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Abstract 

Markov Chains with rewards (MCWR) have been shown to be a useful modelling extension to discrete-time multistate 

models (DTMS). In this paper, we substantially improve and extend the possibilities that MCWR holds for DTMS. We 

make several contributions. First, we develop a system of creating and naming different rewards schemes, so-called 

"standard rewards". While some of these schemes are of interest in their own right, several new possibilities emerge 

when dividing one rewards result by another, the result of which we call "composite rewards". In total, we can define at 

least ten new useful outcome statistics based on MCWR that have not yet been used in the literature. Secondly, we derive 

expressions for asymptotic covariance matrices that are applicable for any standard rewards definition. Thirdly, we show 

how joint covariance matrices of two or more rewards results can be obtained, which leads to expressions for covariance 

matrices of composite rewards. Lastly, expressions for point estimates and covariance matrices of partial age ranges are 

derived. We confirm correctness of results by comparisons to simulation-based results (point estimates) and by 

comparisons to bootstrap-based results (covariance matrices). 
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1 INTRODUCTION 

In the context of the increased popularity of discrete-time multistate models (DMTS), Markov Chains with rewards 

(MCWR), originally developed by Howard (1960), have recently been used to extend the set of outcome statistics that 

DTMS estimation provides. Schneider, Myrskylä, and van Raalte (2023) use MCWR to fine-tune transition timing. 

Caswell and van Daalen (2021) provide a mathematically succinct and comprehensive account of using MCWR for the 

purpose of calculating health expectancies and related statistics. Dudel and Myrskylä (2020) show how MCWR can be 

used to calculate the number of episodes (e.g., disease episodes) and their mean duration. 

Despite these developments, MCWR in the context of DTMS is a technique that still contains a lot of unused potential. 

Since Schneider (2023b) has presented asymptotic formulas for regular DTMS estimation, the question arises whether 

similar formulas can be derived for MCWR. This would obviate the need for time-consuming bootstrap procedures to 

which all of the aforementioned papers have to resort for practical inference. Secondly, a systematic exploration of the 

kinds of statistics that MCWR can provide has not yet been undertaken. Among the contributions of this paper is a 

treatment of both of these points. 

The systematic exploration of MCWR undertaken here is focused on outcome statistics that are independent of the 

research question, i.e., do not require any specific information that is only available for a particular research project. The 

"rewards" that are then available are counts, ages, and durations, all of which are essentially determined by the basic 

setup (age grid) of the model. We develop a system of rewards definitions that we call "standard rewards". An example 

is the entry count as developed by Dudel and Myrskylä (2020), or, as a variation thereof, the decomposition of entry 

counts by the corresponding exit counts. While some standard rewards, as these examples show, can have a useful 

interpretation, much more can be gained by combining results from different standard rewards calculations. We call 

outcome statistics that are based on the arithmetic joining of two or more standard rewards "composite rewards". For 

the scope of this paper, this is confined to dividing one rewards result by another. To give an example, dividing results 

from a standard rewards definition using transition ages by the results of a standard rewards definition that counts entries 

yields the outcome of "mean age at all entries". In total, we develop at least ten standard or composite rewards outcome 

measures that are new and that have a useful interpretation. 

This article makes two additional contributions. It takes all of the results developed in Schneider (2023b) and extends 

them to MCWR. Specifically, this includes a) group comparisons of MCWR results via the construction of joint 

covariance matrices of two or more results; and b) partial age ranges. As a consequence, all results based on MCWR 

can be used in the same flexible ways as the results from Schneider (2023b). 

2 PRELIMINARY REMARKS AND NOTATION 

2.1 REFERENCE PAPER 

This article firmly builds on Schneider (2023b). Everything stated in the preliminary remarks section there equally 

applies to this article. The reader is strongly encouraged to first get familiar with the material of that article. Since it is 

so fundamental for following notation and derivations in the present article, it is referred to as the BASE paper. Sections, 

equations, and figures of that paper are prefixed by "B". For example, section B-4.1 points to section 4.1, equation 

(B-53) to equation (53), and Figure B-3 to Figure 3, all in Schneider (2023b). 
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2.2 NOTATION AND ABBREVIATIONS 

All of the notation and abbreviations of the BASE paper are used in this paper too. The BASE paper abbreviates its two 

different types of results, life expectancy and mean age at first entry, as LEXP and MAFN, respectively. This paper 

abbreviates results based on the rewards methodology as REWD. There are many different types of REWD results. They 

are all given 4-6 letter lower case abbreviations and are enumerated in later sections. To make the text more legible, they 

are enclosed in single quotes. 

This article defines the following mathematical symbols in addition to the ones used in the BASE paper: 

 

Symbol Meaning Size 

REWD-related 

𝑭𝑅 , 𝑬𝑅 , … All LEXP-related notation is reused and augmented or modified by an 𝑹 

subscript 

 

𝑹𝑎
𝑠 , �̃�𝑎

𝑠 , �̃�𝑎
𝑠  𝑹𝑎

𝑠  contains rewards towards state 𝑠 at age 𝑎; 

�̃�𝑎
𝑠  is exclusive of rewards to the absorbing state;  

�̃�𝑎
𝑠  are the rewards to the absorbing state 

�̅�+1 × �̅� 

�̅� × �̅� 

1 × �̅� 

�̅�𝑎
𝑠  rewards towards state 𝑠 at age 𝑎, elementwise multiplied by transition 

probabilities and summed 

1 × �̅� 

𝑹𝑠 contains all �̃�𝑎
𝑠  and �̃�𝑎

𝑠 , conformably arranged w.r.t. 𝑷 �̅��̅�−1 + 1 × �̅��̅�−1 + 1 

 

Covariance matrices for:  

(the expression in column "Size" applies to both matrix rows and matrix columns) 

𝑽𝐹𝑅 , 𝑽𝐸𝑅 , … as matrices 𝑽𝐹-𝑉𝑒, but for rewards-based results 𝑣𝑎𝑟𝑖𝑒𝑠 

𝑽𝑓𝑢𝑙𝑙 In the context of LEXP: combined covariance matrix for conditional state 

expectancies, conditional expectancies, state expectancies, and the overall life 

expectancy; and analogously for REWD results 

�̅�2 + 2�̅� + 1 

 

Matrices used in the transformation of one covariance matrix into another (delta method) 

𝑮𝐹𝑅  �̃�𝑡𝑟 → 𝑽𝐹𝑅   �̅�2�̅�−1 × �̅�
2�̅�−2 

𝑮𝑓𝑢𝑙𝑙 REWD: 𝑽𝐸𝑅 → 𝑽𝑓𝑢𝑙𝑙 �̅�2 + 2�̅� + 1 × �̅�2 

 

Matrices that hold information for two or more results 

�̈�𝐹𝑋 joint covariance matrix of the elements of any two matrices out of 𝑭1, 𝑭𝑅 , 𝑭𝐵𝐴 𝑣𝑎𝑟𝑖𝑒𝑠 

�̈�𝑐𝑜𝑚𝑏 joint covariance matrix of the elements of any two matrices out of 𝑬, 𝑬𝑅 , 𝒍
𝑟𝑎𝑤 𝑣𝑎𝑟𝑖𝑒𝑠 
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Symbol Meaning Size 

�̈�𝑓𝑢𝑙𝑙 joint covariance matrix of the elements of any two matrices out of   

𝑬𝑓𝑢𝑙𝑙, 𝑬𝑅
𝑓𝑢𝑙𝑙

, 𝒍𝑓𝑢𝑙𝑙  

𝑣𝑎𝑟𝑖𝑒𝑠 

�̈�𝐹𝑋 �̈�𝑡𝑟 → �̈�𝐹𝑋   𝑣𝑎𝑟𝑖𝑒𝑠 

�̈�𝑓𝑢𝑙𝑙 �̈�𝑐𝑜𝑚𝑏 → �̈�𝑓𝑢𝑙𝑙  𝑣𝑎𝑟𝑖𝑒𝑠 

𝑽𝑐𝑝𝑠 covariance matrix for composite rewards result �̅�+1
2 × �̅�+1

2  

𝑮𝑐𝑝𝑠 REWD: �̈�𝑓𝑢𝑙𝑙 → 𝑽𝑐𝑝𝑠 �̅�+1
2 × 2�̅�+1

2  

2.3 EXAMPLE DATA SET AND APPLICATION, BOOTSTRAP, AND REPLICATION CODE 

This paper uses the same data set on cognitive impairment, the same multistate regression model, and the same bootstrap 

procedure as the BASE paper; see section B-2.5 for a description. In particular, the cognitive impairment multistate 

example from the BASE paper will be used here too. This model features three transient states (no, mild, and severe 

impairment), one absorbing state (death), and single-year ages ranging from 50 to 110. To ease exposition in early 

sections of this paper, the model is reduced to two transient states only (no impairment and any impairment) and to age 

intervals of length 10. Counting only transient states, we will refer to these two different model setups as the 2-state 

model and the 3-state model. A constant for the entirety of the paper is that there is always a single absorbing state. As 

in the BASE paper, a fixed initial proportion of states (88% without impairment, 10% mildly impaired, 2% severely 

impaired) that applies to the overall sample is also used for subgroups. This is inconsequential for the comparison of 

asymptotic CIs against bootstrap CIs. 

A joint replication script that covers both papers is publicly available at https://osf.io/nxeaf. All calculations were 

performed using the Stata package "dtms" (Schneider, 2023a) in Stata 18. 

2.4 CAVEATS 

All of the caveats mentioned in the BASE paper also apply to this paper. Among them is the confinement of formulas 

to models with a single absorbing state. While this is of no relevance for the outcome statistics of the BASE paper, it 

does matter for some of the new rewards definitions. For example, the reward that is called 'stab' (state at absorption) 

could be defined in broader terms if more than one absorbing state were incorporated into the formulas. This shortcoming 

cannot be circumvented easily by redefining some absorbing states as transient states. However, the generalization of 

formulas to more than one absorbing state is straightforward once the concepts of the current paper are understood. 

3 MARKOV CHAINS WITH REWARDS 

3.1 AN ILLUSTRATIVE EXAMPLE 

The idea behind the rewards method is to link probabilities of reaching certain states (as contained in the fundamental 

matrix), conditional on the initial state, with transition probabilities out of that state, where each of these out-transitions 

is assigned a reward. We will base our introduction on the idea of Dudel and Myrskylä (2020) to use MCWR to estimate 

the number of disease episodes and recoveries. Consider an illness-death model with recovery that has two transient 

https://osf.io/nxeaf
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states, which we label as "no impairment" and "impaired", and one absorbing state, death; with state encodings 1, 2, and 

3, respectively. Assume that the model contains ages 𝒛 = [50, 60,… ,100]. The BASE paper defines a matrix �̀� which 

collects transition probabilities in a table-like format. That matrix, filled with example numbers for the model currently 

discussed, is 

�̀� =

𝒑𝟏𝟏 𝒑𝟏𝟐 𝒑𝟏𝟑 𝒑𝟐𝟏 𝒑𝟐𝟐 𝒑𝟐𝟑
−− −− −− −− −− −−

𝟓𝟎 | . . . . . .
𝟔𝟎 | 0.95 0.04 0.01 0.35 0.61 0.04
𝟕𝟎 | 0.93 0.06 0.01 0.25 0.68 0.06
𝟖𝟎 | 0.86 0.10 0.04 0.15 0.74 0.12
𝟗𝟎 | 0.67 0.18 0.16 0.06 0.69 0.25
𝟏𝟎𝟎 | . . 1 . . 1

 

where orange labels indicate the meaning of columns and rows. The subscripts of the transition probabilities are in 𝑗𝑖-

format. A dot in the matrix indicates that the matrix element is never used in any calculations. A corresponding rewards 

definition that counts disease episodes (state 2) is 

�̀�2 =

𝒓𝟏𝟏
𝟐 𝒓𝟏𝟐

𝟐 𝒓𝟏𝟑
𝟐 𝒓𝟐𝟏

𝟐 𝒓𝟐𝟐
𝟐 𝒓𝟐𝟑

𝟐

−− −− −− −− −− −−
𝟓𝟎 | . . . . . .
𝟔𝟎 | 0 1 0 0 0 0
𝟕𝟎 | 0 1 0 0 0 0
𝟖𝟎 | 0 1 0 0 0 0
𝟗𝟎 | 0 1 0 0 0 0
𝟏𝟎𝟎 | . . 0 . . 0

 

The ones in the column labeled 𝒓12
2  count whenever the disease state is entered: For the transition 1 → 2 (subscripts), a 

reward of 1 is assigned to state 2 (superscript). MCWR calculations use the information in �̀� and �̀�2 to calculate the 

number of episodes. We can define a similar rewards matrix that counts the number of recoveries: For the transition 

2 → 1, a reward of 1 is assigned to state 1. 

