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Abstract

Background Previous research has proposed an analytic method to decompose healthy life expectancy (HLE) in
discrete-time multistate frameworks, which relies on a particular parameterization for calculation. No published work
has considered how different HLE parameterizations might give inconsistent decomposition results and interpretations.

Objective We aim to explain (i) why HLE sensitivity and decomposition results are different between three specific
multistate parameterizations, (ii) how to translate decomposition results between different parameterizations, and
(iii) to propose the use of one parameterization for the interpretation of HLE decompositions.

Methods We compute the analytic sensitivities for three different HLE parameterizations by applying formulas for the
sensitivity of a recurrence. This enables us to decompose HLE using the life table response experiment approach and
analytically compare the three parameterizations. For our example data, we derive the transition probabilities between
health states from coefficients and formulas available in the literature, which summarize disability and mortality in the
USA between 1986 and 1990. With these transitions, we calculate parameter sensitivities and decompose the sex gap in
HLE under the three different parameterizations.

Results We obtain disability-free and disabled life expectancies (DFLE, DLE, respectively) and their sensitivities and
decompositions under three parameterizations. We show how the choice of parameterization affects the interpretation
of decomposition results on sex differences in DFLE (DLE). We give formulas to translate the sensitivity results between
parameterizations.

Conclusions Researchers should consider the choice of parameterization when calculating the sensitivity or decom-
position of a recurrence. We suggest the use of an attrition-based parameterization when interpreting HLE sensitivity
and decomposition.

Introduction1

Healthy life expectancy (HLE), a measure of a popula-2

tion’s average years in good health, is of primary impor-3

tance in contemporary public health monitoring and de-4

mographic research. HLE is often calculated by com-5

bining information from a life table and the prevalence6

of a health state, the so-called Sullivan method [Sulli-7

van, 1971]. Multistate models of HLE offer a represen-8

tation of health dynamics based on transitions between9

health states and mortality risks differentiated by health10

states. Demographic decomposition is a tool to help un-11

derstand what accounts for the differences between two12

populations in summary measures, such as HLE. Decom-13

positions of differences in Sullivan HLE partition differ-14

ences into prevalence and mortality components [Nus-15

selder and Looman, 2004, Shkolnikov et al., 2017], but16

they are unable to determine how much of a difference17

is due to onset versus recovery from a health condition,18

*tim.riffe@ehu.eus
†villavicencio@ub.edu
‡Mauricio.GonzalezForero@gmail.com

or how much is due to mortality differentiated by health 19

state. Decomposition of multistate HLE tells us which 20

ages and transitions matter for explaining differences be- 21

tween populations. Such decomposition results can tell 22

us which transitions to alter or improve to narrow such 23

inequalities. 24

Shen et al. [2023] propose an analytic method to de- 25

compose discrete-time multistate indices, such as HLE, 26

into the respective contributions of health transitions. 27

This method is an instance of the Life Table Response 28

Experiment approach to decomposition [Caswell, 1989], 29

which is based on the sensitivity of survivorship to transi- 30

tion parameters. Shen’s method is designed for a specific 31

HLE parameterization used in matrix algebra calculations 32

[Caswell and van Daalen, 2021], which does not explicitly 33

rely on transitions to death. It yields a decomposition re- 34

sult and interpretation that are specific to and internally 35

consistent for this mortality-free parameterization. 36

In any multistate model, different parameterizations 37

of the age-dynamics of health survivorship can be used 38

to obtain the same HLE estimate. At first glance triv- 39

ial, this observation is consequential when decomposing 40
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HLE differences. Reliable and consistent decomposition41

results are of utmost importance if demographic decom-42

position is to be used as a means to identify priorities43

among interventions designed to modify health transi-44

tions and mortality. We show that the parameterization45

chosen to decompose differences in HLE affects the es-46

timated size and sign of the response of HLE to interven-47

tion. For instance, altering the rate at which people return48

from poor to good health may increase or decrease HLE49

depending on the parameterization chosen. That is a big50

problem. This discrepancy was pointed out by Riffe [2021,51

2022] on the basis of decompositions using the linear in-52

tegral decomposition approach of Horiuchi et al. [2008],53

but further insights were hindered by a lack of analytic54

treatment. In this paper we use the general formulas de-55

rived by González-Forero [2024] for the sensitivity of a re-56

currence to describe and treat this problem analytically57

for a simple multistate model.58

We begin with the basic setup by presenting three pa-59

rameterizations for the state transition probabilities that60

can be used to calculate multistate HLE. We then show61

how the life table response experiment decomposition62

method [Caswell, 1989] works with these three parame-63

ter cases, each of which implies different sensitivity equa-64

tions. We then discuss selected aspects of symmetry be-65

tween the sensitivities of these three parameterizations66

and how to transform between them.67

To illustrate these findings, we use the estimates of68

transition probabilities recalculated from Lievre et al.69

[2003] to calculate the sensitivities for each of the three70

parameterizations and then decompose the sex gap in71

HLE. On the basis of this application, we argue for the use72

of a particular one of our three parameterizations when73

decomposing HLE. Specifically, we argue that HLE de-74

compositions yield more intuitive interpretations when75

transition parameters are limited to forces of attrition, i.e.,76

excluding within-state transitions.77

Three parameterizations to calculate healthy78

life expectancy79

Consider a population where individuals are in one of two80

health states, namely full health (h) or reduced health (u),81

or a single absorbing state of death (d). A life trajectory82

can be summarized as a sequence of states in succes-83

sive ages, Z (a). Denote the probability that an individ-84

ual transitions from state i and age a to state j in age85

a + 1 as P (Z (a + 1) = j |Z (a) = i ) or in a simplified form86

as pi j (a). Let ℓi (a) be the fraction of individuals that have87

survived from age 0 to age a and are in state i at age a. Say88

we know or compute the initial composition (or radix) as89

ℓi (0) = P (Z (0) = i ), where
∑

i ℓi (0) = 1. In this basic multi-90

state model, the set of all possible transition probabilities91

in a given age a includes:92

phh(a): remain in full health93

phu(a): move from full to reduced health94

phd(a): move from full health to death95

puh(a): move from reduced to full health96

Figure 1: State space diagram for the discrete time health
model considered.

puu(a): remain in reduced health 97

pud(a): move from reduced health to death, 98

and these can be displayed in a diagram like in Fig. 1. 99

A hypothetical individual in this model necessarily 100

moves from a transient health state (h, u) to one of the 101

three possible states (h, u, d), such that the possible tran- 102

sitions from a given origin state sum to one: 103

phd(a)+phu(a)+phh(a) = 1 (1a)

pud(a)+puh(a)+puu(a) = 1. (1b)

