ages 

contained in 𝒛 and used to label the matrix �̀�. 
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2.1.4 Prediction Ages, Transition Ages, and Standard Transition Timings 

It was noted above that the ages in 𝒛 are prediction ages. The transition ages, by contrast, are generally unknown, so an 

assumption about them must be made. Based on the example model setup from above, Box 1 displays transition timing 

schemes for several different assumptions. The top section of the box (scheme MID) assumes mid-period transitions, 

which take place at ages 55, 65,… , 95. Summing the age intervals shows that a maximum of 45 years can be obtained 

for the remaining life expectancy. An alternative transition timing assumption is end-of-period, displayed in the second 

section of the box (scheme EOP). Here the maximum attainable remaining life expectancy is 50 years. Finally, the 

opposite of the end-of-period assumption is beginning-of-period (section 3, scheme BOP) with a maximum attainable 

remaining life expectancy of 40 years. For BOP, the base age and the first transition age are identical, indicated by the 

double vertical bars. One can define more complicated transition timings than MID, EOP, and BOP, but this is a more 

advanced topic. This theme is pursued in Schneider, Myrskylä and van Raalte (2023). 

It is often helpful to think in intervals that are defined by end points determined by both prediction ages and transition 

ages. For mid-period, this corresponds to the bottom section of Box 1 (scheme MID-SPLIT). For the current example, 

the length of all subintervals is 5 years. Thinking in these subintervals is helpful for understanding the workings of 

partial age ranges treated in section 7. 

Box 1. Transition Timing Schemes for 10-Year Prediction Intervals from Age 50 to Age 100 

 
Notes: Different transition timing schemes pertaining to a model with base age 50 and exit age 100 and 10-year prediction intervals in between. 

Abbreviations used are MID for mid-period, EOP for end-of-period, and BOP for beginning of period. Prediction ages whose transition 

probabilities are not estimated are placed in brackets. 

 

Two important points from the above should be remembered: 
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• What one specifies as model ages are prediction ages. They need to be distinguished from transition ages. The 

latter are unknown and must be pinned down via an assumption. 

• When defining a model with �̅� ages, only �̅� − 2 ages are relevant for estimating transition probabilities (see 

section 2.1.2). They are not estimated for the base and exit ages: The base age of the model is not a proper 

transition, and the exit age has absorption probabilities of 1. Box 1 shows prediction ages whose transition 

probabilities are not estimated in brackets. 

2.2 NOTATION AND ABBREVIATIONS 

The two different types of results treated in this document, life expectancy and mean age at first entry, are abbreviated 

as LEXP and MAFN, respectively. Each one of LEXP and MAFN results comprise multiple numbers. Lifetime risk, a 

(single) component of MAFN results, is abbreviated as LRSK. These abbreviations are usually used with upper case 

letters in order to make text more legible, but sometimes occur in lower case letters, e.g., in graph labeling. 

The transition timing assumptions beginning-of-period, mid-period, and end-of-period, which were introduced in section 

2.1.4, are sometimes abbreviated as BOP, MID, and EOP, respectively. 

All estimated and derived magnitudes in this document follow the normal distribution asymptotically. For notational 

simplicity, the "hat" notation for estimated magnitudes is suppressed, except for section 2.3. 

Unless otherwise specified, vectors are row vectors. If they are given with a subscript, it denotes the number of columns. 

By contrast, result vectors, like the estimated coefficients of the multinomial logistic estimation, or the vector of state 

expectancies, are column vectors. 

Bar accents indicate matrices that have been summed over the rows and hence are row vectors. A tilde accent indicates 

that a matrix contains a subset of the information of another matrix. Double-dot accents are used for matrices that 

combine information for two or more results. 

The following table lists the mathematical symbols used in this document. It is meant primarily as a reference table, as 

most symbols are explicitly introduced and explained in the text. 

 

Symbol Meaning Size 

𝑎 age index, 𝑎 =  1, . . . , �̅�  

�̅� number of ages in the model  

𝑧𝑎 age corresponding to age index 𝑎  

𝑧1 minimum (baseline) age in model. 𝑧1  is the age of the initial (beginning) state. 

𝑧2 is the age at which the first transition takes place. 

 

𝑧�̅� exact age at which all subjects die if they are still alive  

𝒛, 𝒛−𝟏, 𝒛+𝟏 𝒛 collects the 𝑧𝑎 into a vector; 𝒛−𝟏 denotes 𝒛 exlusive of the last element; 𝒛+𝟏 

denotes 𝒛 exclusive of its first element 

1 × �̅� or 1 × �̅�−1 

�̅�−1, �̅�−2 shorthands for �̅� − 1, �̅� − 2  
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Symbol Meaning Size 

𝑛𝑎 length of age interval starting at age 𝑧𝑎  

𝒏 collects the 𝑛𝑎 into a vector 1 × �̅�−1 

𝑠 state index, 𝑠 = 1,… , �̅�, or 𝑠 = 1,… , �̅�+1  

�̅� number of transient states  

�̅�+1 shorthand for �̅� + 1; all derivations are done for a single absorbing state, so 

�̅�+1 denotes the number of states in the model 

 

𝑖, 𝑗 state indexes used for transitions; 𝑗 refers to the origin state or to the initial 

state; and 𝑖 refers to the destination state 

 

ℎ number of coefficients per mlogit equation  

𝑘 generic index used in different contexts  

𝑷, 𝑝𝑖𝑗 transition matrix among all states (never actually used in this text); elements 

are 𝑝𝑖𝑗 

�̅��̅�−1 + 1 × �̅��̅�−1 + 1 

�̀� matrix that collects the nonzero elements of 𝑷 in a table-like format �̅�−2 × �̅��̅�+1 

𝑼, 𝑝𝑖𝑗  submatrix of 𝑷 consisting of transient states only; since it is a submatrix of 𝑷, 

the elements of 𝑼 are also denoted by 𝑝𝑖𝑗. 

�̅��̅�−1 × �̅��̅�−1 

𝑼𝒂 elements of 𝑼 pertaining to age 𝑎 �̅� × �̅� 

𝓤 collection of the 𝑼𝑎, 𝑎 = 2,… , �̅�−1, in a block row vector �̅� × �̅��̅�−2 

𝑭 fundamental matrix �̅��̅�−1 × �̅��̅�−1 

𝒓, 𝒓+1 time rewards vector for standard time rewards, such as mid-period; 𝒓+1 is 𝒓 

exclusive of its first element 

1 × �̅�−1, 1 × �̅�−2 

𝒈, 𝑔𝑗 𝑔𝑗 is the fraction of population in state 𝑗 at baseline age; 𝒈 collects the 𝑔𝑗 in 

a vector 

1 × �̅� 

𝑰𝑐 identity matrix 𝑐 ×  𝑐 

𝟎, 𝟏 a row vector (one subscript) or matrix (two subscripts) of zeroes or ones. 

Subscripts indicate the size. 

 

𝓚…
… 3-index permutation matrix  

⊗ Kronecker product  

⨀ Hadamard product (elementwise multiplication)  

⊘ elementwise division  
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Symbol Meaning Size 

 

LEXP-related 

𝑭1 first block column of 𝑭, with blocks arranged to a block row vector �̅� × �̅��̅�−1 

𝑬 𝑬 collects the conditional state expectancies in a matrix of state expectancies 

(rows), conditional on the initial state (columns) 

�̅� × �̅� 

𝒆𝑐𝑜𝑛𝑑 vector of remaining life expectancies, conditional on the initial state 𝑗 �̅� × 1 

𝒆𝑠𝑡𝑎𝑡𝑒 vector of state expectancies �̅� × 1 

𝑒 remaining life expectancy at base age 1 × 1 

𝑬𝑓𝑢𝑙𝑙 , 𝒆𝑓𝑢𝑙𝑙 Matrix and vector containing all elements of 𝑬, 𝒆𝑐𝑜𝑛𝑑, 𝒆𝑠𝑡𝑎𝑡𝑒, and 𝑒 �̅�+1 ⊗ �̅�+1,  �̅�+1
2 × 1 

 

MAFN-related 

�̅�𝐴 number of initial and intermediate states  

�̅�𝐵 number of target states  

�̅�𝑖𝑛𝑖 number of initial states  

𝑭𝐵𝐴 𝑼𝒂 matrices divided up and multiplied according to initial and intermediate 

states (𝑨𝑎 matrices) and summed target states (�̅�𝑎 matrices) 

1 × �̅�𝐴�̅�−1 

𝒈𝑖𝑛𝑖 initial proportions vector for MAFN initial states only 1 × �̅�𝑖𝑛𝑖 

𝒈𝑖𝑚 initial proportions vector, modified for MAFN initial and intermediate states 1 × �̅� 

𝒍𝑟𝑎𝑤 probabilities of entering the set of target states, by age �̅�−1 × 1 

𝑙𝑙𝑟𝑠𝑘 lifetime risk 1 × 1 

𝒍𝑛𝑟𝑚 normalized probabilities �̅�−1 × 1 

𝑙𝑚𝑎𝑓𝑛 mean age at first entry 1 × 1 

𝒍𝑓𝑢𝑙𝑙 vectors 𝒍𝑟𝑎𝑤-𝑙𝑚𝑎𝑓𝑛 combined 2�̅�−1 + 2 × 1 

 

Covariance matrices for:  

(the expression in column "Size" applies to both matrix rows and matrix columns) 

𝑽𝑚𝑙 mlogit coefficients �̅�+1ℎ  

𝑽𝑡𝑟  transition probabilities �̅��̅�+1�̅�−2 

�̃�𝑡𝑟 As 𝑽𝑡𝑟, but with information on transitions to the absorbing state removed �̅�2�̅�−2 

𝑽𝐹 vec 𝑭 (�̅��̅�−1)
2 
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Symbol Meaning Size 