�̀�1 =

𝒓𝟏𝟏
𝟏 𝒓𝟏𝟐

𝟏 𝒓𝟏𝟑
𝟏 𝒓𝟐𝟏

𝟏 𝒓𝟐𝟐
𝟏 𝒓𝟐𝟑

𝟏

−− −− −− −− −− −−
𝟓𝟎 | . . . . . .
𝟔𝟎 | 0 0 0 1 0 0
𝟕𝟎 | 0 0 0 1 0 0
𝟖𝟎 | 0 0 0 1 0 0
𝟗𝟎 | 0 0 0 1 0 0
𝟏𝟎𝟎 | . . 0 . . 0

 

Before we systematically explore the outcome statistics that can be estimated with different definitions of the rewards 

matrices �̀�𝑠, we state the formulas for the point estimates. 

3.2 POINT ESTIMATES 

Markov chains with rewards are an extension of regular Markov chains, so the following elaborations can be seen as an 

extension of the derivations for life expectancy. The MCWR extension of a Markov chain nests life expectancy 

calculations as a special case. MCWR formulas have been made fruitful and developed further for analyses in ecology 

and demography by Caswell (2011) and van Daalen and Caswell (2017). 
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Derivations are done in the stage-within-age ordering, where the full transition matrix 𝑷 is 

 𝑷 = [
𝑼 𝟎 𝟎
𝒑𝑑 𝟏 1

]  (1) 

where 𝑼 is as defined in (B-1) and 𝒑𝑑 contains the probabilities of dying (getting absorbed) for ages 2,… , �̅�−1 

 𝒑𝑑 = [𝒑𝑑,2 ⋯ 𝒑𝑑,�̅�−1]  (2) 

and, in ij-notation (see section B-2.1.1), 

 𝒑𝑑,𝑎 = [𝑝𝑑1,𝑎 ⋯ 𝑝𝑑𝑠̅,𝑎]  (3) 

The second block column of (1) corresponds to age �̅� at which subjects are assumed to get absorbed. The last block 

column is a single column and corresponds to the absorbing state. We define an age-specific submatrix of 𝑷 

 �̆�𝑎 = [
𝑼𝑎
𝒑𝑑,𝑎

]  (4) 

and a conformably partitioned rewards matrix 

 𝑹𝑎
𝑠 = [

�̃�𝑎
𝑠

�̃�𝑎
𝑠 ]  (5) 

where �̃�𝑎
𝑠  rewards transitions among the transient states and �̃�𝑎

𝑠  rewards transitions to the absorbing state. Rewards are 

with respect to state 𝑠 and at transition age 𝑎. Even though it is not directly relevant for the derivations in this section, it 

is worth noting that the definition of 𝑹𝑎
𝑠  implies a matrix 𝑹𝑠 that includes information for all ages 𝑎 and that mimics the 

structure of 𝑷: 

 𝑹𝑠 =

[
 
 
 
 
 
 
𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎
�̃�2
𝑠 𝟎 𝟎 𝟎 𝟎

0 �̃�3
𝑠 𝟎 𝟎 𝟎

⋮ ⋱ ⋱ ⋮
𝟎 𝟎 ⋯ �̃��̅�−1

𝑠 𝟎 𝟎

�̃�2
𝑠 �̃�3

𝑠 ⋯ �̃��̅�−1
𝑠 �̃��̅�

𝑠 0 ]
 
 
 
 
 
 

  (6) 

Returning to our definition of age-specific matrices, the central concept of an elementwise assignment of rewards to 

transitions and the summation over all out-transitions of a state is embodied in the expression 

 𝟏𝑠̅ ⋅ (�̆�𝑎⨀𝑹𝑎
𝑠 ) = �̅�𝑎

𝑠   (7) 

where we have introduced the symbol �̅�𝑎
𝑠 . As usual, the bar accent indicates summation over the rows, so without it we 

have 𝓡𝑎
𝑠 = �̆�𝑎⨀𝑹𝑎

𝑠 . The idea of linking probabilities of reaching states with rewards for out-transitions from those 

states is captured, in analogy to (B-25), by 

 𝑭𝑅
𝑠 = [�̅�2

𝑠 �̅�3
𝑠𝑼2 ⋯ �̅��̅�

𝑠 ∏ 𝑼𝑎

2

𝑎=�̅�−1

 ] = [𝒇2 𝒇3 ⋯ 𝒇�̅�−1 𝒇�̅�] (8) 

where we have introduced 𝒇𝑎 as a shorthand for the matrix products of the first term in brackets. Note that (8) is a row 

vector since the �̅�𝑎
𝑠  are row vectors. Stacking over all �̅� states, we have 
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 𝑭𝑅 = [
𝑭𝑅
1

⋮
𝑭𝑅
𝑠̅
]  (9) 

Summing up the block columns corresponding to each age then yields the point estimates, for which we use the symbol 

𝑬𝑅 to emphasize the analogy to (B-18): 

 𝑬𝑅 = 𝑭𝑅(𝟏�̅�
′
−1
⊗𝑰𝑠̅)   (10) 

The conditional, state, and overall linear combinations and the composition of all results within a single matrix are then 

done as in (B-19)-(B-23). In particular, we have 

 𝒆𝑅
𝑓𝑢𝑙𝑙

=

[
 
 
 
vec 𝑬𝑅
𝒆𝑅
𝑐𝑜𝑛𝑑

𝒆𝑅
𝑠𝑡𝑎𝑡𝑒

𝑒𝑅 ]
 
 
 

 (11) 

which is best presented by rearranging the elements as  

 𝑬𝑅
𝑓𝑢𝑙𝑙

= [
𝑬𝑅 𝒆𝑅

𝑠𝑡𝑎𝑡𝑒

𝒆𝑅
𝑐𝑜𝑛𝑑′ 𝑒𝑅

] (12) 

For the example model and numbers given in section 3.1, matrix (12) is, displayed as a properly labeled table, 

 

 
initial state 

no imp. any imp. total 

re
w

ar
d
 t

o
: 

no imp. 0.03 0.59 0.10 

any imp. 0.32 0.15 0.30 

total 0.35 0.74 0.40 

 

The results of rewards calculations have the same structure as life expectancy: In the last row and last column of (12) 

contain the sum (rows) and weighted sum (columns) of the preceding rows and columns, respectively (compare B-22). 

For our illness-death example, this means that 𝑬𝑅 is a 2 × 2 matrix, with columns indicating the initial state and rows 

indicating the state that is rewarded. For example, the row 2, column 1 element of 𝑬𝑅 shows the number of disease 

episodes for subjects that were initially healthy. Summing columns over the rows yields total rewards conditional on 

initial state; a weighted sum of rows over columns yields overall state rewards; and a combination of these operations 

gives the grand total. In our case, this grand total of 0.4 is to be interpreted as the expected number of times that a subject 

randomly picked from the initial population changes to a different transient state during its lifetime. 

3.3 A SYSTEM OF REWARDS DEFINITIONS: STANDARD REWARDS 

3.3.1 Formal Definition 

A number of meaningful rewards can be estimated by filling rewards matrices with non-stochastic information that 

pertains to the model setup. Essentially, this relates to transition ages, time durations, or counts. 
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The system of rewards definitions we propose is captured by 4–6-character rewards names that pin down 4 different 

pieces of information. These names are composed of 

 

 
{𝑛|𝑥|𝑢|𝑡|𝑓}⏟      
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡

 +  {𝑐𝑛𝑡|𝑡𝑏𝑡|𝑎𝑡𝑟|𝑎𝑚𝑝|𝑎𝑡𝑡}⏟              
𝑣𝑎𝑙𝑢𝑒 𝑝𝑎𝑟𝑡

 [ +  #  ]⏟    
𝑠𝑡𝑎𝑡𝑒 𝑑𝑒𝑡𝑎𝑖𝑙
𝑛𝑢𝑚𝑏𝑒𝑟

 [ + {𝑖|𝑝|𝑛} ]⏟        
𝑠𝑖𝑔𝑛 𝑝𝑎𝑟𝑡

 
(13) 

 

where terms in curly braces separated by a vertical line represent alternatives and terms in brackets are optional. The 

selection part of a standard reward selects the columns of a rewards matrix �̀�, the value part fills in the values, the state 

detail number optionally requests state detail, and the sign part determines the sign. We call rewards definitions that 

follow this scheme standard rewards. 

The individual abbreviations in (13) mean the following: 

Selection part 

 n  (rewards) entries 

 x (rewards) exits 

 u (rewards) unchanged 

 t total (the union of n, x, u) 

 f full matrix (all columns) 

'n' and 'x' are to be viewed as 'rewards entries' and 'rewards exits'. For example, 𝒓12
2  is a 'rewards entry' because state 2 

is both entered and rewarded; while 𝒓12
1  is not, and neither is 𝒓22

1 . 'u' refers to transitions without change of state, again 

in the "rewards sense" that the rewards number must match the ji-part (𝒓11
1  and 𝒓22

2  qualify, but 𝒓22
1  and 𝒓11

2  do not). 

Columns not matched by the selection part specification are filled with zeroes. 

Value part 

 cnt count (ones) 

 tbt time bound to transition 

 atr age (at) transition 

 amp age (at) mid-point (within entry-interval and/or exit-interval of the transition) 

 att age times time 

'cnt' just fills in ones, negative ones in the case of the standard reward 'xcnt', and a mixture of positive and negative ones 

for 'ncnt#' and 'xcnt#'. 'cnt' is the only value part specification that has no reference to time. All other specifications 

depend on transition timing (for example, mid-period). 'atr' fills in the age at transition, which does not differ across 

non-zero columns. The other specifications need lengthier explanations, which are postponed to the next subsection. 

State (detail) number 

 # state number 
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A state detail number in standard rewards refers to state 𝑠 of the model. A state detail number is only allowed for 

selection parts 'n' and 'x', whose definitions are then modified: When '#' is specified, only the entries (exits) of the state 

# are selected. For the other states, the exits (entries) to state # are selected. To give two examples, 'ncnt#' counts the 

entries for state # and provides detail about the states that subjects came from. 'xcnt#' counts the exits from state # and 

provides detail about the states into which subjects go. Both 'ncnt#' and 'xcnt#' fill in positive and negative ones. Negative 

ones are always used for counts of state exits (see the section on the sign part below). If the value part is not 'cnt', positive 

numbers are used everywhere. 

An important convention is introduced at this point. Whenever a state detail number is present, the formulas for the point 

estimates are modified in that the totals row of 𝑬𝑅
𝑓𝑢𝑙𝑙

 (equation (12)), which normally holds 𝑬𝑅 summed over the rows, 

now simply repeats the row of  𝑬𝑅 that corresponds to the state whose detail is requested. This is because the default 

operation of summing over the rows would identically result in a row of zeroes, which would be unsuitable for the usage 

of these standard rewards as denominators in the construction of composite rewards. Composite rewards will be 

explained in section 3.4. 