Given the radix composition ℓi (0), one can compute 104

the state-specific survivorship ℓi (a+1) at the next age us- 105

ing: 106

ℓh(a +1) = ℓh(a)phh(a)+ℓu(a)puh(a) (2a)

ℓu(a +1) = ℓu(a)puu(a)+ℓh(a)phu(a), (2b)

where ℓh(a) is the fraction of survivors in good health in 107

the ath age group, and ℓu(a) is the fraction of survivors 108

in poor health. HLE is then approximately given by the 109

marginal sum of ℓh over age, and its unhealthy counter- 110

part ULE is approximated in like form: 111

HLE =∑
a
ℓh(a) (3a)

ULE =∑
a
ℓu(a). (3b)

Eq. (3a) is an upward-biased approximation of HLE, with 112

an error usually around half an age interval, which we ig- 113

nore in the following, although one could add precision 114

using the approach of Schneider et al. [2023]. 115

The first parameterization (parameterization 1, here- 116

inafter P1) given in Eq. (2) is the most common way to 117

calculate HLE, or rather its matrix algebra equivalent 118(
ℓh(a +1)
ℓu(a +1)

)
=

(
phh(a) puh(a)
phu(a) puu(a)

)(
ℓh(a)
ℓu(a)

)
(P1)
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as described by Caswell and van Daalen [2021]. This for-119

mulation uses only transitions between and within health120

states (phh, phu, puh, puu), and it does not use death tran-121

sitions directly. One could compute the same values of ℓh122

and ℓu in other ways, however. Parameterization 2 (P2)123

shown in Eq. (4) is based only on transitions capturing “at-124

trition”, as it lacks phh and puu:125

ℓh(a +1) = ℓh(a)
(
1−phu(a)−phd(a)

)+ℓu(a)puh(a)
(4a)

ℓu(a +1) = ℓu(a)
(
1−puh(a)−pud(a)

)+ℓh(a)phu(a)
(4b)

or, equivalently,126 (
ℓh(a +1)
ℓu(a +1)

)
=(

1−phu(a)−phd(a) puh(a)
phu(a) 1−puh(a)−pud(a)

)(
ℓh(a)
ℓu(a)

)
(P2)

Parameterization 3 (P3), per Eq.(5), is based on all tran-127

sitions except those between different health states:128

ℓh(a +1) = ℓh(a)phh(a)+ℓu(a)
(
1−pud(a)−puu(a)

)
(5a)

ℓu(a +1) = ℓu(a)puu(a)+ℓh(a)
(
1−phd(a)−phh(a)

)
(5b)

or, equivalently,129 (
ℓh(a +1)
ℓu(a +1)

)
=(

phh(a) 1−pud(a)−puu(a)
1−phd(a)−phh(a) puu(a)

)(
ℓh(a)
ℓu(a)

)
(P3)

We believe P3 has never been used in the literature be-130

fore. All three parameterizations produce identical out-131

put for ℓi , and by extension HLE, ULE, and total life ex-132

pectancy.133

The problem134

For measures such as HLE, it does not matter whether135

calculations are done using the transition matrices of P1,136

P2, or P3. However, if we wish to decompose differences137

in HLE into element-wise contributions from each tran-138

sition parameter, e.g. using one of the generalized de-139

composition approaches [Caswell, 1989, Andreev et al.,140

2002, Horiuchi et al., 2008], results vary considerably de-141

pending on which parameterization is used. This incon-142

sistency has never been recognized in the literature, and143

we try to thoroughly describe it in this paper. Reliable144

and consistent decomposition results are of utmost im-145

portance if demographic decomposition is to be used as146

a means to identify priorities among interventions de-147

signed to modify health transitions and mortality. Al-148

though P1 will appear to many as the most straightfor-149

ward choice, we later give substantive observations that150

serve as a warning against this framing, and that lead us151

to recommend P2 specifically for purposes of decompo-152

sition.153

The sensitivity of survivorship 154

We compute the sensitivity of survivorship using formu- 155

las for the sensitivity of a recurrence derived by González- 156

Forero [2024], which we briefly describe in the following. 157

General notation 158

Let us denote the vector of transition probabilities in- 159

cluded in P1 as 160

ρ(P1)
a =


phh(a)
puh(a)
puu(a)
phu(a))

 ∈R4, (6a)

in P2 as 161

ρ(P2)
a =


phd(a)
puh(a)
pud(a)
phu(a)

 ∈R4, (6b)

and in P3 as 162

ρ(P3)
a =


phh(a)
puu(a)
pud(a)
phd(a)

 ∈R4. (6c)

Thus, we can define, more generally, the vector of transi- 163

tion probabilities as 164

ρ(c)
a =


ρ(c)

1 (a)

ρ(c)
2 (a)

ρ(c)
3 (a)

ρ(c)
4 (a)

 ∈R4, (6d)

with respective entries depending on the parameteriza- 165

tion c ∈ {P1,P2,P3} at age a ∈ {0, . . . ,n} (e.g., ρ(P2)
3 (a) = 166

pud(a)). Consider the matrix P whose a-th column is 167

ρ(c)
a . Then, let us define the column vector of transition 168

probabilities used in parameterization c over all ages as 169

ρ(c) = vec(P) ∈R4(n+1). 170

Let ℓa = (
ℓh(a),ℓu(a)

)⊺ ∈ R2 be the (column) vector of 171

survivorship for the two health states at age a. Then, for 172

each c ∈ {P1,P2,P3}, we can succinctly write the three pa- 173

rameterizations in Eqs. P1–P3 as 174

ℓa+1 = g(c) (ℓa ,ρ(c)
a

)
, (7)

where function g(c)(·) is given by the right-hand side of 175

Eqs. P1–P3, respectively. 176

Equation (7) indicates that survivorship to age a+1 de- 177

pends both on survivorship and transition probabilities at 178

the immediately preceding age. We will thus compute the 179

sensitivity of survivorship to perturbations of both sur- 180

vivorship and transition probabilities at any previous age. 181

Note that, while the transition probabilities ρ(c)
a and the 182

function g(c) depend explicitly on the parameterization c, 183

the survivorship ℓa+1 does not. However, we will show 184

that the sensitivity of survivorship does actually depend 185

on the parameterization. 186
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To denote derivatives of vectors with respect to vectors,187

we adopt the notation used by Caswell [2019] from ma-188

trix calculus. For column vectors x ∈ Rn and y ∈ Rm , we189

denote the partial derivative of x⊺ with respect to y as190

∂x⊺

∂y
=


∂x1

∂y1
· · · ∂xn

∂y1
...

. . .
...

∂x1

∂ym
· · · ∂xn

∂ym

 ∈Rm×n .