𝑽𝐹1 vec 𝑭1 �̅�2�̅�−2 

𝑽𝐸 vec 𝑬 �̅�2 

𝑽𝑐𝑜𝑛𝑑 𝒆𝑐𝑜𝑛𝑑  �̅� 

𝑽𝑠𝑡𝑎𝑡𝑒 𝒆𝑠𝑡𝑎𝑡𝑒  �̅� 

𝑉𝑒 𝑒  1 

𝑽𝑓𝑢𝑙𝑙 In the context of LEXP: joint covariance matrix for conditional state 

expectancies, conditional expectancies, state expectancies, and the overall life 

expectancy 

�̅�2 + 2�̅� + 1 

𝑽𝐹𝐵𝐴  vec 𝑭𝐵𝐴 �̅�𝐴�̅�−1 

𝑽𝑟𝑎𝑤 𝒍𝑟𝑎𝑤  �̅�−1 

𝑉𝑙𝑟𝑠𝑘 𝑙𝑙𝑟𝑠𝑘  1 

𝑽𝑛𝑟𝑚 𝒍𝑛𝑟𝑚  �̅�−1 

𝑉𝑚𝑎𝑓𝑛 𝑙𝑚𝑎𝑓𝑛  1 

𝑽𝑓𝑢𝑙𝑙 In the context of MAFN: joint covariance matrix for raw probabilities, 

lifetime risk, normalized probabilities, and mean age at first entry (i.e., for 

𝒍𝑓𝑢𝑙𝑙) 

2�̅�−1 + 2 

 

Matrices used in the transformation of one covariance matrix into another (delta method) 

𝑮𝑡𝑟 𝑽𝑚𝑙 → 𝑽𝑡𝑟  �̅��̅�+1�̅�−2 × �̅�+1ℎ 

𝑮𝐹1 �̃�𝑡𝑟 → 𝑽𝐹1  �̅�2�̅�−2 × �̅�2�̅�−2 

𝑮𝐹𝐵𝐴  𝑽𝑡𝑟 → 𝑽𝐹𝐵𝐴   �̅��̅�−1 × �̅�−1(�̅�𝐴
2 + �̅�𝐵) 

𝑮𝑛𝑟𝑚 𝑽𝑟𝑎𝑤 → 𝑽𝑛𝑟𝑚  �̅�−1 × �̅�−1 

𝑮𝑓𝑢𝑙𝑙 LEXP: 𝑽𝐸 → 𝑽𝑓𝑢𝑙𝑙  

MAFN: 𝑽𝑟𝑎𝑤 → 𝑽𝑓𝑢𝑙𝑙 

�̅�2 + 2�̅� + 1 × �̅�2 

2�̅�−1 + 2 × �̅�−1 

 

Matrices that hold information for two or more results 

�̈�𝐹𝑋 joint covariance matrix of the elements of any two matrices out of 𝑭1, 𝑭𝐵𝐴 𝑣𝑎𝑟𝑖𝑒𝑠 

�̈�𝑐𝑜𝑚𝑏 joint covariance matrix of the elements of any two matrices out of 𝑬, 𝒍𝑟𝑎𝑤 𝑣𝑎𝑟𝑖𝑒𝑠 

�̈�𝑓𝑢𝑙𝑙 joint covariance matrix of the elements of any two matrices out of   

𝑬𝑓𝑢𝑙𝑙, 𝒍𝑓𝑢𝑙𝑙  

𝑣𝑎𝑟𝑖𝑒𝑠 
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Symbol Meaning Size 

�̈�𝐹𝑋 �̈�𝑡𝑟 → �̈�𝐹𝑋   𝑣𝑎𝑟𝑖𝑒𝑠 

�̈�𝑓𝑢𝑙𝑙 �̈�𝑐𝑜𝑚𝑏 → �̈�𝑓𝑢𝑙𝑙  𝑣𝑎𝑟𝑖𝑒𝑠 

 

Partial age ranges 

𝑏𝑘 age index of beginning age  

𝑒𝑘 age index of ending age  

2.3 ASYMPTOTIC COVARIANCE MATRICES AND THE DELTA-METHOD 

The delta method provides an approximation of the covariance matrix of a nonlinear function of a parameter vector. The 

central results of this paper are based on repeated application of this technique: The distribution of the transition 

probabilities is usually obtained by applying the delta method to the covariance matrix of the regression parameters. The 

distribution of state expectancies (LEXP), in turn, is obtained by applying the delta method to the covariance matrix of 

the transition probabilities. For MAFN results, the delta method is applied even twice: Once for the raw probabilities, 

and once more for the normalized probabilities (see section 5.2).  

The delta method is connected to asymptotic analysis in that it (only) requires asymptotic normality, and in particular, 

consistency, as far as properties of an estimator are concerned. Therefore, derivations take as their point of departure an 

estimator that is root-𝑁 consistent and asymptotically normal. A large variety of standard regression methods possess 

this property, which is established using a law of large numbers and a central limit theorem, under mild assumptions 

concerning the regression error terms. For a parameter vector 𝜷𝑁 whose dependence on the sample size 𝑁 is, for the 

purpose of exposition in this section only, explicitly indicated, this is expressed as 

 √𝑁(�̂�𝑁 − 𝜷) 
𝑑
→  𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝑽∞)  (3) 

where 𝑽∞ is the asymptotic covariance matrix of √𝑁(�̂�𝑁 − 𝜷). Read the d-arrow as "converges in distribution to..." as 

𝑁 goes to infinity. An alternative notation is 𝑎~, which is to be read as "is asymptotically distributed as...". As the sample 

size goes to infinity, the covariance matrix of a consistent estimator of 𝜷 itself goes to zero, of course, but the 

multiplication by the rate of convergence √𝑁 in (3) ensures convergence in distribution.2 For practical purposes, the 

covariance matrix of �̂�𝑁 is then estimated to be �̂�𝛽 =
�̂�∞

𝑁
. Formulas for �̂�𝛽 are available for many regression methods. 

For example, for ordinary linear squares (OLS) regression under the homoskedasticity assumption, �̂�𝛽 = �̂�2(𝑿′𝑿)−1, 

where 𝑿 is the data (regressor) matrix and �̂�2 the standard error of the regression. 

This paper will be concerned with matrices whose elements are estimated from data. The covariance matrix of such a 

matrix is then expressed using the vec operator that stacks the columns of a matrix, so for a generic 𝑚 × 𝑛 matrix 𝑨, the 

covariance matrix 𝑽𝐴 = cov(vec 𝑨) is of size 𝑚𝑛 ×𝑚𝑛. A standard result from normal distribution theory is that if 

vec𝑨 is (exactly) distributed as 𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝑽𝐴), then, for a conformable matrix 𝑮 the linear mapping 𝐆𝐀 is distributed 

 
2 𝑁𝑐(�̂�𝑁 − 𝜷) converges to zero in probability for 0 ≤ 𝑐 < 0.5. 
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as 𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝑮𝑽𝑮′). It can be shown that this result also holds in asymptotic analysis. But what about nonlinear 

mappings? Denote by 𝓖 a (matrix-valued) nonlinear differentiable mapping. If 𝑩 = 𝓖(𝑨), we define 

 𝑮𝐵 =
𝜕 vec 𝓖(𝑨)

𝜕 vec(𝑨)′
  (4) 

The delta method establishes that, if (3) holds for vec �̂�𝑁, (4) leads to 

 √𝑁(vec𝓖(�̂�𝑁) − vec 𝓖(𝑨))
𝑑
→  𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝑮𝐵𝑽∞𝑮𝐵′)  (5) 

To give an example, let 𝑩 = 𝑨2. Since 𝑮𝐵 =
𝜕 vec𝑨2

𝜕 vec(𝑨)′
= 𝑨′ ⊗𝑰+ 𝑰⊗𝑨 (see, for example, Lütkepohl 1996, p.189), 

where 𝑰 denotes the identity matrix, we get √𝑁(vec �̂�2 − vec𝑨2)
𝑑
→𝑁𝑜𝑟𝑚𝑎𝑙(0, (𝑨′ ⊗ 𝑰+ 𝑰⊗ 𝑨)𝑽∞(𝑨′ ⊗𝑰 + 𝑰⊗

𝑨)′). For inference on �̂�, we use �̂�𝐴 =
�̂�∞

𝑁
. For inference on �̂� = 𝓖(�̂�), we use �̂�𝐵�̂�𝐴�̂�𝐵′. We write �̂�𝐵 in "hat" notation 

to emphasize that the derivative is to be evaluated at the parameter estimates. 

The reasoning behind the delta method is based on a Taylor series approximation (or a mean value expansion) and the 

consistency of the estimator. For more information on the delta method, see, for example, section 5.6 of Davidson and 

MacKinnon (2004) or section 3.5 of Wooldridge (2002). 

The notation used in this paper is simplified throughout in that, in addition to the omission of the "hat" notation, the 

explicit dependence of magnitudes on the sample size is suppressed. It is implicit that all arguments are made within an 

asymptotic (not exact) framework. 

2.4 3-INDEX ORDERINGS 

We will encounter more complex (3-index) orderings than in (2) when discussing covariance matrices. In addition to 

being ordered according to the origin or initial state j and destination state i, matrices have a sort order with respect to 

the age index a. The sort order is indicated by an index triplet, with the first index being the slowest moving index and 

the last index being the fastest moving index. For example, a sort order of 𝑎-𝑗-𝑖 indicates a sort order by age, then by 

origin or initial state, and then by destination state. 

Reordering operations will sometimes be necessary, and the below outlines how this can be achieved in mathematical 

formulas. Key ingredient are commutation matrices (see, e.g., Lütkepohl, 2005, p. 662). A commutation matrix converts, 

for an 𝑚 × 𝑛 matrix 𝑨, between vec(𝑨)   and vec(𝑨′): 

 vec(𝑨′) = 𝑲𝑚𝑛 vec(𝑨)  (6) 

𝑲 is a permutation matrix and has the properties 𝑲𝑚𝑛
′ = 𝑲𝑚𝑛

−1 = 𝑲𝑛𝑚, so we also have 

 vec(𝑨) = 𝑲𝑛𝑚 vec(𝑨′)  (7) 

From (6), premultiplying a matrix by 𝑲𝑚𝑛 reorders its rows from sort order 𝑛-𝑚 to 𝑚-𝑛. Taking the transpose, 

 vec(𝑨′)′ = vec(𝑨)′𝑲𝑚𝑛
′ = vec(𝑨)′𝑲𝑛𝑚  (8) 

we see that the same reordering operations on the columns of a matrix are achieved by postmultiplying by the transpose 

of 𝑲𝑚𝑛. 
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Reordering operations can be extended to 3-index orderings. For example, 𝑲𝑎(𝑗 𝑖), which uses the product of two index 

limits, resorts 𝑗-𝑖-𝑎 → 𝑎-𝑗-𝑖. By extension, using 𝑲𝑖(𝑎𝑗 ) and 𝑲𝑗(𝑖𝑎), this implies a full circular set of possible reorderings 

of 𝑗-𝑖-𝑎 → 𝑎-𝑗-𝑖 → 𝑖-𝑎-𝑗 → 𝑗-𝑖-𝑎, so repeated sort operations can switch from any of those orderings to any other. What 

this does not cover, however, are reorderings that leave the left or the right index unchanged, e.g., 𝑗-𝑖-𝑎 → 𝑗-𝑎-𝑖. It is 

easy to see that the required permutation matrix here is 𝑰𝑠̅ ⊗𝑲𝑎𝑖 (�̅� denotes the number of elements over which the 

index 𝑗 runs): 𝑲𝑎𝑖 resorts 𝑖-𝑎 → 𝑎-𝑖, and this is repeated within each level of 𝑗, which yields the desired operation. 𝑗-𝑎-𝑖, 

in turn, then can be reordered 𝑗-𝑎-𝑖 → 𝑖-𝑗-𝑎 → 𝑎-𝑖-𝑗 → 𝑗-𝑎-𝑖 (using 𝑲𝑖(𝑗 𝑎), 𝑲𝑎(𝑖𝑗), and 𝑲𝑗(𝑎𝑖)). We have covered all six 

possible orderings, and again, repeated ordering operations can switch from any of these six orderings to any other. Such 

operations will be summarized by a matrix 𝓚 with a subcript and superscript that indicate the new and original orderings, 

respectively. For example, premultiplication of a matrix by 𝓚𝑖𝑗𝑎
𝑎𝑗𝑖

 reorders the rows of that matrix 𝑎-𝑗-𝑖 → 𝑖-𝑗-𝑎.  