Sign part 

 i inverted 

 p all positive 

 n all negative 

By default, numbers are taken to be positive numbers, with the following exceptions: 'x' in combination with 'cnt' (the 

rewards exit count) uses negative numbers; and 'xcnt#' and 'ncnt#', where # is the state detail number, use a mixture of 

positive and negative numbers. Adding an explicit sign part to the standard rewards name changes the default usage of 

signs. 

Additional formal expressions for the above as well as example matrices are provided in appendix section 8.2. 

3.3.2 Explanation of Non-Trivial Value Parts 

The three values parts 'tbt', 'amp', and 'att' of (13) have not yet been explained because they require lengthier elaboration, 

which we turn to now. They are mainly used for the calculation of composite rewards, which are treated further below 

in section 3.4. Example rewards matrices shown in this section are based on two transient states. Appendix section 8.2.2 

shows additional example rewards matrices based on three transient states. 

3.3.2.1 Time-Bound-to-Transition 

The value part 'tbt' records the time-bound-to-transition according to a certain transition timing, and its prime application 

is the standard reward 'ttbt', which is illustrated in the following. Consider the model setup given in section 3.1. If we 

assume mid-period transitions, we have the situation as depicted in scheme MID-SPLIT, section B-2.1.4, Box B-1. It is 

helpful to consult that scheme if statements below are not clear. The corresponding rewards for the example model setup 

and assumption MID-SPLIT are: 
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�̀� = [�̀�1 �̀�2] =

𝒓𝟏𝟏
𝟏 𝒓𝟏𝟐

𝟏 𝒓𝟏𝟑
𝟏 𝒓𝟐𝟏

𝟏 𝒓𝟐𝟐
𝟏 𝒓𝟐𝟑

𝟏 𝒓𝟏𝟏
𝟐 𝒓𝟏𝟐

𝟐 𝒓𝟏𝟑
𝟐 𝒓𝟐𝟏

𝟐 𝒓𝟐𝟐
𝟐 𝒓𝟐𝟑

𝟐

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 10 5 5 5 0 0 0 5 0 5 10 5
𝟕𝟎 | 10 5 5 5 0 0 0 5 0 5 10 5
𝟖𝟎 | 10 5 5 5 0 0 0 5 0 5 10 5
𝟗𝟎 | 10 5 5 5 0 0 0 5 0 5 10 5
𝟏𝟎𝟎 | . . 5 . . 0 . . 0 . . 5

 

The row labels of that matrix record the prediction ages. Under assumption of mid-period transitions the first transition 

takes place between the first two prediction ages, at 55. When staying healthy, this transition is preceded by five healthy 

years and followed by five healthy years. The first element of the first column, labeled 𝒓𝟏𝟏
𝟏 , records the reward for the 

healthy state for that particular transition. It is equal to ten, the total reward of all time that is bound to that transition. 

Since the model has equally spaced age intervals, this value also applies to transitions at later ages (65, 75, …). The 

reward for the impaired state of that transition, 𝒓𝟏𝟏
𝟐 , is zero, since no time preceding the transition nor the time after the 

transition is spent in the impaired state. Impairment incidences are always preceded by five years in the healthy state 

and followed by five years in the impairment state, so we have  𝒓𝟏𝟐
𝟏 = 𝒓𝟏𝟐

𝟐 = 𝟓. Finally, when dying from the healthy 

state, we have 𝒓𝟏𝟑
𝟏 = 𝟓. The rewards for the impaired state are set up according to the same logic. The standard reward 

'ttbt' yields results that are identical to life expectancy calculations. 

3.3.2.2 Age-(at)-Midpoint and Age-Times-Time 

The value part 'amp', whose prime application is the standard reward 'tamp', under the mid-period transition assumption, 

has a rewards matrix of 

�̀� = [�̀�1 �̀�2] =

𝒓𝟏𝟏
𝟏 𝒓𝟏𝟐

𝟏 𝒓𝟏𝟑
𝟏 𝒓𝟐𝟏

𝟏 𝒓𝟐𝟐
𝟏 𝒓𝟐𝟑

𝟏 𝒓𝟏𝟏
𝟐 𝒓𝟏𝟐

𝟐 𝒓𝟏𝟑
𝟐 𝒓𝟐𝟏

𝟐 𝒓𝟐𝟐
𝟐 𝒓𝟐𝟑

𝟐

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 55 52.5 52.5 57.5 0 0 0 57.5 0 52.5 55 52.5
𝟕𝟎 | 65 62.5 62.5 67.5 0 0 0 67.5 0 62.5 65 62.5
𝟖𝟎 | 75 72.5 72.5 77.5 0 0 0 77.5 0 72.5 75 72.5
𝟗𝟎 | 85 82.5 82.5 87.5 0 0 0 87.5 0 82.5 85 82.5
𝟏𝟎𝟎 | . . 92.5 . . 0 . . 0 . . 92.5

 

Consider the first row that contains numbers, with corresponds to the transition at 55. The time-bound-to-transition of 

the element in column 𝒓𝟏𝟏
𝟏  spans the time from 50 to 60, the mid-point of which is 55. The time-bound-to-transition of 

the elements in columns 𝒓𝟏𝟐
𝟏  and 𝒓𝟏𝟑

𝟏  span the time from 50 to 55, so the mid-points are 52.5, Finally, the time-bound-

to-transition of the element in column 𝒓𝟐𝟏
𝟏  spans the time from 55 to 60, so the mid-point is 57.5. The rewards for the 

impaired state are set up according to the same logic. 

'amp' does not have a use of its own, but is used only to calculate the value part age-times-time, 'att', which is the 

elementwise matrix product of the rewards matrices for 'amp' and 'tbt'. Its main use is for the calculation of the composite 

reward 'mais' (mean age in state), which is elementwise calculated as 'tatt' / 'ttbt' (see below). 

3.3.3 Alias Rewards 

It is helpful to define separate names for standard rewards that have a particularly interesting interpretation, but a name 

that is difficult to remember. We make two such definitions here. First, the standard reward 'ncnt' counts the number of 

entries to states. A description that is more suitable for researchers is the "number of episodes", so we use the name 'epis' 
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as a synonym for 'ncnt'. Secondly, 'ncntAp', where 'A' must be substituted by �̅�+1, the number of the absorbing state, is 

the standards rewards name for the entry detail for the absorbing state, with all counts converted to positive numbers. 

The entry detail for the absorbing state shows the origins of those transitions. A more useful description for the 

calculation is "state at absorption." Therefore, we use the name 'stab' as a synonym for 'ncntAp'. The two names 'epis' 

and 'stab' are referred to as alias rewards. 

For the first alias reward, 'epis', a slight adjustment is suggested and followed in this paper: While the standard reward 

'ncnt' does not count the initial state as an "episode", 'epis' does so. The resulting numbers can be obtained by simply 

adding an identity matrix to 𝑬𝑅, which also changes the column and row totals of 𝑬𝑅
𝑓𝑢𝑙𝑙

 (see equations (10) and (12)). 

3.4 COMPOSITE REWARDS 

Many standard rewards are not meaningful by themselves, but gain their usefulness only in conjunction with a second 

standard reward. For example, consider the two standard rewards 'ttbt' and 'ncnt'. The first one is the time-bound-to-

transition, which is equivalent to life expectancy. The second one is the entry (episodes) count. When dividing the former 

elementwise by the latter, the result is the mean duration of episodes, abbreviated in this article as 'mdur'. Another 

example are the two standard rewards 'natrA' and 'ncntAp'. The former provides the state detail for age-at-transition 

numbers for entries to the absorbing state. The latter provides state detail for the entry count to the absorbing state. An 

elementwise division of the former by the latter yields the mean age at absorption, which we abbreviate by 'maab'. 

The following table below lists several definitions of composite rewards. All of them consist of an elementwise division 

of a first set of standard rewards results by a second set of standard rewards results. The elementwise division is 

performed on two matrices, each calculated as in (10) or (12). 

 

Composite 

rewards name Description 

Calculation in terms of 

standard rewards 

mdur mean duration of episodes ttbt / ncnt 

maan mean age, all entries natr / ncnt 

maax mean age, all exits xatr / xcnti 

maan# mean age, all entries, detail for state encoded # natr# / ncnt#p 

maax# mean age, all exits, detail for state encoded # xatr# / xcnt#p 

maab mean age at absorption natrA / ncntAp  

(A=absorbing state) 

mais mean age in state tatt / ttbt 

3.5 SUMMARY OF REWARDS-BASED OUTCOME MEASURES 

The following table lists the outcome measures discussed in the previous sections that have a useful interpretation. It 

can be used as a reference table to look up abbreviations. In subsequent text, these abbreviations will not be explained 

again. 
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Table 1: List of Rewards-Based Outcome Measures 

Standard rewards 

 xcnt exit count 

 ncnt# entry count, detail for state #: breakdown w.r.t. exits to other states 

 xcnt# exit count, detail for state #: breakdown w.r.t. entries from other states 

Alias rewards 

 epis number of episodes 

 stab state at absorption 

Composite rewards 

 mdur mean duration of episodes 

 maan mean age, all entries 

 maax mean age, all exits 

 maan# mean age, all entries, detail for state encoded # 

 maax# mean age, all exits, detail for state encoded # 

 maab mean age at absorption 

 mais mean age in state 

 

In the introduction we claimed to have developed "at least ten" new useful outcome measures. Table 1 lists 12 different 

results, but the rewards 'epis' and 'mdur' had already been developed before (Dudel & Myrskylä, 2020), which reduces 

the count to ten. We say "at least ten", because the system of standard rewards and their usage for the construction of 

composite rewards may contain additional useful definitions. For example, in analogy to the composite rewards 'maan' 

and 'maax', one could define the composite reward 'maau' (mean age, all unchanged states), which has the mean age of 

all transitions where subjects stay in the same state. It can be calculated by dividing the standard reward 'uatr' by the 

standard reward 'ucnt'. We do not see an immediate use for this – but this may depend on the application. Hence the 

wording of "at least ten." 

3.6 INTERPRETATION 

The following elaborations use numbers from the 3-state cognitive impairment example to clarify interpretation of all 

rewards results listed in Table 1. Example numbers will be given in small tables that indicate the type of reward in the 

upper left corner. Each table is then followed by a short verbal explanation of selected numbers. 
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xcnt 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. -1.929 -1.717 -1.201 -1.894 

mild imp. -1.610 -2.483 -1.687 -1.699 

severe imp. -0.336 -0.388 -1.276 -0.360 

total -3.875 -4.588 -4.164 -3.952 

Interpretation: Those initially severely impaired on average leave their current state (change state) 4.164 times, and are 

moving 1.201 times to the unimpaired state, 1.6871 times to state mild and 1.276 times to state severe. On average, a 

subject exits a state and moves to a different state 3.952 times, which includes transitions to the absorbing state. Note 

that exits are by default displayed using negative numbers. Note also that the total number 3.952 corresponds to the total 

number for the alias reward 'epis'. We will remark on that when we look at that reward further below. 

 

ncnt1 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d
 t

o
: 

no imp. 0.929 1.717 1.201 1.014 

mild imp. -0.924 -1.707 -1.136 -1.007 

severe imp. -0.005 -0.009 -0.065 -0.007 

total 0.929 1.717 1.201 1.014 

Interpretation: Those initially severely impaired enter (at any point during their lifetime) the no-impairment state 1.201 

times. That number decomposes into 1.136 transitions from the mildly impaired state and 0.065 transitions from the 

severely impaired state. Note that the totals row simply repeats the row of the state for which detail was requested. If it 

contained the sum of the state rows it would contain zeroes. On average, a subject enters the no-impairment state 1.014 

times. Initial states are not counted as state entries. 