The sensitivity of survivorship to perturba-191

tions in survivorship192

We now construct the formulas for the sensitivity of sur-193

vivorship to perturbations in survivorship (at earlier ages)194

that apply to all three parameterizations by applying the195

formulas for the sensitivity of a recurrence derived by196

González-Forero [2024]. The direct effects on survivor-197

ship at age a +1 (ℓa+1) of perturbing survivorship at the198

immediately preceding age (ℓa) are given by the matrix199

∂ℓ⊺a+1

∂ℓa
=


∂ℓh(a +1)

∂ℓh(a)

∂ℓu(a +1)

∂ℓh(a)

∂ℓh(a +1)

∂ℓu(a)

∂ℓu(a +1)

∂ℓu(a)

 ∈R2×2 (8)

(from Eq. 19 in González-Forero [2024]).200

Consider the matrix L whose a-th column is ℓa . Let us201

define ℓ = vec(L) ∈ R2(n+1) as the column vector of sur-202

vivorship for the two health states for all ages a ∈ {0, . . . ,n}.203

The direct effects on survivorship at any age of perturbing204

survivorship at any other age are given by the matrix205

∂ℓ⊺

∂ℓ
=


∂ℓ⊺0
∂ℓ0

· · · ∂ℓ⊺a
∂ℓ0

...
. . .

...
∂ℓ⊺0
∂ℓa

· · · ∂ℓ⊺n
∂ℓn



=



I
∂ℓ⊺1
∂ℓ0

· · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I
∂ℓ⊺n
∂ℓn−1

0 0 · · · 0 I


(9)

∈R2(n+1)×2(n+1),

(from Eq. 18 of González-Forero [2024]). Note that each206

of the elements of the second matrix in Eq. (9) is a block207

of dimension 2× 2. The identity and zero block entries208

arise because perturbing a variable at a given age can only209

directly affect itself or another variable at the immediately210

next age.211

The sensitivity of survivorship is given by the total ef-212

fects on survivorship of a perturbation, which are the ac-213

cumulation of direct effects over life of the initial per-214

turbation and indirect effects accumulated in later ages.215

Whereas direct effects are given by partial derivatives, de-216

noted by “∂”, total effects are given by total derivatives, de-217

noted by “d”. Thus, the sensitivity of survivorship at age218

a′ to a perturbation in survivorship at age a is given by 219

dℓ⊺a′

dℓa
=



æ
a′−1∏
j=a

∂ℓ⊺j+1

∂ℓ j
= ∂ℓ⊺a+1

∂ℓa
· · ·

∂ℓ⊺a′

∂ℓa′−1
for a′ > a

I for a′ = a

0 for a′ < a .
(10)

(from Eq. 12 in González-Forero [2024]). The arrow æ de- 220

notes right multiplication. In this equation, for a′ > a we 221

have the direct effects of the perturbation at age a on the 222

survivorship at the next age a +1 multiplied by the direct 223

effects of such perturbation at age a +1 on the survivor- 224

ship at the next age, and so on all the way to age a′. That is, 225

the total effects of the perturbation at age a on survivor- 226

ship at age a′ are the accumulation of direct effects of the 227

initial perturbation and unleashed direct effects. 228

In particular, the sensitivity of survivorship at age a > 0 229

to an independent perturbation in the initial conditions 230

is given by 231

dℓ⊺a
dℓ0

= ∂ℓ⊺1
∂ℓ0

· · · ∂ℓ⊺a
∂ℓa−1

. (11)

The qualifier “independent” here means that the sensitiv- 232

ity in Eq. (11) perturbs, for instance, ℓh(0) keeping ℓu(0) 233

constant, and vice-versa, without considering the con- 234

straint ℓh(0)+ℓu(0) = 1. 235

The sensitivity in Eq. (10) can be more succinctly com- 236

puted as the a-th block row and a′-th block column of 237

dℓ⊺

dℓ
=

(
2I− ∂ℓ⊺

∂ℓ

)−1

=



I
dℓ⊺1
dℓ0

· · · dℓ⊺n−1

dℓ0

dℓ⊺n
dℓ0

0 I · · · dℓ⊺n−1

dℓ1

dℓ⊺n
dℓ1

...
...

. . .
...

...

0 0 · · · I
dℓ⊺n

dℓn−1
0 0 · · · 0 I


(12)

(from Eq. 11 and Eq. S5.1.15 in González-Forero [2024]). 238

In particular, the sensitivity of survivorship in later ages 239

to independent changes in the initial conditions (i.e. the 240

fraction in each state at the first time step) is found in the 241

first block row of the matrix defined in (12). This ma- 242

trix of total effects of survivorship on itself describes the 243

survivorship feedback that occurs over life. This matrix 244

recovers values of the fundamental matrix of a Markov 245

chain when the function g in Eq. (7) is linear with respect 246

to ℓa , such that Eq. (8) gives the matrix of transitions (see 247

section 5.1.2.1 in Caswell [2001]). 248

Let v = (HLE,ULE)⊺ ∈ R2 be the vector of healthy and 249

unhealthy life expectancy. Its sensitivity to independent 250

perturbations in the initial conditions is given by 251

dv⊺

dℓ0
=

n∑
a=0

dℓ⊺a
dℓ0

=


dHLE

dℓh(0)

dULE

dℓh(0)

dHLE

dℓu(0)

dULE

dℓu(0)

 , (13)
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which is the sum of the top block row in Eq. (12).252

To compute the sensitivity of HLE to a perturbation in253

the initial conditions, we must consider the necessary si-254

multaneous perturbation of ℓh(0) and ℓu(0), constrained255

to ℓh(0)+ℓu(0) = 1. We can express HLE as a function of256

the initial conditions ℓh(0) and ℓu(0). Substituting for the257

constraint, we have HLE = HLE(ℓh(0),1−ℓh(0)). Hence,258

using the chain rule, the sensitivity of HLE to perturba-259

tion in the initial ℓh(0) is260

dHLE

dℓh(0)
= dHLE

dℓh(0)

dℓh(0)

dℓh(0)
+ dHLE

dℓu(0)

d(1−ℓh(0))

dℓh(0)

= dHLE

dℓh(0)
− dHLE

dℓu(0)
(14)

where we use the symbol d to denote a total differen-261

tial considering the initial condition constraint, to distin-262

guish it from the total differential d that ignores that con-263

straint.264

The sensitivity of survivorship to perturba-265

tions in transition probabilities266

We can similarly construct the formulas for the sensitiv-267

ity of survivorship to perturbations in transition proba-268

bilities that apply for all three parameterizations. The di-269

rect effects on survivorship at age a+1 of perturbing state-270

transition probabilities at the immediately preceding age271

a are given by the matrix272

∂ℓ⊺a+1

∂ρ(c)
a

=



∂ℓh(a +1)

∂ρ(c)
1 (a)

∂ℓu(a +1)

∂ρ(c)
1 (a)

∂ℓh(a +1)

∂ρ(c)
2 (a)

∂ℓu(a +1)

∂ρ(c)
2 (a)

∂ℓh(a +1)

∂ρ(c)
3 (a)

∂ℓu(a +1)

∂ρ(c)
3 (a)

∂ℓh(a +1)

∂ρ(c)
4 (a)

∂ℓu(a +1)

∂ρ(c)
4 (a)


∈R4×2 (15)

(from the equation following Eq. S5.2.7 in González-273

Forero [2024]). With this, the direct effects on survivor-274

ship at any age of perturbing transition probabilities at275

any other age are given by the matrix276

∂ℓ⊺

∂ρ(c)
=



∂ℓ⊺0
∂ρ(c)

0

· · · ∂ℓ⊺n
∂ρ(c)

0
...