Note that such matrices implicitly assume that the correct index bounds are used. For example, 𝓚𝑖𝑗𝑎
𝑎𝑗𝑖

 may operate on a 

matrix with dimension �̅�+1�̅��̅� or on a matrix with dimension �̅��̅��̅�−2 (where �̅�+1 and �̅�−2 are shorthands for �̅� + 1 and 

�̅� − 2, respectively; see the notation section). It is implicitly assumed that 𝓚𝑖𝑗𝑎
𝑎𝑗𝑖

 has been constructed correctly in each 

case, even if multiplications using differently sized matrices happen in the same formula. 

2.5 EXAMPLE DATA SET AND APPLICATION, BOOTSTRAP, AND REPLICATION CODE 

Several sections in this document compare results based on the new asymptotic derivations to results obtained from the 

simulation of life histories or to bootstrap results. The same data set and the same example application are used 

throughout. They are described in this section. The data set is not a real-world data set, but a simulated one. It is taken 

from the Stata package "dtms" (Schneider, 2023), which is publicly available for download. By using freely available 

data, readers can follow the replication code (see below) more easily and reproduce or modify estimation results more 

easily. 

The simulated data set concerns fictitious annual longitudinal survey data containing life histories with respect to 

cognitive impairment, starting at age 50. It consists of the following variables: 

 id subject ID 

 n subject observation number 

 year survey year 

 age exact age at interview (years, centered at 50) 

 cog3 cognitive impairment, 3-category 

 sex sex, 2-category 

 educ education level, 3-category 

 numdrinks number of alcoholic drinks per week 

The data are used to fit a multinomial logistic regression with cog3 as the dependent variable, which records the four 

states of the multistate model: no/mild/severe impairment (transient states), and dead (absorbing state). The numeric 

encoding of states that is sometimes used is 1-4, in the preceding order of states (1=no impairment through 4=dead). All 

possible transitions from any transient state to any other transient state or to the absorbing state occur in the data. 
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Independent variables are cog3 lagged by 1 period, linear and quadratic age, a full two-way interaction between sex and 

educ, and, without interaction and as a continuous variable, numdrinks. No random or fixed effects are in the model, but 

standard errors are clustered by subject. Using the fitted model, different sets of transition probabilities are predicted at 

fixed values of the independent variables, setting these to either the sample average or to specific categories. Prediction 

ages begin age 50, increase by single age year, and end at age 110. In a last step, the results treated in this paper (LEXP 

and MAFN) are calculated from the transition probabilities. 

The resulting confidence intervals (CIs) are compared to CIs obtained via a nonparametric bootstrap with 500 

replications. Both bootstrap CIs that are based on the implied standard error (SEs) of the coefficients as well as bootstrap 

percentile intervals are presented. 

The calculation of both LEXP and MAFN requires the weighting of numbers that are conditional on the initial state, 

using the initial proportion of states in the sample as weights. For simplicity, this paper applies a fixed proportion of 

initial states (88% without impairment, 10% mildly impaired, 2% severely impaired) that holds true for the overall 

sample also to subgroups (e.g., women). Since derivations in this paper are conditional on the initial proportions and do 

not take into account the uncertainty from estimating them, applying a single fixed proportion to all subgroups does not 

influence the comparison of asymptotic CIs against bootstrap CIs. 

A script that replicates all calculated results this paper accompanies this article and can be accessed under 

https://osf.io/nxeaf. All calculations were performed using the Stata package "dtms" (Schneider, 2023) in Stata 18. 

2.6 CAVEATS 

Covariances as derived in this document are conditional on the initial proportions vector 𝒈. This is a shortcoming, since 

initial proportions are oftentimes estimated from the data. For large samples, however, 𝒈 is estimated precisely, so 

ignoring its variation should lead to a negligible bias only. As a further caveat, in the derivations below, covariances are 

conditional on fixed, non-stochastic time rewards. This includes the standard transition timing cases beginning-of-

period, mid-period, and end-of-period. 

All formulas are developed for a single absorbing state but this is inconsequential for the statistics in this paper. When 

estimating state expectancies, which concern transient states only, the multiple absorbing states can just be lumped into 

a single one at the regression stage. When estimating mean age at first entry, the difference between transient and 

absorbing states does not matter, since one can specify either transient states or the absorbing state as the target state 

(see section 5). 

3 TRANSITION PROBABILITIES 

As was mentioned in the introduction, this section illustrates just one out of many ways of how transition probabilities 

and their covariance matrix can be obtained. It uses known formulas for multinomial logistic regression. They are shown 

here explicitly in order to give a comprehensive account of relevant calculations for all steps of the process, but could 

be replaced by formulas for a different regression method, for example. 

Given an �̅�+1ℎ × 1 estimated multinomial logistic coefficient vector 𝜷𝑚𝑙, the transition probabilites are calculated as: 

 𝑝𝑗1𝑎 = Pr(𝑖 = 1|�̅�𝑗𝑎) =
1

1 + ∑ exp(�̅�𝑗𝑎𝜷𝑖
𝑚𝑙)𝑠̅+1

𝑖=2

 (9) 

https://osf.io/nxeaf
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 𝑝𝑗𝑠𝑎 = Pr(𝑖 = 𝑠|�̅�𝑗𝑎) =  
exp(�̅�𝑗𝑎𝜷𝑠

𝑚𝑙)

1 + ∑ exp(�̅�𝑗𝑎𝜷𝑖
𝑚𝑙)𝑠̅+1

𝑖=2

 (10) 

where 𝑝𝑗𝑖𝑎 is the transition probability from state 𝑗 to state 𝑖 at age 𝑎 and �̅�𝑗𝑎 contains the appropriate prediction values 

for origin state and age and the means of the other covariates. The above assumes, without loss of generality, that 𝑠 = 1 

is the base outcome. 

The covariance matrix of the transition probabilities is calculated according to the delta method. We define (according 

the ji-convention) 𝒑𝑗𝑖 = (𝑝𝑗𝑖2…𝑝𝑗𝑖�̅�−1  )
′
, and the �̅�−2 × �̅��̅�+1 matrix  

 �̀� = [𝒑11…𝒑1𝑠+̅1  …  𝒑𝑠̅1…𝒑𝑠̅𝑠+̅1] (11) 

Since 𝜷𝑚𝑙 is asymptotically normally distributed with associated asymptotic covariance matrix 𝑽𝑚𝑙 and since �̀� =

𝓖(𝜷𝑚𝑙)  is a differentiable mapping of 𝜷𝑚𝑙, we obtain the asymptotic covariance matrix for vec(�̀�), denoted by 𝑽𝑡𝑟, as 

 𝑽𝑡𝑟 = 𝑮𝑡𝑟𝑽𝑚𝑙𝑮𝑡𝑟′ (12) 

using 

 𝑮𝑡𝑟 =
𝜕 vec �̀�

𝜕𝜷𝑚𝑙′
 (13) 

The derivation of 𝑮𝑡𝑟 uses the quotient rule for derivatives, which for the scalar case reads 

𝜕 (
𝑢(𝑥)
𝑣(𝑥)

)

𝜕𝑥
=
𝑣𝑢′ − 𝑢𝑣′

𝑣2
 

Using �̅� as a shorthand for �̅�𝑗𝑘 and 𝜷𝑖 for 𝜷𝑖
𝑚𝑙, we get for outcome 1: 

𝜕𝑝𝑗1𝑘

𝜕𝜷′
=
(1 + ∑ exp(�̅�𝜷𝑖)

𝑠̅+1
𝑖=2 ) ∗  𝟎𝑠+̅1ℎ  –  1 ∗ [0, exp(�̅�𝜷2) , … , exp(�̅�𝜷𝑠̅+1)]⊗ �̅�

(1 + ∑ exp(�̅�𝜷𝑖)
𝑠̅+1
𝑖=2 )

2  

= −
[0, exp(�̅�𝜷2),… , exp(�̅�𝜷𝑠̅+1)]⊗ �̅�

(1 + ∑ exp(�̅�𝜷𝑖)
𝑠̅+1
𝑖=2 )

2  

The derivative for outcomes 𝑠 > 1 is: 

𝜕𝑝𝑗𝑠𝑘

𝜕𝜷′
=
(1 + ∑ exp(�̅�𝜷𝑖)

𝑠̅+1
𝑖=2 ) exp(�̅�𝜷𝑠)�̅�𝑠 −  exp(�̅�𝜷𝑠)[0, exp(�̅�𝜷2),… , exp(�̅�𝜷𝑠̅+1)]⊗ �̅�

(1 + ∑ exp(�̅�𝜷𝑖)
𝑠̅+1
𝑖=2 )

2  

with �̅�𝑠 being a 1 × �̅�+1ℎ vector that contains �̅� for the entries corresponding to the 𝑠𝑡ℎ equation and is zero otherwise. 