 

xcnt1 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. -1.929 -1.717 -1.201 -1.894 

mild imp. 1.454 1.287 0.896 1.426 

severe imp. 0.008 0.008 0.005 0.008 

total -1.929 -1.717 -1.201 -1.894 

Interpretation: Those initially severely impaired exit the no-impairment state 1.201 times. Of those 0.896 go to the 

mildly impaired state and 0.005 go to the severely impaired state. This is not a proper decomposition since the latter two 

numbers do not add to the first one: The remainder goes to the absorbing state (death). Note how the row 1, columns 2 

and 3 numbers correspond to the numbers of the 'ncnt1' result above. Differences arise in column 'no imp.', where the 
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'xcnt1' number is 1.929, versus 0.929 for 'ncnt1'. It is higher by 1 because it includes the initial state, which is left with 

certainty at absorption. Add to that the 0.929 entries to state 1 which occur after the initial age, which also will lead to 

certain exits at absorption. The column one differences then lead to differences in the initial proportions weighted total 

(-1.894 v. 1.014). 

 

epis 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. 1.929 1.717 1.201 1.894 

mild imp. 1.610 2.483 1.687 1.699 

severe imp. 0.336 0.388 1.276 0.360 

total 3.875 4.588 4.164 3.952 

Interpretation: Counting the initial state, those starting out non-impaired will have on average 1.929 visits to the non-

impaired state. They will enter a transient state that is different from the current one on average 3.875 times, counting 

the initial state as a state entry. Those starting out severely impaired will on average have 1.201 visits to the non-impaired 

state. They will on average enter a transient state 4.164 times, counting the initial state as an entry to severe impairment. 

The average subject will enter a new transient state 3.952 times, again counting the initial state as a state entry. 

Note that the numbers in the 'epis' table are the exact negatives of the ones in the 'xcnt' table. Three remarks need to be 

made about this: 1) The numbers are identical because each entry to a state must have a corresponding exit, at the latest 

when subjects enter the absorbing state. 2) 'epis', by convention, is based on, but not identical to, 'ncnt'. The former 

counts initial states as state entries (episodes), whereas the latter does not. The difference between the two, however, is 

fixed (does not depend on transition probabilities). 3) 'epis' (or 'ncnt') and 'xcnt' are redundant (contain the same 

information) only when estimated over the full age range. In section 5 results for partial age ranges are developed, and 

here 'epis' (or 'ncnt') differs from 'xcnt'. 

 

stab 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. 0.467 0.422 0.300 0.460 

mild imp. 0.358 0.394 0.280 0.360 

severe imp. 0.174 0.183 0.420 0.180 

total 1.000 1.000 1.000 1.000 

Interpretation: On average, 46.0% of subjects die when being healthy, 36.0% when being mildly impaired, and 18.0% 

when being severely impaired. Conditionally on being severely impaired initially, these numbers change to 30.0%, 

28.0%, and 42.0%, respectively. 
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mdur 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. 12.714 12.432 11.943 12.678 

mild imp. 2.381 1.980 2.216 2.319 

severe imp. 2.249 2.207 1.658 2.203 

total 7.514 5.911 4.851 7.272 

Interpretation: Counting the initial state as an episode, the mean duration of no-impairment stays for those starting out 

unimpaired is 12.714 years. Those starting out mildly impaired on average stay in a particular state 5.911 years, taking 

the initial episode of mild impairment into account. On average, a subject stays in a particular state 7.272 years before 

moving to a different (transient or absorbing) state. 

 

maan 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d
 t

o
: 

no imp. 68.804 60.157 61.369 67.164 

mild imp. 70.862 71.031 63.965 70.732 

severe imp. 77.333 72.204 73.046 76.677 

total 70.953 65.954 63.772 70.191 

Interpretation: The average age at which those who start out mildly impaired enter the no-impairment state is 60.157. 

This can be based on any (one or multiple) number of entries into the healthy state, and the entry may occur from the 

mild or severe impairment state. Note that the interpretation is not that the average age of transitions from mild to no 

impairment is 60.157. The average age at which those starting out in the severe impairment state change state is 63.772. 

The average age at which subjects enter an alive state is 70.191. None of this counts the initial age. 

 

maax 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. 71.772 72.589 73.312 71.866 

mild imp. 73.243 64.540 66.181 71.830 

severe imp. 79.582 74.412 56.644 77.398 

total 73.060 68.388 65.316 72.354 

Interpretation: The average age at which those who start out mildly impaired exit the no-impairment state is 72.589. 

This can be based on any (one or multiple) number of exits from the healthy state, and the exits may lead to any of the 

other (transient or absorbing) states. This is important: The interpretation is not that the average age of transitions from 

no impairment to mild impairment is 72.589. The average age at which those starting out in the severe impairment state 
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exit any state is 65.316. The average age at which subjects exit a transient state (to a transient or absorbing state) is 

72.354. None of this counts the initial state and base age. 

 

maan1 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. 68.804 60.157 61.369 67.164 

mild imp. 68.793 60.143 61.863 67.170 

severe imp. 70.700 62.696 52.717 66.296 

total 68.804 60.157 61.369 67.164 

Interpretation: On average, a subject enters the no-impairment state at age 67.164. These entries are composed of exits 

from mild impairment that occur at age 67.170 and of exits from severe impairment occurring at age 66.296. The totals 

row just repeats the values for the state on which detail is provided. 

 

maax1 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d
 t

o
: 

no imp. 71.772 72.589 73.312 71.866 

mild imp. 70.266 71.117 71.874 70.363 

severe imp. 73.252 73.902 74.486 73.327 

total 71.772 72.589 73.312 71.866 

Interpretation: On average, a subject exits the no-impairment state at age 71.866. These exits are composed of entries 

to mild impairment that occur at age 70.363, entries to severe impairment occurring at age 73.327, and deaths, whose 

mean age is not recorded in the table. The totals row just repeats the values for the state on which detail is provided. 

 

maab 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. 76.430 77.055 77.588 76.502 

mild imp. 80.886 76.208 77.113 80.315 

severe imp. 82.697 79.216 60.338 81.299 

total 79.119 77.117 70.202 78.740 

Interpretation: On average, a subject that dies in the non-impaired state is 76.502 years old; and 80.315 and 81.299 years 

when dying in the mild and severe impairment states, respectively. The average age at death is 78.740, the same number 

that one gets from LEXP calculations of the BASE paper. 
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mais 
initial state 

no imp. mild imp. severe imp. total 

re
w

ar
d

 t
o
: 

no imp. 65.134 66.006 67.051 65.235 

mild imp. 73.528 67.384 67.181 72.641 

severe imp. 78.838 74.112 58.216 77.226 

total 66.595 66.512 66.150 66.581 

Interpretation: The average age of all time lived in the unimpaired state is 65.235; and 72.641 and 77.226 are the average 

ages of all time lived with mild and severe impairment, respectively. Averaging over all person-years lived, the average 

age is 66.581. 

3.7 CONFIRMATION OF POINT ESTIMATES VIA SIMULATION 

The derivations in section 3.2 and their interpretation given in section 3.5 can be checked for agreement with numbers 

obtained via the simulation of life histories. When based on simulated trajectories, the numbers for the different rewards-

based concepts are obtained by very simple computations. For example, to obtain 'stab' numbers, one simply takes the 

state proportion of the period preceding death in the simulated trajectories. Likewise, 'mais' is simply calculated by 

taking the average age, taking only periods into account in which a subject’s life history passes through a particular state. 

These computations have to be done separately by the state at base age, with subsequent (weighted) summing, but this 

is only a minor complication. While simulation cannot give a definitive answer about correctness of analytical results 

due to the randomness inherent in the procedure, it can provide an impression as to whether results seem consistent or 

rather point towards errors. 

In order to make the comparison, we use the 3-state cognitive impairment multistate setup that is used in the BASE 

paper (see section B-2.5). The three transient states of the model are no impairment, mild impairment, and severe 

impairment. 

Figure 1 shows the results of a comparison between analytically calculated rewards point estimates and the ones obtained 

via simulation of life histories. Three different simulations are employed, differing by the number of trajectories (1,000, 

10,000, and 100,000).1 Convergence of the results based on simulations towards the analytical result with increasing 

number of trajectories is then an indication of correctness of the analytical derivations and calculations. 

Results are shown for the complete set of rewards listed in section 3.5 (graph rows) and for a subset of 4 of the 16 

components of a rewards result (graph columns) for the example application. Since the magnitudes of results vary across 

rows and columns of the graph, one has to pick individual scales for each subgraph in order to achieve a useful 

visualization. For the purpose of harmonizing scales across subgraphs, Figure 2 copies the layout of Figure 1, but 

presents simulation numbers as relative differences with respect to the analytical numbers. The harmonized horizontal 

scales make a visual assessment of convergence easier. Moreover, the relative difference of analytical results with 

respect to themselves is always zero, so convergence emerges if the relative differences of simulation results converge 

to zero. 

 
1 The three simulated trajectory data sets are not independent: A simulated data set of a given size forms the first part of the next 

larger simulated data set. For example, the simulated data set of 1,000 trajectories forms the first part of the simulated data set of 

10,000 trajectories. 
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Figure 1: Convergence of Rewards Numbers Based on Simulations to Analytically Calculated Results 

 

Notes: Convergence of rewards point estimates based on simulations to analytically calculated results (black diamonds) by increasing number of 

simulated trajectories, ranging from 1,000 trajectories (small light blue circles) to 100,000 (big dark blue circles). Each row shows results for a 

single alias reward or a composite reward (see section 3.5 for a listing of abbreviations). The first column shows results for the no impairment 

state, conditional on no impairment at the base age. The second column shows results for (the sum of) all states, conditional on mild impairment 

at the base age. The third column shows results for the severe impairment state, with initial states weighted by population fractions. The fourth 

column shows the total, i.e., results for (the sum of) all states, with initial states weighted by population fractions.  
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Figure 2: Relative Difference of Analytically Calculated and Simulated Rewards Numbers 

 

Notes: Convergence of rewards point estimates to analytically calculated results (black diamonds) by increasing number of simulated trajectories, 

ranging from 1,000 trajectories (small light blue circles) to 100,000 (big dark blue circles). Numbers depicted are relative differences of the 

simulation result and analytic result, calculated as |𝑎 − 𝑠| (|𝑠| + 1)⁄ , where a and s are the values for the analytic and simulated results, 

respectively. Otherwise the notes from Figure 1 apply. 
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Each of the 48 subgraphs of Figure 1 (or of Figure 2) suggests two comparisons that matter with respect to the question 

of convergence: whether the simulation with 10,000 trajectories is closer to the analytical result than the simulation with 

1,000 trajectories; and similarly for the simulations with 100,000 and 10,000 trajectories. Out of the total number of 96 

comparisons, 16 fail. There is a single subgraph that fails both comparisons ('epis' – conditional). This may be explained 

by the fact that the "Conditional (mild imp.)" column of graphs is based only on a small subset of trajectories (~8%), 

according to the initial proportion of mild impairment. The number of subgraphs that have a single failure is 14 (e.g., 

'stab' – conditional state, 'mdur' - state). However, these unfavorable comparisons seem to be due to chance. For example, 

'maax1' – total violates one comparison, but the visual inspection of the subgraph still suggests convergence of results. 

In addition, the overall level of relative differences is very small (i.e., simulated and analytical numbers are very close, 

in general). The overall picture that emerges from these graphs therefore is that simulation results generally converge 

towards analytical results, with exceptions that are plausibly due to chance. 

3.8 COVARIANCE MATRICES FOR STANDARD REWARDS 

A matrix derivative rule used in this section, in addition to the ones used in BASE, is, for generic matrices (see, e.g., 

Lütkepohl, 1996, p.185), 

𝜕 vec(𝑨⨀𝑿)

𝜕 vec(𝑿)′
=
𝜕 vec(𝑿⨀𝑨)

𝜕 vec(𝑿)′
= diag(vec(𝑨))   

where diag(. ) constructs a diagonal matrix from its vector input. 