. . .
...

∂ℓ⊺0
∂ρ(c)

n

· · · ∂ℓ⊺n
∂ρ(c)

n



=



0
∂ℓ⊺1
∂ρ(c)

0

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
∂ℓ⊺n
∂ρ(c)

n−1
0 0 · · · 0 0


(16)

∈R4(n+1)×2(n+1)

(from Layer 2, Eq. S2b in González-Forero [2024]). 277

As the sensitivity of survivorship is the accumulation of 278

direct effects over life, the sensitivity of survivorship at age 279

j to a perturbation in survivorship at age a < j is given by 280

dℓ⊺j
dρ(c)

a

= ∂ℓ⊺a+1

∂ρ(c)
a

dℓ⊺j
dℓa+1

(17)

(from Eq. S5.2.17 in González-Forero [2024]), where the 281

first derivative on the right-hand side is given by Eq. (15) 282

and the second is given by Eq. (10). The sensitivity in 283

Eq. (17) can be more succinctly computed as the a-th 284

block row and a′-th block column of 285

dℓ⊺

dρ(c)
= ∂ℓ⊺

∂ρ(c)

dℓ⊺

dℓ

=



dℓ⊺0
dρ(c)

0

· · · dℓ⊺n
dρ(c)

0
...

. . .
...

dℓ⊺0
dρ(c)

n

· · · dℓ⊺n
dρ(c)

n



=



0
dℓ⊺1

dρ(c)
0

· · · dℓ⊺n−1

dρ(c)
0

dℓ⊺n
dρ(c)

0

0 0 · · · dℓ⊺n−1

dρ(c)
1

dℓ⊺n
dρ(c)

1
...

...
. . .

...
...

0 0 · · · 0
dℓ⊺n

dρ(c)
n−1

0 0 · · · 0 0


(18)

(from Eq. 10 and Eq. S5.2.16 in González-Forero [2024]). 286

The sensitivity of HLE 287

Since HLE = ∑n
a=0ℓh(a), the sensitivity of HLE to pertur- 288

bation in the i -th transition probability ρ(c)
i (a) of param- 289

eterization c at age a is (i ∈ {1, . . . ,4}): 290

s(c)
h,σ(i ,c),a = dHLE

dρ(c)
i (a)

=
n∑

j=a

dℓh( j )

dρ(c)
i (a)

, (19)

where σ is a function such that σ(i ,c) gives the input and 291

output states for the i -th entry of ρa under parameteri- 292

zation c (e.g., hh; Eq. (6)). We can write this equation in 293

a form that separates the factors that depend on the pa- 294

rameterization. Substituting Eq. (17) evaluated at the i -th 295

entry of ρ(c)
a and the h entry of ℓ⊺j into Eq. (19) yields 296

s(c)
h,σ(i ,c),a =

n∑
j=a

∂ℓ⊺a+1

∂ρ(c)
i (a)

dℓh( j )

dℓa+1
.

Taking the factor that is independent of j outside of the 297

sum yields 298

s(c)
h,σ(i ,c),a = ∂ℓ⊺a+1

∂ρ(c)
i a

n∑
j=a

dℓh( j )

dℓa+1
.
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Recalling that ℓa = (ℓh(a);ℓu(a)) and expanding the indi-299

cated matrix multiplication yields300

s(c)
h,σ(i ,c),a =∂ℓh(a +1)

∂ρ(c)
i (a)

n∑
j=a

dℓh( j )

dℓh(a +1)

+ ∂ℓu(a +1)

∂ρ(c)
i (a)

n∑
j=a

dℓh( j )

dℓu(a +1)
.

Denoting the two sums by A and B , respectively, we have301

s(c)
h,σ(i ,c),a =∂ℓh(a +1)

∂ρ(c)
i (a)

A+ ∂ℓu(a +1)

∂ρ(c)
i (a)

B. (20)

The quantities A and B do not depend on the parameter-302

ization because they only depend on the direct effects of303

states (Eq. (12)), which we will see are independent of the304

parameterization.305

The vector of sensitivities of HLE to perturbation in306

transition probabilities at age a for parameterization c is307

s(c)
ha = dHLE

dρ(c)
a

=
n∑

j=a

dℓh( j )

dρ(c)
a

. (21)

and over all ages is308

s(c)
h = dHLE

dρ(c)
=

n∑
j=a

dℓh( j )

dρ(c)
. (22)

Similarly, the sensitivity of HLE to independent pertur-309

bation in the initial conditions is given by310

dHLE

dℓ0
=

n∑
j=0

dℓh( j )

dℓ0
. (23)

which is the left column of the 2×2 matrix given in311

Eq. (13).312

The decomposition of HLE313

Following Caswell’s decomposition of the effect of a treat-314

ment on a vital rate ([Caswell, 1989], Caswell 2001, p. 261),315

we compute the contributions of marginally perturbed316

transitions to a change in HLE as follows: Consider two317

vectors of transition probabilities, ρ(c) and ρ(c)′ , and let318

HLE and HLE′ be the healthy life expectancies that arise319

under each of them. ρ(c) andρ(c)′ might be the health and320

mortality transitions of two distinct populations, or the321

same populations at two points in time, or an observed322

population versus a hypothetical scenario. The first order323

approximation of HLE′ with respect to ρ(c)′ around ρ(c) is324

HLE′ ≈ HLE+ dHLE

dρ(c)⊺

∣∣∣∣
ρ̄

(ρ(c)′ −ρ(c))

= HLE+
4∑

k=1

n∑
j=0

dHLE

dρ(c)
k ( j )

∣∣∣∣∣
ρ̄

(ρ(c)′
k ( j )−ρ(c)

k ( j ))

= HLE+
4∑

k=1

n∑
j=0

n∑
i=0

dℓh(i )

dρ(c)
k ( j )

∣∣∣∣∣
ρ̄

(ρ(c)′
k ( j )−ρ(c)

k ( j )),

(24)

where the derivative dℓh(i )/dρ(c)
k ( j ) necessarily evaluates325

to zero in ages i < j due to the upper triangular structure326

of the matrix Eq. (18). The derivatives are conventionally 327

evaluated at 328

ρ̄ = 1

2

(
ρ(c)′ +ρ(c)