The ordering of elements in 𝑽𝑡𝑟 is as in vec �̀�, i.e., 𝑗-𝑖-𝑎. 𝑽𝑡𝑟 contains covariance information for transitions into the 

absorbing state. For some purposes below, this information needs to be removed to make matrices conformable. To do 

so, we first reorder to 𝑖-𝑗-𝑎, define a cut-off matrix 𝑪 = [𝑰𝑠̅2�̅�−2 𝟎𝑠̅2�̅�−2,𝑠̅�̅�−2] whose purpose it is to remove the last 

�̅��̅�−2 rows of a matrix, and define 

 �̃�𝑡𝑟 = 𝓚𝑗𝑖𝑎
𝑖𝑗𝑎

∗ 𝑪 ∗𝓚𝑖𝑗𝑎
𝑗𝑖𝑎

∗ 𝑽𝑡𝑟 ∗ 𝓚𝑖𝑗𝑎
𝑗𝑖𝑎′

∗ 𝑪′ ∗ 𝓚𝑗𝑖𝑎
𝑖𝑗𝑎′

 (14) 

�̃�𝑡𝑟 has the same ordering as 𝑽𝑡𝑟, but any information on transitions to the absorbing state has been removed. 
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4 LIFE EXPECTANCY 

4.1 POINT ESTIMATES 

First, we can define a fixed "rewards" row vector 𝒓 for regular transition timing schemes, based on the length of age 

intervals (𝑛𝑎): 

 𝒓 = {

[0, 𝑛1, 𝑛2, … , na̅−2 ]

[𝑛1 + 0, 𝑛2 + 𝑛1, … , na̅−1 + na̅−2 ]/2
[𝑛1, 𝑛2, … , na̅−1 ]

  

(beginning-of-period)
(mid-period)
(end-of-period)

 (15) 

The LEXP point estimates are calculated via selected elements of the fundamental matrix 

 𝑭 = (𝑰 − 𝑼)−1 (16) 

where 𝑼 contains the estimated transition probabilities among the transient states and is ordered "stage-within-age" (see 

(1)). F can be written as  

𝑭 = (𝑰 − 𝑼)−1 = ∑𝑼𝑎

�̅�−2

𝑎=0

=

[
 
 
 
 

𝑰 | 𝟎 ⋯ 𝟎 𝟎

𝑼2 | 𝑰 𝟎 𝟎

𝑼3 ⋅ 𝑼2 | 𝑼3 𝟎 𝟎

⋮ | ⋱ ⋮
𝑼�̅�−1 ⋅ … ⋅ 𝑼2 | 𝑼�̅�−1 ⋅ … ⋅ 𝑼3 ⋯ 𝑼�̅�−1 𝑰]

 
 
 
 

 

The elements of the first block column, which in the above equation are separated by a vertical line and highlighted in 

red, are the ones that indicate probabilities of reaching states at later ages, given a particular state at the baseline age. 

These entries are necessary for calculating the life expectancy at the base age, which typically is the quantity of interest. 

Reorder those elements as a block-row vector 

 𝑭1 = [𝑰 𝑼2 𝑼3𝑼2 ⋯ ∏ 𝑼𝑎

2

𝑎=�̅�−1

 ] (17) 

The only thing that needs to be done to obtain life expectancy numbers is to weigh the probabilities of reaching certain 

states according to the length of the age intervals and the transition timing. This is done by 

 𝑬 = 𝑭1(𝒓
′ ⊗𝑰𝑠̅)   (18) 

which results in a �̅� × �̅� matrix. Simple and weighted sums of the elements of 𝑬 lead to conditional expectancies, state 

expectancies, and overall remaining life expectancy: 

 𝒆𝑐𝑜𝑛𝑑 = (𝟏𝑠̅ ∗ 𝑬)
′  (19) 

 𝒆𝑠𝑡𝑎𝑡𝑒 = 𝑬 ∗ 𝒈′  (20) 

 𝑒 = 𝟏𝑠̅ ∗ 𝒆
𝑠𝑡𝑎𝑡𝑒 (21) 

It suggests itself to present the point estimates in a �̅�+1 × �̅�+1 matrix 

 𝑬𝑓𝑢𝑙𝑙 = [
𝑬 𝒆𝑠𝑡𝑎𝑡𝑒

𝒆𝑐𝑜𝑛𝑑
′

𝑒
] (22) 
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since the last row and last column of that matrix are the sum (rows) and weighted sum (columns) of the preceding rows 

and columns, respectively. For the purpose of this document, however, sometimes a slightly different ordering is needed 

than the vectorization of the above matrix, we define a column vector of length �̅�2 + 2�̅� + 1 = �̅�+1
2 : 

 𝒆𝑓𝑢𝑙𝑙 = [

vec 𝑬
𝒆𝑐𝑜𝑛𝑑

𝒆𝑠𝑡𝑎𝑡𝑒

𝑒

] (23) 

For an alternative exposition of the above, see section 1.1.2 of the appendix of Schneider, Myrskylä and van Raalte 

(2023). 

4.2 COVARIANCE MATRICES 

To obtain LEXP standard errors, a naïve approach would first calculate 𝑽𝐹, the full covariance matrix of all elements of 

𝑭. Which, as the appendix section 10.1 shows, is 

 𝑽𝐹 = (𝑭′ ⊗𝑭)𝑽𝑈(𝑭′ ⊗𝑭)′ (24) 

One problem with this approach is that in section 3 we have calculated 𝑽𝑡𝑟, which is the covariance matrix of the nonzero 

elements of 𝑼. 𝑽𝑈 could be obtained by reordering elements and inserting rows and columns of zeroes into 𝑽𝑡𝑟. 

However, there is a second, more serious problem: The size of these matrices grows so fast that for plausible real-world 

model setups, computation would be infeasible. 

A better approach therefore is to only calculate the covariance matrix for the elements of 𝑭 that are needed for life 

expectancy at the base age, that is, for the elements contained in 𝑭1. We redefine it slightly as 

 𝑭1 = [𝑼2 𝑼3𝑼2 ⋯ ∏ 𝑼𝑎

2

𝑎=�̅�−1

 ] = [𝒇2 𝒇3 ⋯ 𝒇�̅�−1] (25) 

where we have removed the first block element of (17), the identity matrix, which does not contribute to stochastic 

variation. We have also introduced 𝒇𝑎 as a shorthand for the matrix products of the 𝑼𝑎. 

Our goal is to apply the delta method for 𝑭1 = 𝒈(�̀�) in order to obtain 

 𝑽𝐹1 = 𝑮𝐹1�̃�𝑡𝑟𝑮𝐹1
′
 (26) 

The elements of �̀� that 𝑭1 contains are 

𝓤 = [𝑼2 𝑼3 ⋯ 𝑼�̅�−1] 

so we seek 

𝑮𝐹1 = (…)
𝜕 vec 𝑭1
𝜕 vec(𝓤)′

(… )′ 

where the ellipses indicate potential reordering operations, which remain to be made more precise. Recall the matrix 

derivative result that for generic matrices 𝑿, 𝒀, 𝒁, if only 𝒀 depends on the vector 𝒄, 

 
𝜕 vec(𝑿𝒀𝒁)

𝜕𝒄′
= (𝒁′ ⊗𝑿)

𝜕 vec𝒀

𝜕𝒄′
   (27) 

(see, e.g., Lütkepohl, 2005, p.668). Applying this result to the above, we get 
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𝜕 vec(𝒇𝑖)

𝜕 vec(𝑼𝑗)
′ =

𝜕 vec(∏ 𝑼𝑎
𝑗+1
𝑎=𝑖 ∗ 𝑼𝑗 ∗ ∏ 𝑼𝑎

2
𝑎=𝑗−1 )

𝜕 vec(𝑼𝑗)
′   

using the convention that the first product term evaluates to 𝑰𝑠̅ for 𝑗 > 𝑖. The below shows the full matrix derivative with 

rows and columns labeled according to the (unvectorized) expression that is being differentiated (row labels) and the 

(unvectorized) arguments of differentiation (column labels): 

 
𝜕 vec𝑭1
𝜕 vec(𝓤)′

=   (28) 

| 𝑼2 𝑼3 𝑼4 … 𝑼�̅�−1

−−−−− + −−−−−− −−−−−−− −−−−−−−−−− −− −−−−−−−−
𝑼2 | 𝑰 ⊗ 𝑰 𝟎 𝟎 ⋯ 𝟎

𝑼3𝑼2 | 𝑰 ⊗𝑼3 𝑼2′ ⊗ 𝑰 𝟎 𝟎

𝑼4𝑼3𝑼2 | 𝑰 ⊗ 𝑼4𝑼3 𝑼2′ ⊗ 𝑼4 (𝑼3𝑼2)
′ ⊗𝑰 𝟎

⋮ | ⋮ ⋮ ⋮ ⋱ ⋮

𝑼�̅�−1 …𝑼2 | 𝑰 ⊗ 𝑼�̅�−1 …𝑼3 𝑼2′ ⊗ 𝑼�̅�−1 …𝑼4 (𝑼3𝑼2)
′ ⊗𝑼�̅�−1 …𝑼5 ⋯ (𝑼�̅�−2 …𝑼2)

′
⊗𝑰

 

 

where identity matrices have dimensions �̅� × �̅� and zero matrices �̅�2 × �̅�2. Reordering elements, we use 

 𝑮𝐹1 = 𝓚𝑗𝑖𝑎
𝑎𝑗𝑖 𝜕 vec 𝑭1

𝜕 vec(𝓤)′
𝓚𝑗𝑖𝑎

𝑎𝑗𝑖′
   (29) 

to calculate 𝑽𝐹1 in (26). We obtain the covariance matrix of conditional state expectancies by applying linear 

combinations to the appropriate matrix blocks 

 𝑽𝐸 = (𝑰𝑠̅2 ⊗𝒓+1)𝑽
𝐹1(𝑰�̅�2 ⊗𝒓+1)

′ (30) 

where 𝒓+1 is the vector 𝒓 as defined in (15) exclusive of its first element. This element is omitted since conditional 

expectancies assume a particular initial state, which therefore does not contribute to stochastic variation. The covariances 

of conditional expectancies, state expectancies, and the total life expectancy, which are simple linear combinations, are 

 𝑽𝑐𝑜𝑛𝑑 = (𝑰𝑠̅ ⊗𝟏𝑠̅)𝑽
𝐸(𝑰�̅� ⊗𝟏𝑠̅)

′ (31) 

 𝑽𝑠𝑡𝑎𝑡𝑒 = (𝒈⊗ 𝑰𝑠̅)𝑽
𝐸(𝒈⊗ 𝑰𝑠̅)

′ (32) 

 𝑉𝑒 = (𝒈⊗ 𝟏𝑠̅)𝑽
𝐸(𝒈⊗ 𝟏𝑠̅)

′ (33) 

The combined singular covariance matrix of rank �̅�2 that corresponds to (23) is obtained by simply performing all of the 

above calculations in a single step via 

 𝑽𝑓𝑢𝑙𝑙 = 𝑮𝑓𝑢𝑙𝑙𝑽𝐸𝑮𝑓𝑢𝑙𝑙′  (34) 

using the full linear combination vector 

 𝑮𝑓𝑢𝑙𝑙 = [

𝑰𝑠̅2

𝑰𝑠̅ ⊗𝟏𝑠̅
𝒈⊗ 𝑰𝑠̅
𝒈⊗ 𝟏𝑠̅

] (35) 
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4.3 COMPARISON TO BOOTSTRAP RESULTS 

The cognitive impairment example with three transient states (see section 2.5) is used for a comparison of asymptotic 

CIs for LEXP results, calculated according to the derivations from the previous section, with CIs from a nonparametric 

bootstrap with 500 replications. The comparison is presented in Figure 1, which is divided into four subgraphs. The four 

plot triplets of each subgraph correspond to one row of matrix (19); that is, the order of the 16 plot triplets, from left to 

right over the full graph, i.e., across subgraph headings (outcome states) and subgraph categorical axes (initial states), 

in terms of equation (19), is vec[𝑬𝑓𝑢𝑙𝑙′] (note the transpose). This particular ordering and layout of the graph puts all 

points in a subgraph on roughly the same scale, which facilitates the visual assessment of the agreement of asymptotic 

and bootstrap CIs. 