We are seeking, for (8), 

𝜕 vec(𝒇𝑖)

𝜕 vec(𝑼𝑗)
′ 

which we can, again in analogy to section B-4.2, write as 

𝜕 vec(𝒇𝑖)

𝜕 vec(𝑼𝑗)
′ =

𝜕 vec(�̅�𝑖
𝑠 ∗ ∏ 𝑼𝑎

𝑗+1
𝑎=𝑖−1 ∗ 𝑼𝑗 ∗ ∏ 𝑼𝑎

2
𝑎=𝑗−1 )

𝜕 vec(𝑼𝑗)
′   

in order to facilitate application of the matrix differentiation rule (B-27). In the present context, the only case that needs 

a closer look is the one of 𝑖 = 𝑗, because here the term �̅�𝑖
𝑠.gets differentiated, so the goal becomes to obtain an expression 

for 

𝜕 vec(�̅�𝑎
𝑠 )

𝜕 vec(𝑼𝑎)
′
 

We start by noting that 

𝜕 vec(�̅�𝑎
𝑠 )

𝜕 vec(𝑼𝑎)
′
=
𝜕 vec (𝟏𝑠̅ ⋅ (�̆�𝑎⨀𝑹𝑎

𝑠 ))

𝜕 vec(𝑼𝑎)
′

=
𝜕 vec (𝟏𝑠̅ ⋅ (�̆�𝑎⨀𝑹𝑎

𝑠 ))

𝜕 vec(�̆�𝑎⨀𝑹𝑎
𝑠 )
′ ×

𝜕 vec(�̆�𝑎⨀𝑹𝑎
𝑠 )

𝜕 vec(𝑼𝑎)
′

 

where the first term is 𝑰𝑠̅⊗𝟏𝑠+̅1 . For the second term, recall that 

 �̆�𝑎⨀𝑹𝑎
𝑠 = [

𝑼𝑎
𝒑𝑑,𝑎

]⨀ [
�̃�𝑎
𝑠

�̃�𝑎
𝑠 ]   (14) 

It will helpful to work with the transpose of (14) 
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 [𝑼𝑎
′⨀�̃�𝑎

𝑠′ 𝒑𝑑,𝑎
′ ⨀�̃�𝑎

𝑠′]   (15) 

To arrive at this expression, we use the definition of the commutation matrix 𝑲𝑛𝑚 (see section B-2.4) and its special 

property that 𝑲𝑛𝑚 = 𝑲𝑚𝑛
−1  to write 

𝜕 vec(�̆�𝑎⨀𝑹𝑎
𝑠 )

𝜕 vec(𝑼𝑎)
′

=
𝜕𝑲𝑠̅𝑠+̅1vec(�̆�

′
𝑎⨀𝑹𝑎

𝑠′)

𝜕 𝑲𝑠̅𝑠̅vec(𝑼𝑎
′ )′

= 𝑲𝑠̅𝑠+̅1
𝜕 vec(�̆�′𝑎⨀𝑹𝑎

𝑠′)

𝜕 vec(𝑼𝑎
′ )′

𝑲𝑠̅𝑠̅ 

What remains to be developed are the derivatives of the two expressions in (15). The first one is 

𝜕 vec(𝑼𝑎
′ ⨀�̃�𝑎

𝑠′)

𝜕 vec(𝑼𝑎
′ )′

= diag(vec(�̃�𝑎
𝑠′)) 

and the second one is 

 
𝜕 vec(𝒑𝑑,𝑎

′ ⨀�̃�𝑎
𝑠′)

𝜕 vec(𝑼𝑎
′ )′

=
𝜕 vec(𝒑𝑑,𝑎

′ ⨀�̃�𝑎
𝑠′)

𝜕 vec(𝒑𝑑,𝑎
′ )

′ ∗
𝜕 vec(𝒑𝑑,𝑎

′ )

𝜕 vec(𝑼𝑎
′ )′

 (16) 

The probabilities of dying are one minus the probabilities of transitioning to any one of the transient states, so 𝒑𝑑,𝑎 can 

be written in terms of the stochastic quantities as 

𝒑𝑑,𝑎 = 𝟏𝑠̅ − (𝟏𝑠̅ ⋅ 𝑼𝑎) 

and its transpose as 

𝒑𝑑,𝑎
′ = 𝟏𝑠̅

′ − (𝑼𝑎
′ ⋅ 𝟏𝑠̅

′ ) 

Substituting this into the second term of (16) we get 

𝜕 vec(𝒑𝑑,𝑎
′ ⨀�̃�𝑎

𝑠′)

𝜕 vec(𝑼𝑎
′ )′

= diag(�̃�𝑎
𝑠 ) × (−(𝟏𝑠̅⊗ 𝑰𝑠̅)) = −(𝟏𝑠̅⊗diag(�̃�𝑎

𝑠 )) 

Putting all the different parts together, our final result is 

 
𝜕 vec(�̅�𝑎

𝑠 )

𝜕 vec(𝑼𝑎)
′
=
𝜕 vec (𝟏𝑠̅ ⋅ (�̆�𝑎⨀𝑹𝑎

𝑠 ))

𝜕 vec(𝑼𝑎)
′

= (𝑰𝑠̅⊗𝟏𝑠+̅1)𝑲𝑠̅𝑠+̅1 [
diag(vec(�̃�𝑎

𝑠′))

−(𝟏𝑠̅⊗diag(�̃�𝑎
𝑠 ))
]𝑲𝑠̅𝑠̅ (17) 

With this result in hand, we can extend equation (B-28) to read 

 𝑮𝐹𝑅
𝑠
= (18) 

| 𝑼2 𝑼3 𝑼4 … 𝑼�̅�−1
−− − −− + −− − − −− −− − −− − − −− − −− − − −− − − − − −− − −− − −

�̅̅̅�2

𝑠
| [𝑰 ⊗ 1]

𝜕 vec(�̅�2
𝑠)

𝜕 vec(𝑼2)
′ 𝟎 𝟎 ⋯ 𝟎

�̅̅̅�3

𝑠
𝑼2 | 𝑰 ⊗ �̅�3

𝑠 [𝑼2′ ⊗ 1]
𝜕 vec(�̅�3

𝑠)

𝜕 vec(𝑼3)
′ 𝟎 𝟎

�̅̅̅�4

𝑠
𝑼3𝑼2 | 𝑰 ⊗ �̅�4

𝑠𝑼3 𝑼2′ ⊗ �̅�4
𝑠 [(𝑼3𝑼2)

′⊗1]
𝜕 vec(�̅�4

𝑠)

𝜕 vec(𝑼4)
′

𝟎

⋮ | ⋮ ⋮ ⋮ ⋱ ⋮

�̅̅̅��̅�−1

𝑠
𝑼�̅�−2 …𝑼2 | 𝑰 ⊗ �̅��̅�−1

𝑠 …𝑼3 𝑼2′ ⊗ �̅��̅�−1𝑠 …𝑼4 (𝑼3𝑼2)
′⊗ �̅��̅�−1

𝑠 …𝑼5 [(𝑼�̅�−2 …𝑼2)
′
⊗1]

𝜕 vec(�̅��̅�−1
𝑠 )

𝜕 vec(𝑼�̅�−1)
′

�̅̅̅��̅�

𝑠
𝑼�̅�−1 …𝑼2 | 𝑰 ⊗ �̅��̅�

𝑠 …𝑼3 𝑼2′ ⊗ �̅��̅�
𝑠 …𝑼4 (𝑼3𝑼2)

′⊗ �̅��̅�
𝑠 …𝑼5 ⋯ (𝑼�̅�−2 …𝑼2)

′
⊗ �̅��̅�

𝑠
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A stacked and reordered version over all states 

 𝑮𝐹𝑅 = 𝓚𝑗𝑖𝑎
𝑖𝑎𝑗
[
𝑮𝐹𝑅

1

⋮

𝑮𝐹𝑅
�̅�

]𝓚𝑗𝑖𝑎
𝑎𝑗𝑖′

 (19) 

can then be used to transform the covariance matrix of transition probabilities in 

 𝑽𝐹𝑅 = 𝑮𝐹𝑅�̃�𝑡𝑟𝑮𝐹𝑅
′
 (20) 

Simple sums of matrix blocks over ages then yield 

 𝑽𝐸𝑅 = (𝑰𝑠̅2 ⊗𝟏�̅�−1)𝑽
𝐹𝑅(𝑰𝑠̅2 ⊗𝟏�̅�−1)

′
 (21) 

The expressions for the conditional, state, overall, and full linear combinations are in simple analogy to (B-31)-(B-35). 

3.9 COMPARISON TO BOOTSTRAP RESULTS: STANDARD AND ALIAS REWARDS 

Using results from the cognitive impairment example, Figure 3 compares 95% asymptotic and bootstrap confidence 

intervals (CIs; compare section B-4.3 and Figure B-1) of the standard reward 'xcnt'. There are only minute differences 

between them. 

Figure 3: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Standard Reward 'xcnt' (Exit Count) 

 

Notes: The numbers and confidence intervals pertain to the standard reward 'xcnt', which counts exits from states. Subgraphs 1-3 show the number 

of exits from a state, by initial state (categorical axis: none, mild, or severe) and weighted using initial state proportions. The rightmost subgraph 

shows the total number of exits from all states taken together (the sum total), The four plot triplets of each subgraph correspond to one row of 

matrix (12); that is, the order of the 16 plot triplets, from left to right over the full graph, i.e., across subgraph headings (outcome states) and 

subgraph categorical axes (initial states), in terms of equation (12), is vec (𝑬𝑅
𝑓𝑢𝑙𝑙′

) (note the transpose). Blue dots and whiskers show 95% 

asymptotic confidence intervals based on the derivations in this article. Red diamonds and whiskers depict 95% confidence intervals based on the 

standard errors obtained from 500 bootstrap samples; and green squares and whiskers show 95% bootstrap percentile intervals. Each point estimate 

triplet uses a single value: the asymptotic one. 
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Figure 4 performs the same comparison, but with respect to the alias reward 'epis'. Again, asymptotic and bootstrap CIs 

are very close. Analogous visual comparisons that apply to the remaining standard and alias rewards of section 3.5 are 

relegated to appendix section 8.1. All of them show a close correspondence of asymptotic and bootstrap CIs. 

Figure 4: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Alias Reward 'epis' (Number of Episodes) 

 

Notes: The numbers and confidence intervals pertain to the alias reward 'epis', which counts the number of episodes of (entries into) states. 

Otherwise the notes from Figure 3 apply. 