)
(25)

to improve the approximation (Caswell 2001, p. 261-262). 329

Each k j -th term in the sums in Eq. (24) gives the contri- 330

bution of the k-th transition probability at age j to the re- 331

sulting differences in HLE. 332

Hence, denoting δ=ρ(c)′−ρ(c) and∆= HLE′−HLE, we 333

have 334

∆≈δ⊺s(c)
h |p̄, (26)

which is the dot product between the vectors δ and s(c)
h |p̄ 335

returning the scalar∆. Since in Eq. (26), both the sensitiv- 336

ity vector and perturbation vector depend on the param- 337

eterization c as we will see, the effect on HLE of changing 338

state transitions depends on the parameterization. 339

Parameterization 1 340

We now compute the matrices of direct effects for P1. The 341

direct effects of the states on themselves under P1 are 342

(Eq. (8)): 343

∂ℓh(a +1)

∂ℓh(a)
= phh(a) (27a)

∂ℓh(a +1)

∂ℓu(a)
= puh(a) (27b)

∂ℓu(a +1)

∂ℓu(a)
= puu(a) (27c)

∂ℓu(a +1)

∂ℓh(a)
= phu(a). (27d)

We then have the matrix of direct effects of states at age a: 344

∂ℓ⊺a+1

∂ℓa
=


∂ℓh(a +1)

∂ℓh(a)

∂ℓu(a +1)

∂ℓh(a)

∂ℓh(a +1)

∂ℓu(a)

∂ℓu(a +1)

∂ℓu(a)

=
(

phh(a) phu(a)
puh(a) puu(a).

)
.

(28)

which equals the transition matrix due to the linearity of 345

g(c) with respect to states in Eq. (7). 346

Similarly, the direct effects of the transitions on healthy 347

years lived in the next age, ℓh(a + 1), are (Eq. (15) under 348

P1): 349

∂ℓh(a +1)

∂ρ(P1)
1 (a)

= ∂ℓh(a +1)

∂phh(a)
= ℓh(a) (29a)

∂ℓh(a +1)

∂ρ(P1)
2 (a)

= ∂ℓh(a +1)

∂puh(a)
= ℓu(a) (29b)

∂ℓh(a +1)

∂ρ(P1)
3 (a)

= ∂ℓh(a +1)

∂puu(a)
= 0 (29c)

∂ℓh(a +1)

∂ρ(P1)
4 (a)

= ∂ℓh(a +1)

∂phu(a)
= 0, (29d)

and the direct effects of the transitions on the reduced 350
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health state are:351

∂ℓu(a +1)

∂ρ(P1)
1 (a)

= ∂ℓu(a +1)

∂phh(a)
= 0 (30a)

∂ℓu(a +1)

∂ρ(P1)
2 (a)

= ∂ℓu(a +1)

∂puh(a)
= 0 (30b)

∂ℓu(a +1)

∂ρ(P1)
3 (a)

= ∂ℓu(a +1)

∂puu(a)
= ℓu(a) (30c)

∂ℓu(a +1)

∂ρ(P1)
4 (a)

= ∂ℓu(a +1)

∂phu(a)
= ℓh(a). (30d)

We then have the matrix of direct effects of the transitions352

on the states at a353

∂ℓ⊺a+1

∂ρ(P1)
a

=



∂ℓh(a +1)

∂phh(a)

∂ℓu(a +1)

∂phh(a)

∂ℓh(a +1)

∂puh(a)

∂ℓu(a +1)

∂puh(a)

∂ℓh(a +1)

∂puu(a)

∂ℓu(a +1)

∂puu(a)

∂ℓh(a +1)

∂phu(a)

∂ℓu(a +1)

∂phu(a)


=


ℓh(a) 0
ℓu(a) 0

0 ℓu(a)
0 ℓh(a)

 .

(31)

Parameterization 2354

We now compute the matrices of direct effects for P2.355

The direct effects of the states on themselves under P2356

are (Eq. (8)):357

∂ℓh(a +1)

∂ℓh(a)
= 1−phd(a)−phu(a) (32a)

∂ℓh(a +1)

∂ℓu(a)
= puh(a) (32b)

∂ℓu(a +1)

∂ℓh(a)
= phu(a) (32c)

∂ℓu(a +1)

∂ℓu(a)
= 1−pud(a)−puh(a). (32d)

We then have the matrix of direct effects of states at age a:358

∂ℓ⊺a+1

∂ℓa
=


∂ℓh(a +1)

∂ℓh(a)

∂ℓu(a +1)

∂ℓh(a)

∂ℓh(a +1)

∂ℓu(a)

∂ℓu(a +1)

∂ℓu(a)


=

(
1−phd(a)−phu(a) phu(a)

puh(a) 1−pud(a)−puh(a).

)
,

(33)

the entries of which are identical to that for P1 in Eq. (28)359

due to Eq. (1).360

Similarly, the direct effects of the transitions on healthy361

years lived in the next age, ℓh(a + 1), under P2 are362

(Eq. (15)): 363

∂ℓh(a +1)

∂ρ(P2)
1 (a)

= ∂ℓh(a +1)

∂phd(a)
=−ℓh(a) (34a)

∂ℓh(a +1)

∂ρ(P2)
2 (a)

= ∂ℓh(a +1)

∂puh(a)
= ℓu(a) (34b)

∂ℓh(a +1)

∂ρ(P2)
3 (a)

= ∂ℓh(a +1)

∂pud(a)
= 0 (34c)

∂ℓh(a +1)

∂ρ(P2)
4 (a)

= ∂ℓh(a +1)

∂phu(a)
=−ℓh(a), (34d)

and the direct effects of the transitions on unhealthy years 364

lived in the next age, ℓu(a +1), are: 365

∂ℓu(a +1)

∂ρ(P2)
1 (a)

= ∂ℓu(a +1)

∂phd(a)
= 0 (35a)

∂ℓu(a +1)

∂ρ(P2)
2 (a)

= ∂ℓu(a +1)

∂puh(a)
=−ℓu(a) (35b)

∂ℓu(a +1)

∂ρ(P2)
3 (a)

= ∂ℓu(a +1)

∂pud(a)
=−ℓu(a) (35c)

∂ℓu(a +1)

∂ρ(P2)
4 (a)

= ∂ℓu(a +1)

∂phu(a)
= ℓh(a). (35d)

We then have the matrix of direct effects of the transitions 366

on the states at age a 367

∂ℓ⊺a+1

∂ρ(P2)
a

=



∂ℓh(a +1)

∂phd(a)

∂ℓu(a +1)

∂phd(a)