Two types of bootstrap CIs are shown. The first one is based on the standard errors of coefficient estimates, calculated 

over all replications. The second one is a percentile interval spanning the 2.5th and 97.5th percentiles of the coefficient 

distribution over all replications. All point estimates depicted are asymptotic ones, including the ones that are used as 

the midpoint for bootstrap CIs.3 All of the estimated magnitudes have asymptotic CIs that are very close to their bootstrap 

counterparts. 

Figure 1: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

State and Overall Life Expectancies 

 

Notes: Subgraphs 1-3 show state expectancies, by initial state (categorical axis: none, mild, or severe) and weighted using initial state proportions. 

The rightmost subgraph shows conditional life expectancies, by initial state and weighted using initial state proportions. The four plot triplets of 

each subgraph correspond to one row of matrix (22); that is, the order of the 16 plot triplets, from left to right over the full graph, i.e., across 

subgraph headings (outcome states) and subgraph categorical axes (initial states), in terms of equation (22), is vec(𝑬𝑓𝑢𝑙𝑙′) (note the transpose). 

Blue dots and whiskers show 95% asymptotic confidence intervals based on the derivations in this article. Red diamonds and whiskers depict 95% 

confidence intervals based on the standard errors obtained from 500 bootstrap samples; and green squares and whiskers show 95% bootstrap 

percentile intervals. Each point estimate triplet uses a single value: the asymptotic one. 

 
3 For a comparison between asymptotic and bootstrap CIs where the bootstrap point estimates are not taken to be the asymptotic 

ones, see Table 1 in section 6.6. 
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5 LIFETIME RISK AND MEAN AGE AT FIRST ENTRY 

The particular mechanism of mean age at first entry (MAFN) implemented here assumes three different types of states: 

An initial set of states, an optional intermediate one, and a set of target states. If an intermediate set of states is specified, 

subjects can move back and forth between initial and intermediate states any number of times (including zero). What is 

of interest is the first transition to the set of target states. The set of target states can be comprised of any mixture of 

transient states and/or the absorbing state. 

5.1 POINT ESTIMATES 

Denote the number of initial and intermediate states by �̅�𝐴 and the number of target states by �̅�𝐵. Let the �̅�𝐴 × �̅�𝐴 matrix 

𝑨𝑎 denote the age 𝑎 transitions among the initial and intermediate states only. Let the �̅�𝐵 × �̅�𝐴 matrix 𝑩𝑎 denote the age 

𝑎 transitions from the initial and intermediate states to the target states. The 1 × �̅�𝐴 matrix �̅�𝑎 is 𝑩𝑎 summed over the 

rows (�̅�𝑎 = 𝟏𝑠�̅� ∗ 𝑩𝑎). It is helpful to assume, as the following does, that the order among initial and intermediate states 

in the 𝑨𝑎 (columns and rows) and �̅�𝑎 (columns) is such that the initial states come first, followed by intermediate states 

(if any are specified). Define 

 𝑭𝐵𝐴 = [�̅�2 �̅�3𝑨2 �̅�4𝑨3𝑨2 ⋯ �̅��̅� ∏ 𝑨𝑎

2

𝑎=�̅�−1

 ] = [𝒇2 𝒇3 ⋯ 𝒇�̅�] (36) 

where we have redefined the 𝒇𝑎, which are now of dimension 1 × �̅�𝐴. They contain the probabilities, conditional on the 

initial state, of moving into the set of target states at ages 2,… , �̅�, given that subjects can only move through initial and 

intermediate states before arriving at a target state. 

We define as 𝒈𝑖𝑚 the initial proportions vector, ordered such that initial states come first and rescaled, if necessary, to 

sum to one: 

𝒈𝑖𝑚 = [𝒈𝑖𝑛𝑖 𝟎𝑠�̅�𝑒𝑑
]  (𝟏𝑠�̅�𝑛𝑖⁄ ∗ 𝒈𝑖𝑛𝑖) 

where 𝒈𝑖𝑛𝑖 contain the original initial proportions of the initial states and �̅�𝑖𝑛𝑖 and �̅�𝑚𝑒𝑑 are the number of initial and 

intermediate states, respectively. Then the age-specific "raw" probabilities of moving to any one of the target states is 

 𝒍𝑟𝑎𝑤 = (𝑰�̅�−1 ⊗𝒈𝑖𝑚)𝑭𝐵𝐴
′   (37) 

Summing over all elements gives the lifetime risk:  

 𝑙𝑟𝑠𝑘 = 𝟏�̅�−1 ∗ 𝒍
𝑟𝑎𝑤  (38) 

Normalized probabilities, which sum to one, are 

 𝒍𝑛𝑟𝑚 =
𝒍𝑟𝑎𝑤

𝑙𝑟𝑠𝑘
 (39) 

Mean age at first entry (conditional on ever moving to a target state) is a weighted sum of the normalized probabilities, 

using as weights the transition ages: 

 𝑙𝑚𝑎𝑓𝑛 = (𝒛−1 + 𝒏) ∗ 𝒍𝑛𝑟𝑚  (40) 

The above is the formula applicable to end-of-period transitions. For beginning-of-period transitions, replace 𝒏 by 𝟎. 

For mid-period transitions, replace 𝒏 by 𝒏 ⁄ 2. Finally, the full vector of results is 
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 𝒍𝑓𝑢𝑙𝑙 = [

𝒍𝑟𝑎𝑤

𝑙𝑙𝑟𝑠𝑘

𝒍𝑛𝑟𝑚

𝑙𝑚𝑎𝑓𝑛

] (41) 

5.2 COVARIANCE MATRICES 

Calculations resemble to some extent those in section 4.2. For calculating 

 𝑽𝐹𝐵𝐴 = 𝑮𝐹𝐵𝐴�̆�𝑡𝑟𝑮𝐹𝐵𝐴
′
 (42) 

we again use the result on matrix differentiation from section 4.2. The difference now is that we have to additionally 

differentiate with respect to the �̅�𝑎. When differentiating with respect to the 𝑨𝑎, we get 

 𝑮𝐴
𝐹𝐵𝐴 = (43) 

| 𝑨2 𝑨3 𝑨4 ⋯ 𝑨�̅�−2 𝑨�̅�−1

− −− − −− + − −− − − −− − − − −− − −− − − − − −− − −− − − −− − − − −− − − −− − −− −− − −− − −−
�̅�2 | 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎

�̅�3𝑨2 | 𝑰 ⊗ �̅�3 𝟎 𝟎 𝟎 𝟎

�̅�4𝑨3𝑨2 | 𝑰 ⊗ �̅�4𝑨3 𝑨2′ ⊗ �̅�4 𝟎 𝟎 𝟎

�̅�4𝑨4𝑨3𝑨2 | 𝑰 ⊗ �̅�5𝑨4𝑨3 𝑨2′ ⊗ �̅�5𝑨4 (𝑨3𝑨2)
′ ⊗ �̅�5 𝟎 𝟎

⋮ | ⋮ ⋮ ⋮ ⋱ ⋮

�̅��̅�−1𝑨�̅�−2 …𝑨2 | 𝑰 ⊗ �̅��̅�−1𝑨�̅�−2 …𝑨3 𝑨2′ ⊗ �̅��̅�−1𝑨�̅�−2 …𝑨4 (𝑨3𝑨2)
′ ⊗ �̅��̅�−1𝑨�̅�−2 …𝑨5 ⋯ (𝑨�̅�−3…𝑨2)

′
⊗ �̅��̅�−1 𝟎

�̅��̅�𝑨�̅�−1 …𝑨2 | 𝑰 ⊗ �̅��̅�𝑨�̅�−1 …𝑨3 𝑨2′ ⊗ �̅��̅�𝑨�̅�−1 …𝑨4 (𝑨3𝑨2)
′ ⊗ �̅��̅�𝑨�̅�−1 …𝑨5 (𝑨�̅�−3 …𝑨2)

′
⊗ �̅��̅�𝑨�̅�−1 (𝑨�̅�−2 …𝑨2)

′
⊗ �̅��̅�

 

where identity matrices are of dimension �̅�𝐴 × �̅�𝐴 and zero matrices of dimension �̅�𝐴 × �̅�𝐴
2. Differentiating with respect 

to �̅�𝑎 yields 

 𝑮𝐵
𝐹𝐵𝐴 = (44) 

| �̅�2 �̅�3 �̅�4 … �̅��̅�−1 �̅��̅�

−− − −− + − −− − −− − − −− − − − −− − −− − −− − − − − − − −− − −− − −− − −−
�̅�2 | 𝑰𝑠�̅� 𝟎 𝟎 𝟎 𝟎

�̅�3𝑨2 | 𝟎 𝑨2′ 𝟎 𝟎 𝟎

�̅�4𝑨3𝑨2 | 𝟎 𝟎 (𝑨3𝑨2)
′ 𝟎 𝟎

⋮ | ⋮ ⋮ ⋮ ⋱ ⋮

�̅��̅�−1𝑨�̅�−2 …𝑨2 | 𝟎 𝟎 𝟎 ⋯ (𝑨�̅�−2…𝑨2)
′

𝟎

�̅��̅�𝑨�̅�−1 …𝑨2 | 𝟎 𝟎 𝟎 𝟎 (𝑨�̅�−1 …𝑨2)
′

 