4 GROUP COMPARISONS 

4.1 COMBINING STANDARD REWARDS 

Derivations are in full analogy to the life expectancy ones in section B-6.2, using matrices �̈�𝐹𝑅 , �̈�𝐹𝑅 , �̈�𝐸𝑅 in place of 

their obvious counterparts, e.g., 

 �̈�𝐹𝑅 = �̈�𝐹𝑅�̈�𝑡𝑟�̈�𝐹𝑅
′
  (22) 

 �̈�𝐹𝑅 = [
𝑮1
𝐹𝑅 𝟎

𝟎 𝑮2
𝐹𝑅
] (23) 

The only difference concerns the summation matrix in the calculation of �̈�𝐸𝑅 , which is obtained by 

 �̈�𝐸𝑅 = [
𝑰𝑠̅2 ⊗𝟏�̅�−1 𝟎

𝟎 𝑰𝑠̅2 ⊗𝟏�̅�−1
] �̈�𝐹𝑅 [

𝑰𝑠̅2 ⊗𝟏�̅�−1 𝟎

𝟎 𝑰𝑠̅2 ⊗𝟏�̅�−1
]

′

 (24) 
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4.2 COMBINING DIFFERENT TYPES OF RESULTS 

Formulas from section B-6.4 apply unchanged when combining rewards results with LEXP or MAFN results. For 

example, combining REWD with MAFN is done by 

�̈�𝐹𝑋 = [
𝑮1
𝐹𝑅 𝟎

𝟎 𝑮2
𝐹𝐵𝐴
] 

�̈�𝐹𝑋 = �̈�𝐹𝑋�̈�𝑡𝑟�̈�𝐹𝑋
′
 

�̈�𝑐𝑜𝑚𝑏 = [
𝑰𝑠̅2 ⊗𝟏�̅�−1 𝟎

𝟎 𝑰�̅�−1 ⊗𝒈2
𝑖𝑚] �̈�

𝐹𝑋 [
𝑰𝑠̅2 ⊗𝟏�̅�−1 𝟎

𝟎 𝑰�̅�−1 ⊗𝒈2
𝑖𝑚]

′

 

�̈�𝑓𝑢𝑙𝑙 = [
𝑮1
𝑓𝑢𝑙𝑙

𝟎

𝟎 𝑮2
𝑓𝑢𝑙𝑙

] 

�̈�𝑓𝑢𝑙𝑙 = �̈�𝑓𝑢𝑙𝑙�̈�𝑐𝑜𝑚𝑏�̈�𝑓𝑢𝑙𝑙
′
 

where �̈�𝑐𝑜𝑚𝑏 is the covariance matrix of combined/mixed result types. A subscript of 1 in this instance refers to an 

expression pertaining to rewards-based results and a subscript of 2 to an expression for mean age at first entry, but the 

procedure applies more generally to any mixture of results (LEXP, MAFN, or REWD). 

4.3 N-GROUP COMPARISONS 

For rewards too the formulas given in section B-6.1 to B-6.5 and above generalize to N-group comparisons in the obvious 

way. They apply to any mixture of results. 

4.4 COVARIANCE MATRICES FOR COMPOSITE REWARDS 

Composite rewards are calculated as the division of one set of results by another set of results, where each of the two 

results sets are standard rewards. For example, the composite reward 'maan' is calculated by dividing the standard reward 

'natr' by the standard reward 'ncnt'. The point estimates for composite rewards are 

 𝑬𝑐𝑝𝑠
𝑓𝑢𝑙𝑙

= 𝑬𝑅1
𝑓𝑢𝑙𝑙

⊘𝑬𝑅2
𝑓𝑢𝑙𝑙

  (25) 

where ⊘ denotes elementwise division. The formulas for calculating a joint covariance matrix of two different results 

have been laid out in section 4.2. When using them for the combination of standard rewards for the purpose of calculating 

a composite rewards result, the following simplifications are present: 

• The two standard rewards are based on the same transition probabilities. Therefore, the combined covariance 

matrix of transition probabilities is just �̈�𝑡𝑟 = 𝟏2,2⊗ �̃�𝑡𝑟, where �̃�𝑡𝑟 is the covariance matrix of transition 

probabilities that the standard rewards have in common. 

• The linear combination matrix 𝑮𝑓𝑢𝑙𝑙 is the same for both standard rewards: 𝑮1
𝑓𝑢𝑙𝑙

= 𝑮2
𝑓𝑢𝑙𝑙

. 

Using these facts and equations from sections 4.1 and 4.2, the combined covariance matrix of the standard rewards is 

calculated as 
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�̈�𝐹𝑅 = [
𝑮1
𝐹𝑅 𝟎

𝟎 𝑮2
𝐹𝑅
] 

�̈�𝐹𝑅 = �̈�𝐹𝑅�̈�𝑡𝑟�̈�𝐹𝑅
′
 

�̈�𝑐𝑜𝑚𝑏 = [
𝑰𝑠̅2 ⊗𝟏�̅�−1 𝟎

𝟎 𝑰𝑠̅2 ⊗𝟏�̅�−1
] �̈�𝐹𝑅 [

𝑰𝑠̅2 ⊗𝟏�̅�−1 𝟎

𝟎 𝑰𝑠̅2 ⊗𝟏�̅�−1
]

′

 

�̈�𝑓𝑢𝑙𝑙 = [
𝑮1
𝑓𝑢𝑙𝑙

𝟎

𝟎 𝑮1
𝑓𝑢𝑙𝑙

] 

�̈�𝑓𝑢𝑙𝑙 = �̈�𝑓𝑢𝑙𝑙�̈�𝑐𝑜𝑚𝑏�̈�𝑓𝑢𝑙𝑙
′
 

�̈�𝑓𝑢𝑙𝑙 is the joint covariance matrix of the two standard rewards: 

cov(vec[𝑬𝑅1
𝑓𝑢𝑙𝑙

𝑬𝑅2
𝑓𝑢𝑙𝑙

]) 

which we need to transform into the covariance matrix of the elementwise division 

cov(vec (𝑬𝑅1
𝑓𝑢𝑙𝑙

⊘𝑬𝑅2
𝑓𝑢𝑙𝑙

)) 

This again requires application of the delta method. The matrix derivative we need is 

𝜕 vec(𝑬𝑅1
𝑓𝑢𝑙𝑙

⊘𝑬𝑅2
𝑓𝑢𝑙𝑙

)

𝜕 vec[𝑬𝑅1
𝑓𝑢𝑙𝑙

𝑬𝑅2
𝑓𝑢𝑙𝑙

]
′  

Denoting temporarily by 𝑒1,𝑖 and 𝑒1,𝑗 the 𝑖-th and 𝑗-th element of vec𝑬𝑅1
𝑓𝑢𝑙𝑙

, respectively, and in an analogous fashion 

for vec𝑬𝑅2
𝑓𝑢𝑙𝑙

, we have 

𝜕 (
𝑒1
𝑒2
)
𝑖

𝜕𝑒1,𝑗
=
1

𝑒2,𝑖
    if 𝑖 = 𝑗, and 0 otherwise 

𝜕 (
𝑒1
𝑒2
)
𝑖

𝜕𝑒2,𝑗
= −

𝑒1,𝑖

𝑒2,𝑖
2    if 𝑖 = 𝑗, and 0 otherwise 

which, in matrix notation, is 

 𝑮𝑐𝑝𝑠 =
𝜕 vec(𝑬𝑅1

𝑓𝑢𝑙𝑙
⊘𝑬𝑅2

𝑓𝑢𝑙𝑙
)

𝜕 vec[𝑬𝑅1
𝑓𝑢𝑙𝑙

𝑬𝑅2
𝑓𝑢𝑙𝑙

]
′ = [diag(vec 𝑬𝑅2

𝑓𝑢𝑙𝑙
)
−1

−diag(vec 𝑬𝑅1
𝑓𝑢𝑙𝑙

)⊙ diag(vec𝑬𝑅2
𝑓𝑢𝑙𝑙

)
−2
] (26) 

The covariance matrix of the composite rewards result is then 

 𝑽𝑐𝑝𝑠 = 𝑮𝑐𝑝𝑠�̈�𝑓𝑢𝑙𝑙𝑮𝑐𝑝𝑠′   (27) 

Composite rewards can, in turn, be combined with (any number of) other composite rewards, and/or with (any number 

of) other results. This can be achieved by expanding (B-54) and (B-55) and the formulas of section 4.2 to include all 

desired non-composite results. Say that, for a particular calculation, a combined covariance matrix for 𝐾𝑛𝑜𝑛 purely non-

composite results and 𝐾𝑐𝑝𝑠 composite results is desired. In order to obtain the joint covariance matrix of the final 



26 

𝐾 = 𝐾𝑛𝑜𝑛 + 𝐾𝑐𝑝𝑠 results, in a first step the joint covariance matrix of the total of 𝐾𝑛𝑜𝑛 + 2𝐾𝑐𝑝𝑠 non-composite results 

must be calculated, and then be transformed using 

�̈�𝑋 = [
𝑮𝑋1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑮𝑋𝐾

] 

where 𝑮𝑋𝑘 = 𝑮𝑘
𝑐𝑝𝑠

 if the 𝑘-th final result is composite, and 𝑮𝑋𝑘 = 𝑰 if it is not, with appropriate dimensions for 𝑰, 

depending on the result it operates on (2�̅�−1 + 2 for MAFN and �̅�+1
2  for all other non-composite results). 

4.5 COMPARISON TO BOOTSTRAP RESULTS: COMPOSITE REWARDS 

Based on the derivations of the previous subsections and continuing the multistate application on cognitive impairment, 

Figure 5 and Figure 6 compare 95% asymptotic and bootstrap CIs of the composite rewards 'maab' and 'mais', 

respectively. Asymptotic and bootstrap CIs exhibit only very small differences. 

Figure 5: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Composite Reward 'maab' (Mean Age at Absorption) 

 

Notes: The numbers and confidence intervals pertain to the composite reward 'maab', which calculates the mean age of subjects when entering the 

absorbing state, by state preceding the absorbing state and, nested, by initial state. Otherwise the notes from Figure 3 apply. 
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Figure 6: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Composite Reward 'mais' (Mean Age in State) 

 

Notes: The numbers and confidence intervals pertain to the composite reward 'mais', which calculates the mean age of subjects of all time spent in 

a particular state. Otherwise the notes from Figure 3 apply. 

5 PARTIAL AGE RANGES 

A partial age range is defined by two ages 𝑧𝑏 and 𝑧𝑒, called the beginning age and ending age, with 𝑏, 𝑒 ∈ [1, . . . , �̅�] and 

𝑧𝑏 < 𝑧𝑒. We call a pair of age ranges disjunct if 𝑒1 ≤ 𝑏2 (note the weak inequality), where the subscript indexes the age 

range. 

5.1 STANDARD REWARDS 

Formulas for standard rewards apply unchanged when calculating a partial age range. The partial age range is solely 

introduced via a redefinition of the rewards matrix (5): A set of partial age range rewards matrices 𝑹𝑎
𝑠,𝑏,𝑒

 sets 𝑹𝑎
𝑠,𝑏,𝑒 = 𝟎 

if 𝑧𝑎 ≤ 𝑧𝑏 or if 𝑧𝑎 > 𝑧𝑒, and 𝑹𝑎
𝑠,𝑏,𝑒 = 𝑹𝑎

𝑠  otherwise.2 We call an age partition a set of 𝑘 disjunct age ranges for which it 

holds that ∑ ∑ 𝑹𝑎
𝑠,𝑏𝑘𝑒𝑘

𝑎𝑘 = ∑ 𝑹𝑎
𝑠

𝑎  for all 𝑠; or, equivalently, using (6), ∑ 𝑹𝑠,𝑏𝑘𝑒𝑘𝑘 = 𝑹𝑠. 

We want to show the analogous results to section B-7.1: a) adding results of two partial age ranges 𝑹𝑠,𝑏1𝑒1 and 𝑹𝑠,𝑏2,𝑒2 

is equivalent to the result obtained by a single rewards definition 𝑹𝑠,𝑏1𝑒1 + 𝑹𝑠,𝑏2𝑒2. For simlicity, but without loss of 

generality, as in BASE, we consider the case of adjacent age ranges, defined by 𝑒1 = 𝑏2. It follows that the point 

estimates and covariance matrix of a simple additive linear combination of the results of an age partition are identical to 

the result magnitudes for the full age range. 