∂ℓh(a +1)

∂puh(a)

∂ℓu(a +1)

∂puh(a)

∂ℓh(a +1)

∂pud(a)

∂ℓu(a +1)

∂pud(a)

∂ℓh(a +1)

∂phu(a)

∂ℓu(a +1)

∂phu(a)


=


−ℓh(a) 0
ℓu(a) −ℓu(a)

0 −ℓu(a)
−ℓh(a) ℓh(a)

 ,

(36)

which is different from that of P1 in Eq. (31). 368

Parameterization 3 369

We now compute the matrices of direct effects for P3. 370

The direct effects of the states on themselves for P3 un- 371

der P3 are (Eq. (8)): 372

∂ℓh(a +1)

∂ℓh(a)
= phh(a) (37a)

∂ℓh(a +1)

∂ℓu(a)
= 1−pud(a)−puu(a) (37b)

∂ℓu(a +1)

∂ℓh(a)
= 1−phd(a)−phh(a) (37c)

∂ℓu(a +1)

∂ℓu(a)
= puu(a). (37d)
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We then have the matrix of direct effects of states at a:373

∂ℓ⊺a+1

∂ℓa
=


∂ℓh(a +1)

∂ℓh(a)

∂ℓu(a +1)

∂ℓh(a)

∂ℓh(a +1)

∂ℓu(a)

∂ℓu(a +1)

∂ℓu(a)

 (38)

=
(

phh(a) 1−phd(a)−phh(a)
1−pud(a)−puu(a) puu(a).

)
.

(39)

whose entries are identical to those of P1 in Eq. (28) due374

to Eq. (1).375

Similarly, the direct effects of the transitions on healthy376

years lived in the next age, ℓh(a + 1), under P3 are377

(Eq. (15)):378

∂ℓh(a +1)

∂ρ(P3)
1 (a)

= ∂ℓh(a +1)

∂phh(a)
= ℓh(a) (40a)

∂ℓh(a +1)

∂ρ(P3)
2 (a)

= ∂ℓh(a +1)

∂puu(a)
=−ℓu(a) (40b)

∂ℓh(a +1)

∂ρ(P3)
3 (a)

= ∂ℓh(a +1)

∂pud(a)
=−ℓu(a) (40c)

∂ℓh(a +1)

∂ρ(P3)
4 (a)

= ∂ℓh(a +1)

∂phd(a)
= 0, (40d)

and the direct effects of the transitions on unhealthy years379

lived in the next age, ℓu(a +1), are:380

∂ℓu(a +1)

∂ρ(P3)
1 (a)

= ∂ℓu(a +1)

∂phh(a)
=−ℓh(a) (41a)

∂ℓu(a +1)

∂ρ(P3)
2 (a)

= ∂ℓu(a +1)

∂puu(a)
= ℓu(a) (41b)

∂ℓu(a +1)

∂ρ(P3)
3 (a)

= ∂ℓu(a +1)

∂pud(a)
= 0 (41c)

∂ℓu(a +1)

∂ρ(P3)
4 (a)

= ∂ℓu(a +1)

∂phd(a)
=−ℓh(a). (41d)

We then have the matrix of direct effects of the transitions381

on the states at a382

∂ℓ⊺a+1

∂ρ(P3)
a

=



∂ℓh(a +1)

∂phh(a)

∂ℓu(a +1)

∂phh(a)

∂ℓh(a +1)

∂puu(a)

∂ℓu(a +1)

∂puu(a)

∂ℓh(a +1)

∂pud(a)

∂ℓu(a +1)

∂pud(a)

∂ℓh(a +1)

∂phd(a)

∂ℓu(a +1)

∂phd(a)


=


ℓh(a) −ℓh(a)
−ℓu(a) ℓu(a)
−ℓu(a) 0

0 −ℓh(a)

 .

(42)

which is different from those of P1 in Eq. (31) and P2 in383

Eq. (36).384

Symmetries between the sensitivities385

of each parameterization386

From Eq. (20), many relationships between the sensitivi-387

ties follow. Some examples are below.388

Using the direct effects of transitions in Eq. (20), for P1 389

(Eq. (31)) we have the sensitivities 390

s(P1)
h,σ(1,1),a = s(P1)

h,hh,a = ℓh(a)A (43a)

s(P1)
h,σ(2,1),a = s(P1)

h,uh,a = ℓu(a)A (43b)

s(P1)
h,σ(3,1),a = s(P1)

h,uu,a = ℓu(a)B (43c)

s(P1)
h,σ(4,1),a = s(P1)

h,hu,a = ℓh(a)B. (43d)

For P2 (Eq. (36)), we have the sensitivities 391

s(P2)
h,σ(1,2),a = s(P2)

h,hd,a =−ℓh(a)A (44a)

s(P2)
h,σ(2,2),a = s(P2)

h,uh,a = ℓu(a)A−ℓu(a)B (44b)

s(P2)
h,σ(3,2),a = s(P2)

h,ud,a =−ℓu(a)B (44c)

s(P2)
h,σ(4,2),a = s(P2)

h,hu,a =−ℓh(a)A+ℓh(a)B. (44d)

For P3 (Eq. (42)), we have the sensitivities 392

s(P3)
h,σ(1,3),a = s(P3)

h,hh,a = ℓh(a)A−ℓh(a)B (45a)

s(P3)
h,σ(2,3),a = s(P3)

h,uu,a =−ℓu(a)A+ℓu(a)B (45b)

s(P3)
h,σ(3,3),a = s(P3)

h,ud,a =−ℓu(a)A (45c)

s(P3)
h,σ(4,3),a = s(P3)

h,hd,a =−ℓh(a)B. (45d)

Hence, for instance, dividing Eqs. (43a) and (43b), or 393

(43d) and (43c), we obtain the sensitivity ratios 394

s(P1)
h,hh,a

s(P1)
h,uh,a

=
s(P1)

h,hu,a

s(P1)
h,uu,a

= ℓh(a)

ℓu(a)
. (46a)

Also, from Eqs. (43a) and (44a), or from Eqs. (43c) and 395

(44c), we have a sensitivity relationship between P1 and 396

P2 397

s(P1)
h,hh,a + s(P2)

h,hd,a = s(P1)
h,uu,a + s(P2)

h,ud,a = 0. (46b)

Similarly, from Eqs. (43b) and (45c), or from Eqs. (43d) 398

and (45d), we have a relationship between the sensitivi- 399

ties of P1 and P3 400

s(P1)
h,uh,a + s(P3)

h,ud,a = s(P1)
h,hu,a + s(P3)

h,hd,a = 0. (46c)

Along the same lines, from Eqs. (44b) and (45b), or from 401

Eqs. (44c) and (45a), we have a relationship between P2 402

and P3 403

s(P2)
h,uh,a + s(P3)

h,uu,a = s(P2)
h,hu,a + s(P3)

h,hh,a = 0. (46d)