The expressions in 𝑮𝐵
𝐹𝐵𝐴  do not have Kronecker products because the identity matrix that forms part of them is just the 

scalar one. We then have  

 𝑮𝐹𝐵𝐴 = [𝑮𝐴
𝐹𝐵𝐴 𝑮𝐵

𝐹𝐵𝐴] (45) 

�̆�𝑡𝑟 in (42) is slightly different from 𝑽𝑡𝑟 originally defined in (12). The latter matrix is ordered 𝑗-𝑖-𝑎. The central 

derivative in the derivation of the LEXP covariances in section 4.2, 𝑮𝐹1 (see (29)), was reordered accordingly. The same 

procedure is insufficient for (45) because we have divided up the states of the model (represented by matrices 𝑼𝑎 in 

section 4.2) into transitions among initial and intermediate states (matrices 𝑨𝑎) and transitions into target states (matrices 

𝑩𝑎). We therefore have to divide up 𝑽𝑡𝑟 in an analogous fashion. The order of the rows and columns of 𝑽𝑡𝑟 must, in a 

first block, follow 𝑎-𝑗-𝑖, where both 𝑗 and 𝑖 run over the initial and intermediate states; followed by an ordering of 𝑎-𝑗-𝑖, 

where 𝑗 runs over the target states and 𝑖 over the initial and intermediate states. Moreover, for that second part of the 
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ordering, elements have to be summed over 𝑗 (the target states). This last step accounts for the conversion of the 𝑩𝑎 

matrices to �̅�𝑎. For simplicity, we denote by �̆�𝑡𝑟 the matrix that embodies the above transformations but do not show 

corresponding transformation formulas explicitly. 

The raw probabilities 𝒍𝑟𝑎𝑤 defined in (37) have the covariance matrix 

 𝑽𝑟𝑎𝑤 = (𝑰�̅�−1 ⊗𝒈𝑖𝑚)𝑽𝐹𝐵𝐴(𝑰�̅�−1 ⊗𝒈𝑖𝑚)
′
   

In order to derive the covariances of the normalized probabilities (39), we have to apply the delta method again. We 

have 

 𝑽𝑛𝑟𝑚 = 𝑮𝑛𝑟𝑚𝑽𝑟𝑎𝑤𝑮𝑛𝑟𝑚
′
   

and, recalling (39),  

 
𝑮𝑛𝑟𝑚 =

𝜕𝒍𝑛𝑟𝑚

𝜕𝒍𝑟𝑎𝑤′ =
(𝟏�̅�−1 ∗ 𝒍

𝑟𝑎𝑤 ∗ 𝑰�̅�−1 − 𝒍𝑟𝑎𝑤 ∗ 𝟏�̅�−1)

(𝟏�̅�−1 ∗ 𝒍
𝑟𝑎𝑤)

2  (46) 

or, in explicit notation, 

 

𝑮𝑛𝑟𝑚 = (

∑𝑙𝑎−1 − 𝑙1 −𝑙1 ⋯ −𝑙1
−𝑙2 ∑𝑙𝑎−1 − 𝑙2 −𝑙2
⋮ ⋱ ⋮

−𝑙𝑎−1 −𝑙𝑎−1 ⋯ ∑𝑙𝑎−1 − 𝑙𝑎−1

)×
1

(∑𝑙𝑎−1)
2
 (47) 

where 𝑙𝑎−1 denotes the (𝑎 − 1)𝑡ℎ element of 𝒍𝑟𝑎𝑤 and sums are taken over 𝑎 = 2,… , �̅�.4 Remember from (40) that the 

mean age at first entry is calculated as a linear combination of the transition ages and normalized probabilities, which is 

the last piece of information necessary to write the covariance matrices of raw probabilities, lifetime risk, normalized 

probabilities, and mean age at first entry as 

 𝑽𝑟𝑎𝑤 = (𝑰�̅�−1 ⊗𝒈𝑖𝑚)𝑽𝐹𝐵𝐴(𝑰�̅�−1 ⊗𝒈𝑖𝑚)
′
 (48) 

 𝑉𝑙𝑟𝑠𝑘 = 𝟏�̅�−1𝑽
𝑟𝑎𝑤𝟏�̅�−1

′  (49) 

 𝑽𝑛𝑟𝑚 = 𝑮𝑛𝑟𝑚𝑽𝑟𝑎𝑤𝑮𝑛𝑟𝑚′
 (50) 

 𝑉𝑚𝑎𝑓𝑛 = (𝒛−1 + 𝒏)𝑽𝑛𝑟𝑚(𝒛−1 + 𝒏)′ (51) 

Accordingly, the combined singular covariance matrix of rank �̅�−1 that corresponds to (41) is calculated as 

 𝑽𝑓𝑢𝑙𝑙 = 𝑮𝑓𝑢𝑙𝑙𝑽𝑟𝑎𝑤𝑮𝑓𝑢𝑙𝑙′  (52) 

using the full linear combination vector 

 
4 The indexing used may seem a little awkward but is required by the correct usage of the age index 𝑎. Timing and age 

conventions used are such that 𝑎 = 1 corresponds to 𝑧1, the baseline age, which has a zero probability of moving to the target state 

since, by assumption, the subject is in one of the initial states. At the other end of the age range, at age 𝑧�̅�, the probability of 

moving to the target state may be nonzero. This is because the target states are allowed to include the absorbing state, which, again 

by assumption, is transitioned to at age 𝑧�̅� if the subject is still alive. Consequently, 𝒍𝑟𝑎𝑤 has �̅� − 1 elements and the sum starts at 

𝑎 = 2. 
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 𝑮𝑓𝑢𝑙𝑙 =

[
 
 
 

𝑰�̅�−1
𝟏�̅�−1
𝑮𝑛𝑟𝑚

(𝒛−1 + 𝒏)𝑮𝑛𝑟𝑚]
 
 
 
 (53) 

5.3 COMPARISON TO BOOTSTRAP RESULTS 

In order to check the quality of the asymptotic approximations, we use MAFN estimates from the cognitive impairment 

regression where we specify the initial state(s) as unimpaired, the intermediate state(s) as mildly impaired, and the target 

state(s) as severely impaired. The visual comparison of the resulting asymptotic CIs versus bootstrap CIs is divided into 

two parts. Figure 2 shows results for lifetime risk (left-hand subgraph) and its component probabilities (right-hand 

subgraph); and Figure 3 for mean age at first entry and its component probabilities. Both figures show discrepancies 

between asymptotic and bootstrap results that are larger than for LEXP. However, discrepancies are still relatively small. 

Figure 2: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Lifetime Risk and Raw Age-Specific Probabilities 

 

Notes: The left-hand graph shows lifetime risk, which is the simple sum of raw (unmodified) age-specific probabilities of moving to the set of 

target states. These are shown on the right-hand graph. Marker symbols, capped lines, and colors are as in Figure 1. 
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Figure 3: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Mean Age at First Entry and Normalized Age-Specific Probabilities 

 

Notes: The left-hand graph shows mean age at first entry, which is the age-weighted sum of the normalized age-specific probabilities of moving 

to the set of target states. These are shown on the right-hand graph. Marker symbols, capped lines, and colors are as in Figure 1. 

6 GROUP COMPARISONS 

In this section, a double-dot accent is used for all matrices that contain information for two or more groups. 

6.1 TRANSITION PROBABILITIES 

When inferentially comparing two groups, the first step is to generate a joint covariance matrix of the transition 

probabilities. This is easily achieved by using (14) with 

 �̈�𝑡𝑟 = [
𝑮1
𝑡𝑟

𝑮2
𝑡𝑟] (54) 

to get 

 �̈�𝑡𝑟 = �̈�𝑡𝑟𝑽𝑚𝑙�̈�𝑡𝑟′ (55) 

𝑮1
𝑡𝑟 is as in (13) with �̀� being replaced by �̀�1, the table of transition probabilities for group 1; and likewise, for 𝑮2

𝑡𝑟. 

In the following, it is assumed that �̈�𝑡𝑟 correctly contains (e.g., MAFN) or correctly does not contain (e.g., LEXP) 

information for transitions to the absorbing state, depending on the context. See the discussion surrounding (14). 
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6.2 LIFE EXPECTANCY 

The combined (joint) covariance matrix for life expectancy is then calculated by the familiar formula (26): 

 �̈�𝐹1 = �̈�𝐹1�̈�𝑡𝑟�̈�𝐹1
′
  (56) 

but with 

 �̈�𝐹1 = [
𝑮1
𝐹1 𝟎

𝟎 𝑮2
𝐹1
] (57) 

The group-specific matrices 𝑮1
𝐹1 and 𝑮2

𝐹1 are each calculated as in (28)-(29). The combined covariance matrix 

corresponding to (30) is 

 �̈�𝐸 = [
𝑰𝑠̅2 ⊗𝒓+1,1 𝟎

𝟎 𝑰𝑠̅2 ⊗𝒓+1,2
] �̈�𝐹1 [

𝑰𝑠̅2 ⊗𝒓+1,1 𝟎

𝟎 𝑰𝑠̅2 ⊗𝒓+1,2
]
′

 (58) 

where 𝒓+1,1 and 𝒓+1,2 denote transition timing vectors as defined in section 4.1 for group 1 and group 2, respectively. 

The full joint covariance matrix corresponding to (34) is 

 �̈�𝑓𝑢𝑙𝑙 = �̈�𝑓𝑢𝑙𝑙�̈�𝐸�̈�𝑓𝑢𝑙𝑙′ (59) 

with 

 �̈�𝑓𝑢𝑙𝑙 = [
𝑮1
𝑓𝑢𝑙𝑙

𝟎

𝟎 𝑮2
𝑓𝑢𝑙𝑙

] (60) 

In the construction of 𝑮1
𝑓𝑢𝑙𝑙

 and 𝑮2
𝑓𝑢𝑙𝑙

, see (35), the group-specific initial proportions 𝒈1 and 𝒈2 have been used. 