 
2 These sign conditions are slightly different from section B-7.1. This is because rewards are assigned to (out-)transitions, whereas 

life expectancy calculations assign a "reward" to (the likelihood of reaching) a state directly. 
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From (10), we can see that 𝑬𝑅
𝑏1𝑒1 + 𝑬𝑅

𝑏2𝑒2 = 𝑬𝑅
𝑏1𝑒2 if and only if 𝑭𝑅

𝑏1𝑒1 + 𝑭𝑅
𝑏2𝑒2 = 𝑭𝑅

𝑏1𝑒2. Considering our definition of 

partial age ranges and equations (9) and (8), it is easy to see that this holds true since from (7) 

 �̅�𝑎
𝑠,𝑒1𝑏1 + �̅�𝑎

𝑠,𝑒2𝑏2 = 𝟏𝑠̅ (�̆�𝑎⨀(𝑹𝑎
𝑠,𝑏1𝑒1 + 𝑹𝑎

𝑠,𝑏2𝑒2)) = 𝟏𝑠̅(�̆�𝑎⨀𝑹𝑎
𝑠,𝑏1𝑒2) (28) 

With respect to covariance matrices, recalling (22)-(24), and the fact that each partial age range result is based on the 

same set of transition probabilities, it is easy to show that the simple additive linear combination of two adjacent age 

ranges resolves to 

 
[𝑰𝑠̅2 𝑰𝑠̅2]cov(vec[𝑬𝑅

𝑏1𝑒1 𝑬𝑅
𝑏2𝑒2]) [

𝑰𝑠̅2

𝑰𝑠̅2
]

= [𝑰𝑠̅2 ⊗𝟏�̅�−1] [(𝑮𝑏1𝑒1
𝐹𝑅 + 𝑮𝑏2𝑒2

𝐹𝑅 )�̃�𝑡𝑟(𝑮𝑏1𝑒1
𝐹𝑅 + 𝑮𝑏2𝑒2

𝐹𝑅 )
′
 ] [𝑰𝑠̅2 ⊗𝟏�̅�−1]

′
 (29) 

This expression is equal to cov(vec 𝑬𝑅
𝑏1𝑒2) if and only if 𝑮𝑏1𝑒1

𝐹𝑅 + 𝑮𝑏2𝑒2
𝐹𝑅 = 𝑮𝑏1𝑒2

𝐹𝑅 . This, in turn, is true if it holds for each 

component of (19), so the question becomes whether it holds for (18). For the blocks below the main block diagonal of 

(18), this can be deduced from basic arithmetic rules and (28). For the blocks on the main block diagonal, it can be 

deduced by applying simple arithmetic rules to (17). 

5.2 COMBINING PARTIAL AGE RANGE RESULTS 

Partial age range results can be combined with other results in the usual way. The formulas of section 4 apply unchanged, 

with 𝑹𝑠,𝑏,𝑒 taking the place of 𝑹𝑠 whenever appropriate. 

5.3 COMPARISON TO BOOTSTRAP RESULTS: PARTIAL AGE RANGES 

Based on the derivations of the previous subsections and again using the multistate application on cognitive impairment, 

Figure 7 compares 95% asymptotic and bootstrap CIs of the alias reward 'stab', calculated over the partial age range 70-

80 (the full age range is 50-110). Asymptotic and bootstrap CIs are very similar. 
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Figure 7 Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Alias Reward 'stab' (State Proportion at Absorption), Partial Age Range 70-80, Women 

 
Notes: Partial age range (70-80) numbers and CIs for women pertaining to the alias reward 'stab', which calculates the proportions of the states at 

absorption. Otherwise the notes from Figure 3 apply. 

6 COMPLEX NONLINEAR COMBINATIONS AND JOINT HYPOTHESIS 

TESTS 

This section is in close analogy to section B-8: It illustrates asymptotic calculations of CIs for complex linear and 

nonlinear combinations based on many sets of results, based on a joint covariance matrix that covers all sets of results, 

as developed in earlier sections of this paper. As mentioned, the calculations of this section are completely analogous to 

section B-8, except that a different outcome is used. Section B-8 treats LEXP, here we focus on 'stab'. More specifically, 

section B-8 treated the fraction of lifetime spent in severe impairment (by dividing the severe impairment expectancy 

by total life expectancy). Here we technically perform the very same division, but since our result is 'stab' the outcome 

of this division is the fraction of deaths from the severely impaired state. The rest of the complex (non-)linear 

combinations are the same as in section B-8, too: The calculation of the fraction of deaths from severe impairment is 

done separately for 10-year partial age ranges, and separately for women and men. Next, separately for women and men, 

we calculate the percentage point increase in the fraction of deaths from severe impairment, by age decade. Finally, for 

each age range, we deduct the result for women from those for men. This procedure answers the following question: 

What are the age decades during which women's fraction of deaths from severe impairment increases particularly 

strongly in comparison to men? As the example in the BASE paper, the current one too may seem a little contrived; but 

its major point is simply to illustrate the possibilities that the calculation of joint covariance matrices across any type 

and number of results holds. Figure 8 compares the results based on analytical calculations (subgraph on the left) to 

bootstrap results (middle and right subgraphs). The only slightly visible differences appear at the very highest age range 

(100-110), where data scarcity leads to imprecision of estimation. 
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Figure 8: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Complex Linear and Nonlinear Combinations Using Partial Age Ranges 

 

Notes: Each subgraphs shows sex differences (women minus men) for the percentage point increase, by age decade, in the fraction of deaths from 

severe impairment. Age decades are depicted on the horizontal axis. They are to be read as intervals [a, b), i.e., with a strong inequality on the right 

boundary. 

As in section B-8, we will now consider the possibility of using the joint asymptotic covariance matrix for a joint test of 

several hypotheses. For example, one can ask whether all point estimates in (the left subgraph of) Figure 8 are zero. 

Visual inspection would suggest a positive answer. However, a corresponding asymptotic Wald test yields a 𝒳2(5) 

statistic of 12.8 with associated p-value of 0.025, which would reject the hypothesis at the 5% level. This can be 

compared to the SE-based bootstrap results using the covariance matrix of coefficients calculated over the coefficient 

estimates of all bootstrap replications. A Wald test based on this covariance matrix yields a 𝒳2(5) statistic of 11.57 with 

associated p-value of 0.041. While the agreement between the asymptotic and bootstrap statistics is not perfect, they 

would both lead to the rejection at the 5% level, but not at the 1% level. 
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8 APPENDIX 

8.1 ADDITIONAL COMPARISONS TO BOOTSTRAP RESULTS 

8.1.1 Standard Rewards 

Figure A-1: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Standard Reward 'ncnt1' (Entry Count, Detail for State 1) 

 

Notes: The numbers and confidence intervals pertain to the standard reward 'ncnt1', which counts the number of episodes of (entries into) state 1 

("none", no impairment), with corresponding exits from other states (i.e., recoveries): For each initial state, the sum of subgraphs 2-3 (states mild 

and severe) are the negatives of corresponding initial states in subgraph 1. Otherwise the notes from Figure 3 apply, with one exception: The totals 

(rightmost subgraph) are not the initial state-specific sum of subgraphs 1-3, but repeat the numbers for which state detail was calculated (state 

none, subgraph 1). 



33 

Figure A-2:Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Standard Reward 'xcnt1' (Exit Count, Detail for State 1) 

 

Notes: The numbers and confidence intervals pertain to the alias standard 'xcnt1', which counts the number of exits from state 1 ("none", no 

impairment), with corresponding entries to other transient states (i.e., incidences). Note that, unlike Figure A-1, the initial-state specific sum of 

subgraphs 2-3 (states mild and severe) are not the negatives of corresponding initial states in subgraph 1 since exits from state 1 to the absorbing 

state are not accounted for. Otherwise the notes from Figure 3 apply, with one exception: The totals (rightmost subgraph) are not the initial state-

specific sum of subgraphs 1-3, but repeat the numbers for which state detail was calculated (state none, subgraph 1). 

8.1.2 Alias Rewards 

Figure A-3: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Standard Reward 'stab' (State at Absorption) 

 

Notes: The numbers and confidence intervals pertain to the alias reward 'stab', which calculates the proportions of the states at absorption. Since 

these must sum to one, the totals (rightmost graph) have confidence intervals of length zero. Otherwise the notes from Figure 3 apply. 
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8.1.3 Composite Rewards 

Figure A-4: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Composite Reward 'mdur' (Mean Duration of Episodes) 

 

Notes: The numbers and confidence intervals pertain to the composite reward 'mdur', which calculates the mean duration of episodes. The rightmost 

graph shows the initial state-specific average duration, which is calculated as a ratio of sums (sums of numerators and sums of denominators), so 

its values are not directly deducible from subgraphs 1-3. Otherwise the notes from Figure 3 apply. 

Figure A-5: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Composite Reward 'maan' (Mean Age, All Entries) 

 

Notes: The numbers and confidence intervals pertain to the composite reward 'maan', which calculates the mean age at all entries to a state. The 

rightmost graph shows the initial state-specific mean age, which is calculated as a ratio of sums (sums of numerators and sums of denominators), 

so its values are not directly deducible from subgraphs 1-3. Otherwise the notes from Figure 3 apply. 
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Figure A-6: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Composite Reward 'maax' (Mean Age, All Exits) 

 

Notes: The numbers and confidence intervals pertain to the composite reward 'maax', which calculates the mean age at all exits from a state. The 

rightmost graph shows the initial state-specific mean age, which is calculated as a ratio of sums (sums of numerators and sums of denominators), 

so its values are not directly deducible from subgraphs 1-3. Otherwise the notes from Figure 3 apply. 

Figure A-7: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Composite Reward 'maan1' (Mean Age, All Entries, Detail for State 1) 

 

Notes: The numbers and confidence intervals pertain to the standard reward 'maan1', which calculates the mean age of all entries into state 1 

("none", no impairment), and shows mean ages of all corresponding exits from other states (i.e., recoveries). Otherwise the notes from Figure 3 

apply, with one exception: The totals (rightmost subgraph) are not based on the initial state-specific numbers of subgraphs 1-3, but repeat the 

numbers for which state detail was calculated (state none, subgraph 1). 
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Figure A-8: Comparison of 95% Confidence Intervals, Asymptotic v. Bootstrap Results: 

Composite Reward 'maax1' (Mean Age, All Exits, Detail for State 1) 

 

Notes: The numbers and confidence intervals pertain to the standard reward 'maax1', which calculates the mean age of all exits from state 1 ("none", 

no impairment), and shows mean ages of all corresponding entries to other transient states (i.e., recoveries). Otherwise the notes from Figure 3 

apply, with one exception: The totals (rightmost subgraph) are not based on the initial state-specific numbers of subgraphs 1-3, but repeat the 

numbers for which state detail was calculated (state none, subgraph 1). 

8.2 ADDITIONAL EXPLANATIONS FOR STANDARD REWARDS 

8.2.1 Formal Expressions 

A rewards matrix �̀� is of dimension �̅� × �̅�2�̅�+1 (see, for example, section 3.3.2). The elements of the first row are never 

used in calculations, hence they were indicated by a dot in previous sections; and similarly for elements of the last row 

that do not pertain to columns for transitions to the absorbing state. In the construction of rewards matrices below, we 

will set all of these irrelevant elements to zero. Assume a zero rewards matrix �̀�𝟎 = 𝟎. The below expressions specify 

vectors that replace columns of that zero matrix. They are either explicitly or implicitly taken to be of length �̅�−1. It is 

understood that they replace the last �̅�−1 elements of a column (so that the first element always remains zero). 