From Eqs. (44b), (43b), and (43c), we can also write a sen- 404

sitivity under P2 in terms of sensitivities under P1 405

s(P2)
h,uh,a = s(P1)

h,uh,a − s(P1)
h,uu,a . (46e)

From Eqs. (44d), (43a), and (43d), we can similarly write 406

another sensitivity under P2 in terms of sensitivities un- 407

der P1 408

s(P2)
h,hu,a =−s(P1)

h,hh,a + s(P1)
h,hu,a . (46f)

From Eqs. (45a), (43a), and (43d), we can further write a 409

sensitivity under P3 in terms of sensitivities under P1 410

s(P3)
h,hh,a = s(P1)

h,hh,a − s(P1)
h,hu,a , (46g)
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and from Eqs. (45b), (43b), and (43c), we can further write411

another sensitivity under P3 in terms of sensitivities un-412

der P1413

s(P3)
h,uu,a =−s(P1)

h,uh,a + s(P1)
h,uu,a . (46h)

Aside from giving us a healthy dose of ambiguity re-414

garding the drivers of HLE differences, these symmetries415

can be used to help translate the sensitivities of one pa-416

rameterization to those of another without the need for417

further re-framing or recalculation of the whole sensitiv-418

ity exercise. Especially for HLE calculated using P1 (the419

transitions widely used in the matrix algebra approach),420

one might nonetheless wish to discuss decomposition re-421

sults in terms of P2 sensitivities.422

Data423

Lievre et al. [2003] give parameters for their fitted model424

of transition probabilities in their Table 2. We convert425

these parameters directly to monthly transition probabil-426

ities for ages 50 through 110 for males and females using427

their equation 33 and the ALR inverse implementation of428

the {compositions} R package [van den Boogaart et al.,429

2022]. We then convert these to annual transition proba-430

bilities by raising age-step submatrices to the 12th matrix431

power using the {expm} R package [Goulet et al., 2021].432

We display the resulting transition probabilities in Fig. 2.433

Results434

Using the transitions estimated by Lievre et al. [2003] we435

calculate health expectancies. We compute the initial436

conditions at age 50 (ℓi (0), where 0 here means age 50)437

assuming that the probabilities we have for age 50 are438

constant in younger ages. With these initial conditions,439

the probabilities of Fig. 2 imply the expectancies shown440

in Table 1, where HLE is specifically disability free life441

expectancy (DFLE) and ULE is disabled life expectancy442

(DLE).443

Table 1: Expectancies derived from Lievre et. al. (2003)
Sex DFLE DLE LE

Females 27.15 2.84 29.99
Males 25.69 1.67 27.37

Difference 1.46 1.17 2.62

Sex differences shown in the last row of Table 1 are the444

differences we now aim to decompose in terms of Lievre445

et al.’s [2003] transition probabilities. Differences in ex-446

pectancies are due to transition parameter differences447

(see appendix Fig. 5), but their net contribution to the dif-448

ference depends on the model parameterization.449

Applying the Eq. (22) for the three parameterizations450

(P1 = “no-death”, P2 = “no-self”, P3 = “no-health”), we451

generate the sensitivities displayed in Fig. 3 (only females452

shown), where one may visually verify that sensitivities453

for the same transition vary in important ways depending454

on which parameter case is used. Some of the symmetries455
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Figure 2: Transition probabilities re-computed from
Lievre et al. [2003]
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Figure 3: Sensitivities for women, for parameterizations
P1, P2, and P3, for disability free life expectancy (DFLE)
and disabled life expectancy (DLE), re-computed from
Lievre et al. [2003]. Note the different scales in the ver-
tical axes for DFLE and DLE.

and equalities mentioned in Eq. (46) may also be spot-456

ted in Fig. 3. We show the sensitivities for DFLE and DLE457

(note vertical axis different ranges), and omit LE, which is458

also the sum of the other two and looks qualitatively like459

that of DFLE in this example. Male and female sensitivi-460

ties for all expectancies can be found in Appendix B.461

To explain why it is that males have 1.46 fewer years462

lived disability-free than females, we should multiply a463

sensitivity by the corresponding difference in transitions464

per Eq. (26). Clearly, from the results in Fig. 3, we know465

that main findings will be heavily dependent on the pa-466

rameterization used to calculate the sensitivity (P1-P3).467

Following Eq.(26) the decomposition results as shown in468

Fig. 4 (here only shown for female DFLE) are indeed strik-469

ingly different.470

Not only do age patterns of decomposition results dif-471

fer depending on which parameterization we choose, but472

marginal sums for the given transition types differ, per Ta-473

ble 2.474
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Figure 4: Decompositions of the sex difference (female -
male) for parameterizations P1, P2, and P3, for disability
free life expectancy (DFLE) and disabled life expectancy
(DLE), re-computed from Lievre et al. [2003].

Transition P1 P2 P3
phd 0.95 0.07
phh 1.53 0.89
phu -0.57 0.01
pud 0.55 1.32
puh -0.15 -0.08
puu 0.62 -0.85
Init. Cond. 0.02 0.02 0.02
Total 1.45 1.45 1.45
Residual 0.00 0.00 0.00

Table 2: Marginal sums of the transition components of
the decomposition of the sex gap in DFLE based on tran-
sitions derived from Lievre et al. [2003].

The total effects of different transitions in Table 2 lead 475

to qualitatively different understandings and, therefore, 476

might recommend different intervention priorities. Note 477

that for each parameterization we arrive at the same ef- 478

fect of the initial state mixture (more favorable for fe- 479

males), and the same total over all transitions. The re- 480

maining residual is comparatively small (≈ 0.001). 481

Discussion 482

A case for P2 decomposition of HLE 483

In each of the three parameterizations considered, one 484

type of transition is lacking: For P1 this is mortality, P2 485

lacks self-transitions, and P3 lacks health-transitions. Re- 486

fer to the DFLE (HLE) sensitivities depicted in the top 487

panel of Fig. 3, specifically the green lines, which refer to 488

the sensitivity to a perturbation in phu, a transition only 489

included in parameterizations 1 and 2. For P1, this sen- 490

sitivity is positive, but for P2, it is negative. That is, un- 491

der P1 an increase in phu increases DFLE, whereas under 492

P2, it decreases DFLE. What are we to make of this? Each 493
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is mathematically correct, given the respective recursion494