6.3 MEAN AGE AT FIRST ENTRY 

In analogy to the calculations in the previous subsection, we extend the single-group formula (42) to 

 �̈�𝐹𝐵𝐴 = �̈�𝐹𝐵𝐴�̈�𝑡𝑟�̈�𝐹𝐵𝐴
′
 (61) 

by defining �̈�𝐹𝐵𝐴  as 

�̈�𝐹𝐵𝐴 = [
𝑮1
𝐹𝐵𝐴 𝟎

𝟎 𝑮2
𝐹𝐵𝐴

] 

𝑮1
𝐹𝐵𝐴  and 𝑮2

𝐹𝐵𝐴  consist of (43)-(45) calculated for groups 1 and 2, respectively. �̈�𝑡𝑟 must have been reordered for (61) 

within groups as described in section 5.2. The full joint covariance matrix corresponding to (52) is 

 �̈�𝑓𝑢𝑙𝑙 = �̈�𝑓𝑢𝑙𝑙�̈�𝑟𝑎𝑤�̈�𝑓𝑢𝑙𝑙′  (62) 

In (62), equation (48) is expanded for group comparison as 

 �̈�𝑟𝑎𝑤 = [
𝑰�̅�−1 ⊗𝒈1

𝑖𝑚 𝟎

𝟎 𝑰�̅�−1 ⊗𝒈2
𝑖𝑚
] �̈�𝐹𝐵𝐴 [

𝑰�̅�−1 ⊗𝒈1
𝑖𝑚 𝟎

𝟎 𝑰�̅�−1 ⊗𝒈2
𝑖𝑚
]

′

 (63) 

Moreover, we now have 
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�̈�𝑓𝑢𝑙𝑙 = [
𝑮1
𝑓𝑢𝑙𝑙

𝟎

𝟎 𝑮2
𝑓𝑢𝑙𝑙

] 

where 𝑮1
𝑓𝑢𝑙𝑙

 and 𝑮2
𝑓𝑢𝑙𝑙

 are constructed as in (53) using the group-specific matrices 𝑮1
𝑛𝑟𝑚 and 𝑮2

𝑛𝑟𝑚 (see (46)) as well as 

group-specific transition ages (𝒛−1 + 𝒏1) and (𝒛−1 + 𝒏2). 

6.4 COMBINING DIFFERENT TYPES OF RESULTS 

A combined covariance matrix can be constructed for any mixture of results. For example, one can combine life 

expectancy and mean age at first entry – potential complications of reordering MAFN-related matrices aside – simply 

by writing the formulas of the previous subsections as 

�̈�𝐹𝑋 = [
𝑮1
𝐹1 𝟎

𝟎 𝑮2
𝐹𝐵𝐴

] 

�̈�𝐹𝑋 = �̈�𝐹𝑋�̈�𝑡𝑟�̈�𝐹𝑋
′
 

�̈�𝑐𝑜𝑚𝑏 = [
𝑰𝑠̅2 ⊗𝒓+1,1 𝟎

𝟎 𝑰�̅�−1 ⊗𝒈2
𝑖𝑚] �̈�

𝐹𝑋 [
𝑰𝑠̅2 ⊗𝒓+1,1 𝟎

𝟎 𝑰�̅�−1 ⊗𝒈2
𝑖𝑚]

′

 

�̈�𝑓𝑢𝑙𝑙 = [
𝑮1
𝑓𝑢𝑙𝑙

𝟎

𝟎 𝑮2
𝑓𝑢𝑙𝑙

] 

�̈�𝑓𝑢𝑙𝑙 = �̈�𝑓𝑢𝑙𝑙�̈�𝑐𝑜𝑚𝑏�̈�𝑓𝑢𝑙𝑙′ 

where �̈�𝑐𝑜𝑚𝑏 is the covariance matrix of combined/mixed result types. A subscript of 1 in this instance refers to an 

expression pertaining to life expectancy and a subscript of 2 to an expression for mean age at first entry. 

6.5 N-GROUP COMPARISONS 

The formulas in sections 6.1-6.4 are for comparisons of two groups. They generalize to N-group comparisons in the 

obvious way. 

6.6 COMPARISON TO BOOTSTRAP RESULTS 

As one example for group comparisons, Figure 4 shows asymptotic CIs and their bootstrap counterparts for the 

difference between two sets of LEXP estimates using expectancies from the cognitive impairment example. A first 

LEXP result is based on predicted transition probabilities for women, and a second one for men. The statistical difference 

between the two is based on the joint covariance matrix covering both sets of estimates. The figure shows that 

discrepancies between the asymptotic and bootstrap CIs are generally very small. 
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Figure 4: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results:  

Sex Difference (Women minus Men) in State and Overall Life Expectancies 

 

Notes: Points depicted show the sex difference in state and overall life expectancies, calculated as the expectancies of women minus the 

expectancies of men. Otherwise notes from Figure 1 apply. 

In a second illustration, we highlight a particular useful concept that the combination of LEXP and MAFN results holds: 

The division of LEXP estimates by lifetime risk (the latter is part of MAFN estimates). To see the practical value of this 

operation, consider the state expectancy of severe impairment. This is the expected life time in severe impairment for 

the average subject – and the “average” includes those subjects that never actually get severely impaired. Dividing this 

number by the lifetime risk of severe impairment one obtains the expected lifetime spent in severe impairment by those 

subjects who actually ever enter that state during their lifetimes, which undoubtedly is a number of interest. By building 

a joint covariance matrix of LEXP and MAFN estimates, one can immediately obtain asymptotic CIs for this division 

of LEXP results components by MAFN results components. Below, we perform this division for subjects that are 

assumed to be unimpaired at the base age, i.e., we divide the state expectancy of severe impairment, conditional on being 

healthy at the base age, by the lifetime risk numbers from section 5.3. 

The transformation that we examine below, however, has a second aspect: We illustrate a more complex transformation 

that involves more than two sets of results. In principle, the number of results that can enter the joint covariance matrix 

is unlimited and only constrained by computation time. Here we divide the state expectancy of severe impairment by 

the lifetime risk of becoming severely impaired separately for women and men, and then calculate the difference between 

the resulting numbers. This involves a total of four results sets (LEXP and MAFN, separately for women and men). A 

joint covariance matrix for a larger set of results (12 results) is presented in section 8. 

The upper section of Table 1 below lists point estimates and asymptotic CIs for all steps of this transformation. Healthy 

women and men at the base age have a severe state expectancy of 0.906 and 0.622, respectively, which yields a difference 

of 0.284, which is slightly under the 95% significance threshold. The lifetime risk of severe impairment of these 

subgroups is 0.316 and 0.246, respectively. When dividing these numbers separately for each group, we obtain 

impairment expectancies, conditional of becoming impaired, of 2.864 and 2.527 for women and men, respectively, the 
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difference of which is 0.336. This difference is, contrary to the difference of the impairment expectancy that is not 

conditional on becoming impaired, significant at the 95% level. 

The second section of Table 1 shows the same set of bootstrap point estimates and CIs. Here bootstrap point estimates 

are the averages across all replications, and CIs are based on the bootstrap standard error of the coefficients. The second 

section also shows the relative difference to corresponding asymptotic numbers, whose low values confirm, at a glance, 

a high degree of agreement between asymptotic and bootstrap numbers. Finally, the third section of Table 1 is similar 

to section two, except that point estimates are the median of coefficients over all bootstrap replications, and CIs are 

based on their 2.5th and 97.5th percentiles. The level of agreement with asymptotic numbers is very similar to that of 

section two of the table. 

Table 1: Point Estimates, Asymptotic and Bootstrap 95% Confidence Intervals for Severe State Expectancy, 

Lifetime Risk for Severe Impairment, the Ratio of the Two, and the Difference of Ratios 

 Women Men Difference 

 
Point 

estimate 

95% CI 
Point 

estimate 

95% CI 
Point 

estimate 

95% CI 

 

lower 

bound 

upper 

bound 

lower 

bound 

upper 

bound 

lower 

bound 

upper 

bound 

Asymptotic 

LEXP 0.906 [ 0.701 1.110 ] 0.622 [ 0.430 0.814 ] 0.284 [ 0.002 0.565 ] 

LRSK 0.316 [ 0.274 0.359 ] 0.246 [ 0.204 0.289 ] 0.070 [ 0.012 0.128 ] 

LEXP / LRSK 2.864 [ 2.491 3.236 ] 2.527 [ 2.102 2.952 ] 0.336 [ -0.141 0.814 ] 

Bootstrap, SE-based 

LEXP 0.887 [ 0.677 1.096 ] 0.608 [ 0.416 0.800 ] 0.279 [ -0.007 0.564 ] 

LRSK 0.313 [ 0.268 0.359 ] 0.243 [ 0.199 0.287 ] 0.070 [ 0.009 0.131 ] 

LEXP / LRSK 2.822 [ 2.456 3.187 ] 2.486 [ 2.062 2.910 ] 0.336 [ -0.141 0.812 ] 

Relative difference to asymptotic results 

LEXP 0.010 [ 0.014 0.007 ] 0.009 [ 0.010 0.008 ] 0.004 [ 0.009 0.000 ] 

LRSK 0.002 [ 0.004 0.000 ] 0.002 [ 0.004 0.001 ] 0.000 [ 0.003 0.003 ] 

LEXP / LRSK 0.011 [ 0.010 0.012 ] 0.012 [ 0.013 0.011 ] 0.000 [ 0.000 0.001 ] 
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 Women Men Difference 

Bootstrap, percentile 

LEXP 0.888 [ 0.693 1.103 ] 0.604 [ 0.419 0.806 ] 0.276 [ -0.018 0.555 ] 

LRSK 0.313 [ 0.268 0.361 ] 0.244 [ 0.199 0.287 ] 0.070 [ 0.009 0.133 ] 

LEXP / LRSK 2.824 [ 2.471 3.196 ] 2.485 [ 2.053 2.942 ] 0.340 [ -0.141 0.782 ] 

Relative difference to asymptotic results 

LEXP 0.009 [ 0.005 0.003 ] 0.011 [ 0.008 0.004 ] 0.006 [ 0.020 0.006 ] 

LRSK 0.002 [ 0.005 0.001 ] 0.001 [ 0.004 0.002 ] 0.000 [ 0.004 0.004 ] 

LEXP / LRSK 0.010 [ 0.006 0.010 ] 0.012 [ 0.016 0.002 ] 0.003 [ 0.000 0.018 ] 

Notes: Comparison of asymptotic and bootstrap point estimates and 95% CIs for a set of four results (LEXP, separately for women and men, and 

MAFN, of which LRSK is a component result, separately for women and men). and linear and nonlinear transformation of them. The section 

labeled “Bootstrap, SE-based” holds point estimates based on the average of coefficients, calculated over all bootstrap replications, and 95% CIs 

are based on 1.96 times the bootstrap standard error of coefficients. The table section labeled “Bootstrap, percentile” has point estimates that are 

the medians of the bootstrapped coefficients, along with 95% percentile intervals. Note that the bootstrap sections of the table employ slightly 

different calculations than the figures in this document with respect to the point estimates, where point estimates that are depicted are asymptotic 

ones in all cases. Table rows labeled LEXP hold numbers for the severe impairment expectancy, conditional on no impairment at base age. Rows 

labeled LRSK hold the corresponding lifetime risk. Rows labeled LEXP / LRSK show the ratio of the two. The subsections that show relative 

difference numbers employ the relative difference formula |𝑎 − 𝑏| (|𝑏| + 1)⁄ , where a and b are the values from the asymptotic and bootstrap 

sections, respectively. 