Furthermore, if the column does not pertain to a transition into the absorbing state, the replacement uses only the first 

�̅�−2 elements of the vector, whose values fill rows 2… �̅�−1 of �̀�𝟎. These conventions simplify the expressions below. 
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Think of the selection part as filling a first matrix �̀�𝟎, and the value part as filling a second one. The final rewards matrix 

then results from an elementwise multiplication of these two matrices. The modifications by the sign part are trivial and 

therefore omitted. The expressions for the vectors are: 

Selection part and state detail number: 

n:   𝒓𝑗𝑖
𝑠 = 𝟏′ if (𝑖 = 𝑠) ∧ (𝑗 ≠ 𝑠) 

x:   𝒓𝑗𝑖
𝑠 = 𝟏′ if (𝑗 = 𝑠) ∧ (𝑖 ≠ 𝑠) 

u:   𝒓𝑗𝑖
𝑠 = 𝟏′ if (𝑖 = 𝑠) ∧ (𝑗 = 𝑠) 

n(cnt)#:  𝒓𝑗𝑖
𝑠 = 𝟏′ if (𝑖 = #) ∧ (𝑖 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

  𝒓𝑗𝑖
𝑠 = −𝟏′ if (𝑖 = #) ∧ (𝑗 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

x(cnt)#:  𝒓𝑗𝑖
𝑠 = −𝟏′ if (𝑗 = #) ∧ (𝑗 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

  𝒓𝑗𝑖
𝑠 = 𝟏′ if (𝑗 = #) ∧ (𝑖 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

Value part: 

cnt:  no modification 

atr:  BOP: 𝒓𝑗𝑖
𝑠 = 𝒛−1 

  MID: 𝒓𝑗𝑖
𝑠 = 𝒛−1 +

1

2
𝒏 

  EOP: 𝒓𝑗𝑖
𝑠 = 𝒛+1 

tbt:  BOP: 𝒓𝑗𝑖
𝑠 = 𝒏  if (𝑖 = 𝑠) 

  MID: 𝒓𝑗𝑖
𝑠 = 𝒏  if (𝑖 = 𝑠) ∧ (𝑗 = 𝑠) 

   𝒓𝑗𝑖
𝑠 =

1

2
𝒏 if [(𝑖 = 𝑠) ∨ (𝑗 = 𝑠)] ∧ (𝑖 ≠ 𝑗) 

  EOP: 𝒓𝑗𝑖
𝑠 = 𝒏  if (𝑗 = 𝑠) 

amp:  BOP: 𝒓𝑗𝑖
𝑠 = 𝒛−1 +

1

2
𝒏 if (𝑖 = 𝑠) 

   𝒓𝑗𝑖
𝑠 = 𝒛−1 if (𝑗 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

  MID: 𝒓𝑗𝑖
𝑠 = 𝒛−1 +

1

2
𝒏 if (𝑖 = 𝑠) ∧ (𝑗 = 𝑠) 

   𝒓𝑗𝑖
𝑠 = 𝒛+1 +

1

4
𝒏 if (𝑗 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

   𝒓𝑗𝑖
𝑠 = 𝒛+1 +

3

4
𝒏 if (𝑖 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

  EOP: 𝒓𝑗𝑖
𝑠 = 𝒛−1 +

1

2
𝒏 if (𝑗 = 𝑠) 

   𝒓𝑗𝑖
𝑠 = 𝒛+1 if (𝑖 = 𝑠) ∧ (𝑖 ≠ 𝑗) 

att:  calculated as the elementwise product of tbt and amp 
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8.2.2 Additional Example Rewards Matrices 

Sections 3.1-3.3 contained several example rewards matrices that are based on two transient states. This section shows 

additional example rewards matrices that also consider ages 𝒛 = [50, 60,… ,100], but for an expanded state space of 

three transient states. There is still only one absorbing state, as in the entirety of this document. 

'ncnt': 

�̀�1 =

𝒓𝟏𝟏
𝟏 𝒓𝟏𝟐

𝟏 𝒓𝟏𝟑
𝟏 𝒓𝟏𝟒

𝟏 𝒓𝟐𝟏
𝟏 𝒓𝟐𝟐

𝟏 𝒓𝟐𝟑
𝟏 𝒓𝟐𝟒

𝟏 𝒓𝟑𝟏
𝟏 𝒓𝟑𝟐

𝟏 𝒓𝟑𝟑
𝟏 𝒓𝟑𝟒

𝟏

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 0 0 0 1 0 0 0 1 0 0 0
𝟕𝟎 | 0 0 0 0 1 0 0 0 1 0 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�2 =

𝒓𝟏𝟏
𝟐 𝒓𝟏𝟐

𝟐 𝒓𝟏𝟑
𝟐 𝒓𝟏𝟒

𝟐 𝒓𝟐𝟏
𝟐 𝒓𝟐𝟐

𝟐 𝒓𝟐𝟑
𝟐 𝒓𝟐𝟒

𝟐 𝒓𝟑𝟏
𝟐 𝒓𝟑𝟐

𝟐 𝒓𝟑𝟑
𝟐 𝒓𝟑𝟒

𝟐

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 1 0 0 0 0 0 0 0 1 0 0
𝟕𝟎 | 0 1 0 0 0 0 0 0 0 1 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�3 =

𝒓𝟏𝟏
𝟑 𝒓𝟏𝟐

𝟑 𝒓𝟏𝟑
𝟑 𝒓𝟏𝟒

𝟑 𝒓𝟐𝟏
𝟑 𝒓𝟐𝟐

𝟑 𝒓𝟐𝟑
𝟑 𝒓𝟐𝟒

𝟑 𝒓𝟑𝟏
𝟑 𝒓𝟑𝟐

𝟑 𝒓𝟑𝟑
𝟑 𝒓𝟑𝟒

𝟑

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 0 1 0 0 0 1 0 0 0 0 0
𝟕𝟎 | 0 0 1 0 0 0 1 0 0 0 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

 

'xcnt2': 

�̀�1 =

𝒓𝟏𝟏
𝟏 𝒓𝟏𝟐

𝟏 𝒓𝟏𝟑
𝟏 𝒓𝟏𝟒

𝟏 𝒓𝟐𝟏
𝟏 𝒓𝟐𝟐

𝟏 𝒓𝟐𝟑
𝟏 𝒓𝟐𝟒

𝟏 𝒓𝟑𝟏
𝟏 𝒓𝟑𝟐

𝟏 𝒓𝟑𝟑
𝟏 𝒓𝟑𝟒

𝟏

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 0 0 0 −1 0 0 0 0 0 0 0
𝟕𝟎 | 0 0 0 0 −1 0 0 0 0 0 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�2 =

𝒓𝟏𝟏
𝟐 𝒓𝟏𝟐

𝟐 𝒓𝟏𝟑
𝟐 𝒓𝟏𝟒

𝟐 𝒓𝟐𝟏
𝟐 𝒓𝟐𝟐

𝟐 𝒓𝟐𝟑
𝟐 𝒓𝟐𝟒

𝟐 𝒓𝟑𝟏
𝟐 𝒓𝟑𝟐

𝟐 𝒓𝟑𝟑
𝟐 𝒓𝟑𝟒

𝟐

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 0 0 0 1 0 1 1 0 0 0 0
𝟕𝟎 | 0 0 0 0 1 0 1 1 0 0 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�3 =

𝒓𝟏𝟏
𝟑 𝒓𝟏𝟐

𝟑 𝒓𝟏𝟑
𝟑 𝒓𝟏𝟒

𝟑 𝒓𝟐𝟏
𝟑 𝒓𝟐𝟐

𝟑 𝒓𝟐𝟑
𝟑 𝒓𝟐𝟒

𝟑 𝒓𝟑𝟏
𝟑 𝒓𝟑𝟐

𝟑 𝒓𝟑𝟑
𝟑 𝒓𝟑𝟒

𝟑

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 0 0 0 0 0 −1 0 0 0 0 0
𝟕𝟎 | 0 0 0 0 0 0 −1 0 0 0 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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'ttbt', mid-period transitions: 

�̀�1 =

𝒓𝟏𝟏
𝟏 𝒓𝟏𝟐

𝟏 𝒓𝟏𝟑
𝟏 𝒓𝟏𝟒

𝟏 𝒓𝟐𝟏
𝟏 𝒓𝟐𝟐

𝟏 𝒓𝟐𝟑
𝟏 𝒓𝟐𝟒

𝟏 𝒓𝟑𝟏
𝟏 𝒓𝟑𝟐

𝟏 𝒓𝟑𝟑
𝟏 𝒓𝟑𝟒

𝟏

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 10 5 5 5 5 0 0 0 5 0 0 0
𝟕𝟎 | 10 5 5 5 5 0 0 0 5 0 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�2 =

𝒓𝟏𝟏
𝟐 𝒓𝟏𝟐

𝟐 𝒓𝟏𝟑
𝟐 𝒓𝟏𝟒

𝟐 𝒓𝟐𝟏
𝟐 𝒓𝟐𝟐

𝟐 𝒓𝟐𝟑
𝟐 𝒓𝟐𝟒

𝟐 𝒓𝟑𝟏
𝟐 𝒓𝟑𝟐

𝟐 𝒓𝟑𝟑
𝟐 𝒓𝟑𝟒

𝟐

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 5 0 0 5 10 5 5 0 5 0 0
𝟕𝟎 | 0 5 0 0 5 10 5 5 0 5 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�3 =

𝒓𝟏𝟏
𝟑 𝒓𝟏𝟐

𝟑 𝒓𝟏𝟑
𝟑 𝒓𝟏𝟒

𝟑 𝒓𝟐𝟏
𝟑 𝒓𝟐𝟐

𝟑 𝒓𝟐𝟑
𝟑 𝒓𝟐𝟒

𝟑 𝒓𝟑𝟏
𝟑 𝒓𝟑𝟐

𝟑 𝒓𝟑𝟑
𝟑 𝒓𝟑𝟒

𝟑

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 0 5 0 0 0 5 0 5 5 10 5
𝟕𝟎 | 0 0 5 0 0 0 5 0 5 5 10 5
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

 

'tamp', mid-period transitions: 

�̀�1 =

𝒓𝟏𝟏
𝟏 𝒓𝟏𝟐

𝟏 𝒓𝟏𝟑
𝟏 𝒓𝟏𝟒

𝟏 𝒓𝟐𝟏
𝟏 𝒓𝟐𝟐

𝟏 𝒓𝟐𝟑
𝟏 𝒓𝟐𝟒

𝟏 𝒓𝟑𝟏
𝟏 𝒓𝟑𝟐

𝟏 𝒓𝟑𝟑
𝟏 𝒓𝟑𝟒

𝟏

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 55 52.5 52.5 52.5 57.5 0 0 0 57.5 0 0 0
𝟕𝟎 | 65 62.5 62.5 62.5 67.5 0 0 0 67.5 0 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�2 =

𝒓𝟏𝟏
𝟐 𝒓𝟏𝟐

𝟐 𝒓𝟏𝟑
𝟐 𝒓𝟏𝟒

𝟐 𝒓𝟐𝟏
𝟐 𝒓𝟐𝟐

𝟐 𝒓𝟐𝟑
𝟐 𝒓𝟐𝟒

𝟐 𝒓𝟑𝟏
𝟐 𝒓𝟑𝟐

𝟐 𝒓𝟑𝟑
𝟐 𝒓𝟑𝟒

𝟐

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 57.5 0 0 52.5 55 52.5 52.5 0 57.5 0 0
𝟕𝟎 | 0 67.5 0 0 62.5 65 62.5 62.5 0 67.5 0 0
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

�̀�3 =

𝒓𝟏𝟏
𝟑 𝒓𝟏𝟐

𝟑 𝒓𝟏𝟑
𝟑 𝒓𝟏𝟒

𝟑 𝒓𝟐𝟏
𝟑 𝒓𝟐𝟐

𝟑 𝒓𝟐𝟑
𝟑 𝒓𝟐𝟒

𝟑 𝒓𝟑𝟏
𝟑 𝒓𝟑𝟐

𝟑 𝒓𝟑𝟑
𝟑 𝒓𝟑𝟒

𝟑

−− −− −− −− −− −− −− −− −− −− −− −−
𝟓𝟎 | . . . . . . . . . . . .
𝟔𝟎 | 0 0 57.5 0 0 0 57.5 0 52.5 52.5 55 52.5
𝟕𝟎 | 0 0 67.5 0 0 0 67.5 0 62.5 62.5 65 62.5
⋮ | ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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