 

7 PARTIAL AGE RANGES 

A partial age range is defined by two ages 𝑧𝑏 and 𝑧𝑒, called the beginning age and ending age, with 𝑏, 𝑒 ∈ [1, . . . , �̅�] and 

𝑧𝑏 < 𝑧𝑒. We call a pair of age ranges disjunct if 𝑒1 ≤ 𝑏2 (note the weak inequality), where the subscript indexes the age 

range. 

7.1 LIFE EXPECTANCY 

Formulas for life expectancy apply unchanged. The partial age range is solely introduced via a redefinition of the rewards 

vector (15): The partial age range rewards vector 𝒓𝑏,𝑒 resets 𝑛𝑎 = 0 if 𝑧𝑎 < 𝑧𝑏 or if 𝑧𝑎 ≥ 𝑧𝑒, and is equal to 𝒓 otherwise. 

We call an age partition a set of 𝑘 disjunct age ranges for which it holds that ∑ 𝒓𝑏𝑘𝑒𝑘𝑘 = 𝒓. Note that superscripts indicate 

age range information and not powers. 

It shall be shown in the following that adding results of any two age ranges 𝒓𝑏1𝑒1 and 𝒓𝑏2𝑒2  is equivalent to specifying 

these age ranges in a single time rewards vector 𝒓𝑏1𝑒1 + 𝒓𝑏2𝑒2. Without loss of generality, we show this for two adjacent 

age ranges for which 𝑒1 = 𝑏2, so that 𝒓𝑏1𝑒1 + 𝒓𝑏2𝑒2 = 𝒓𝑏1𝑒2. By implication, adding the results (i.e., forming a simple 

additive linear combination) of all age ranges of an age partition is then equivalent to the result calculated in one step 

on the full age range, both in terms of point estimates and in terms of covariance matrices. 

For the point estimates (18), the above statement can be immediately deduced: 
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𝑬𝑏1𝑒1 + 𝑬𝑏2𝑒2 = 𝑭1(𝒓
𝑏1𝑒1

′
⊗ 𝑰𝑠̅) + 𝑭1(𝒓

𝑏2𝑒2
′
⊗ 𝑰𝑠̅)

= 𝑭1 ((𝒓
𝑏1𝑒1

′
+ 𝒓𝑏2𝑒2

′
)⊗ 𝑰𝑠̅)

= 𝑭1(𝒓
𝑏1𝑒2

′
⊗ 𝑰𝑠̅)

= 𝑬𝑏1𝑒2

  (64) 

Noting that the two age range results are based on the same 𝑽𝐹1, recalling (58), and using the shorthand 

�̌�+1
𝑏1𝑒1 = 𝑰𝑠̅2 ⊗𝒓+1

𝑏1𝑒1 and likewise for the second age range, we see that applying a simple additive linear combination 

to the joint covariance matrix of 𝑬𝑏1𝑒1 and 𝑬𝑏2𝑒2 yields 

 

[𝑰𝑠̅2 𝑰𝑠̅2]cov(vec[𝑬𝑏1𝑒1 𝑬𝑏2𝑒2]) [
𝑰𝑠̅2

𝑰𝑠̅2
]

= [𝑰𝑠̅2 𝑰𝑠̅2] [
�̌�+1
𝑏1𝑒1 𝟎

𝟎 �̌�+1
𝑏2𝑒2

] (𝟏2,2 ⊗𝑽𝐹1) [
�̌�+1
𝑏1𝑒1 𝟎

𝟎 �̌�+1
𝑏2𝑒2

]

′

[
𝑰𝑠̅2

𝑰𝑠̅2
]

= [�̌�+1
𝑏1𝑒1 �̌�+1

𝑏2𝑒2](𝟏2,2 ⊗𝑽𝐹1)[�̌�+1
𝑏1𝑒1 �̌�+1

𝑏2𝑒2]
′

= �̌�+1
𝑏1𝑒1𝑽𝐹1�̌�+1

𝑏1𝑒1
′
+ �̌�+1

𝑏2𝑒2𝑽𝐹1�̌�+1
𝑏1𝑒1

′
+ �̌�+1

𝑏1𝑒1𝑽𝐹1�̌�+1
𝑏2𝑒2

′
+ �̌�+1

𝑏2𝑒2𝑽𝐹1�̌�+1
𝑏2𝑒2

′

= [�̌�+1
𝑏1𝑒1 + �̌�+1

𝑏2𝑒2]𝑽𝐹1[�̌�+1
𝑏1𝑒1 + �̌�+1

𝑏2𝑒2]
′

= �̌�+1
𝑏1𝑒2𝑽𝐹1�̌�+1

𝑏1𝑒2
′

= cov(vec𝑬𝑏1𝑒2)

 (65) 

7.2 COMBINING PARTIAL AGE RANGE RESULTS 

Partial age range results can be combined with other results in the usual way. The formulas of section 5.3 apply 

unchanged, with 𝒓𝑏,𝑒 taking the place of 𝒓 whenever appropriate. 

7.3 COMPARISON TO BOOTSTRAP RESULTS 

Similar to Figure 1, Figure 5 shows state and overall life expectancies from the cognitive impairment example. The 

major difference is that Figure 5 shows numbers for the partial age range of 70-80. The agreement of asymptotic and 

bootstrap CIs is again very high. 
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Figure 5: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

State and Overall Life Expectancies, Partial Age Range 70-80, Women 

 
Notes: Points depicted show state and overall life expectancies for women and the partial age range 70-80. Otherwise notes from Figure 1 apply. 

8 COMPLEX NONLINEAR COMBINATIONS AND JOINT HYPOTHESIS 

TESTS 

This section draws upon results from sections 4, 6, and 7 and illustrates the possibility of asymptotic calculations of CIs 

for complex linear and nonlinear combinations based on many sets of results. The prerequisite for this is the calculation 

of a joint covariance matrix that covers all sets of results, as developed earlier. 

We again use the cognitive impairment example. The starting point are state expectancy predictions for 10-year partial 

age ranges, separately for women and men. The six partial age ranges form a partition of the full age range 50-110. We 

then transform, separately for each partial age range and for women and men, the severe impairment expectancy into 

the percentage of lifetime in severe impairment by dividing by the total life expectancy. Next, separately for women and 

men, we calculate the percentage point increase in severe impairment expectancy by age decade. Finally, for each age 

range, we deduct the result for women from that for men. This procedure answers the following question: What are the 

age decades during which women's share of life spent in severe impairment increases particularly strongly in comparison 

to men? While this example may be seen as a little contrived, it illustrates the possibilities that the calculation of joint 

covariance matrices across any type and number of results holds. Figure 6 compares the results based on analytical 

calculations (subgraph on the left) to bootstrap results (middle and right subgraphs). The only slightly visible differences 

appear at the very highest age range (100-110), where data scarcity leads to imprecision of estimation. 
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Figure 6: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Complex Linear and Nonlinear Combinations Using Partial Age Ranges 

 

Notes: Each subgraphs shows sex differences (women minus men) for the percentage point increase, by age decade, in the fraction of time spent 

in severe impairment. Age decades are depicted on the horizontal axis. They are to be read as intervals [a, b), i.e., with a strong inequality on the 

right boundary. 

The resulting CIs can be used to assess significance of individual transformations (individual age ranges). It is also 

possible to use the joint asymptotic covariance matrix for a joint test of several hypotheses. For example, one can ask 

whether all point estimates in (the left subgraph of) Figure 6 are zero. Visual inspection would suggest a positive answer. 

A corresponding asymptotic Wald test yields a 𝒳2(5) statistic of 10.3 with associated p-value of 0.067, which would 

reject the hypothesis at the 10% level. This can be compared to the SE-based bootstrap results using the covariance 

matrix of coefficients calculated over the coefficient estimates of all bootstrap replications. A Wald test based on this 

covariance matrix yields a 𝒳2(5) statistic of 8.08 with associated p-value of 0.152. This is an instance where asymptotic 

and bootstrap results diverge and lead to different conclusions. The source of this difference remains to be investigated. 
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10  APPENDIX 

10.1 NAÏVE APPROACH OF CALCULATING 𝑽𝑭 

Equation (24) in section 4.2 gave an expression for the covariance matrix of the full fundamental matrix. This section 

derives this expression. 

Since 𝑭 = 𝒈(𝑼), see (16), the delta method tells us that, asymptotically, 

𝑽𝐹 = 𝑮𝐹𝑽𝑈𝑮𝐹
′
 

with 

𝑮𝐹 =
𝜕 vec 𝑭

𝜕 vec(𝑼)′
=
𝜕 vec((𝑰 − 𝑼)−𝟏)

𝜕 vec(𝑼)′
=
𝜕 vec((𝑰 − 𝑼)−𝟏)

𝜕 vec((𝑰 − 𝑼))′
∗
𝜕 vec((𝑰 − 𝑼))

𝜕 vec(𝑼)′
 

Noting that that, for any invertible matrix 𝒁, 

𝜕 vec(𝒁−1)

𝜕 vec(𝒁)′
= −𝒁−1

′
⊗𝒁−1 

(see, e.g., Lütkepohl, 2005, p.668), the first term resolves to 

𝜕 vec((𝑰 − 𝑼)−𝟏)

𝜕 vec((𝑰 − 𝑼))′
= −(𝑰 − 𝑼)−1

′
⊗ (𝑰 − 𝑼)−1 = −𝑭′ ⊗𝑭 

Since the second term is simply 

𝜕 vec((𝑰 − 𝑼))

𝜕 vec(𝑼)′
= −𝑰(�̅��̅�−1)𝟐 

we get 

𝑮𝐹 = 𝑭′ ⊗𝑭 

and 

𝑽𝐹 = (𝑭′ ⊗𝑭)𝑽𝑈(𝑭′ ⊗𝑭)′ 
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