systems P1 and P2, but only one of these two stands up495

to substantive scrutiny: the effect of increasing disability496

onset is unambiguously to decrease DFLE, not increase497

it. Consider an axiom: exiting a state cannot lead to in-498

creased time spent in the state being left. For our data499

application, women had a lower disability onset before500

age 74 and a higher onset in older ages; hence, the de-501

composition effect of this transition seen in Fig. 4 only502

gives the expected pattern for P2: a positive contribution503

to the female DFLE advantage before the crossover age,504

and a negative contribution thereafter. In the net, for P2,505

the small female advantage in younger ages has a slightly506

larger positive effect than the disadvantage in older ages.507

The unintuitive opposite would hold for P1. A similar ar-508

gument could be made for the recovery transition puh,509

which is harder to see in the figures as it plays a smaller510

role. On the other hand, each transition in P2 has an in-511

tuitive sensitivity sign: increases in mortality reduce oc-512

cupancy times, and increases in health transitions out of513

origin state i reduce occupancy time in i and increase it514

in destination state j . The sensitivity of HLE to increases515

in puu and the sensitivity of ULE to increases in phh are516

each inconsistent between P1 and P3. An increased prob-517

ability of staying in state i has an ambiguous effect on518

occupancy time in the other state j : remaining in state519

i might (1) increase the chance of future transitions to j ,520

thereby indirectly increasing time in j , or it might (2) in-521

crease the chances of death in i , at the expense of poten-522

tial time spent in j .523

A softer and simpler argument for P2 may also be made,524

at least for models of health and mortality: If one finds525

P3 unsettling, due to its lack of health transitions — after526

all, this is a model of health and mortality — then P1 may527

now strike the same feeling for its lack of mortality, at least528

for this family of research questions. Specifically, for pur-529

poses of decomposition, treating attrition as the funda-530

mental force lends itself to straightforward interpretation531

for the present application of multistate models. Other532

sorts of substantive arguments for preferring different pa-533

rameterizations are also possible, and by no means do we534

rule them out, especially but not only for other domains535

of multistate model application.536

A decomposition based on P2 will always attribute dif-537

ferences to mortality or health transitions. This is also538

the closest analog among the three parameterizations539

to what a direct decomposition of Sullivan-style [Sulli-540

van, 1971] inputs attempts to achieve: differences are541

due to mortality (a life table envelope) or health (preva-542

lence) [Andreev et al., 2002, Nusselder and Looman, 2004,543

Shkolnikov et al., 2017], strong endogeneity between the544

mortality and prevalence notwithstanding. To the extent545

that transitions are well-estimated, the decomposition of546

incidence-based HLE using P2 gives more reliable and547

actionable information than a Sullivan-style decomposi-548

tion: Mortality components are separated by states, and549

health is represented by flows (transitions) rather than a550

stock variable (prevalence).551

Comparison with other approaches 552

There are two versions of multistate decomposition of 553

HLE that we know about [Shen et al., 2023, Moretti et al., 554

2023]. 555

Shen et al. [2023] also decomposed a sex gap in HLE us- 556

ing data from Payne [2022], following an approach anal- 557

ogous to P1. According to our symmetry findings (com- 558

pare e.g. Eqs. (43a) and (44a)), their interpretation of the 559

effects of remaining healthy or unhealthy was correctly 560

interpreted as due to mortality differences, although the 561

respective magnitudes will be somewhat different due to 562

differently composed δ used in Eq. (26), which destroys 563

the symmetry. Referring to our own example, this loss of 564

symmetry is somewhat visible in comparing the lines for 565

e.g. P1 phh and P2 phd in Fig. 4, but it is easier to spot in 566

Table 2 where we see the marginal total for phh in P1 is 567

1.51, whereas the corresponding phd effect in P2 amounts 568

to 0.95, despite these two transitions having exactly sym- 569

metrical sensitivities between P1 and P2. 570

More problematically, the overall effects of onset and 571

recovery (phu and puh, respectively) are very different 572

from those of P2. In the Shen et al. [2023] data, females 573

show a higher probability of disability onset (phu) in all 574

ages, yet the effect was interpreted to have contributed to 575

the sex-gap in HLE rather than attenuate it, as per P2 and 576

our own intuition. As described in the section on sym- 577

metries, one could translate the Shen et al. [2023] results 578

to an attrition-only interpretation (P2) with a few simple 579

steps. We offer a short reanalysis of the Shen et. al. results 580

in the code repository. 581

Moretti et al. [2023] take a decomposition approach 582

based on P2, but using the Horiuchi et al. [2008] method, 583

which eliminates the need for an analytic sensitivity, al- 584

beit at high computational cost, especially if confidence 585

intervals are desired. Our analytic approach is more com- 586

putationally efficient if bootstrapping is required. Point 587

estimates of decomposition effects should be consistent 588

between the two approaches. 589

General guidance 590

As mentioned, each of the three parameterizations re- 591

sults in decompositions with consistent overall sums, but 592

most likely slightly off from the observed difference in ex- 593

pectancies (too small for two decimal places in Table 2). 594

This residual can be forced to 0 either (i) by calculating the 595

sensitivity from parameters at a well-selected intermedi- 596

ate point (we used the average of females and male health 597

and mortality transitions, see Caswell [2001], p. 261-262) 598

or (ii) by repeating the exercise interpolated over small in- 599

tervals, partly borrowing the linear integral strategy from 600

Horiuchi et al. [2008], in which case the residual ap- 601

proaches 0 as the number of interpolation steps between 602

parameter sets increases. The researcher should weigh 603

whether such steps are really necessary, as these will add 604

both programming and computational overhead to the 605

problem, whereas the size of the residual is usually triv- 606

ial. We give R code demonstrating how to implement both 607

approaches in the reproducibility repository, and we find 608

that the optimization strategy (i) is more computationally 609
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efficient than the interpolation strategy (ii).610

Marginal age patterns of decomposition results are611

equal between the different parameterizations, and we612

give R code to demonstrate this in the repository. Know-613

ing the overall age pattern explaining an observed differ-614

ence in health expectancy is not particularly informative615

beyond contextualizing more detailed results. Unlike an616

all-cause life expectancy decomposition, where it is suffi-617

cient to determine the effects of a particular age group, for618

multistate processes, we would like to know the influence619

of each transition.620

One should bear in mind, especially if these methods621

are used to decompose overall life expectancy (LE), that622

results are expected to vary depending on which health623

conditions are considered. In our example (See appendix624

Table 4), we see that sex differences in LE are almost en-625

tirely explained by mortality, whereas contributions from626

health transitions balance out.627

In this paper, we only treat the case of two transient628

and reversible states, a rather simple model as multistate629

models go. Further work is required to generalize our an-630

alytic solution to a more general representation of state631

spaces. Our recommendation to use the attrition-only632

parameterization (P2) for sensitivities and decomposition633

applies only to models of health and mortality. Other ap-634

plications of multistate models should carefully consider635

which parameterization produces the soundest decom-636

position results.637

Conclusions638

We describe a problem in the decomposition of discrete639

time multistate models that to our knowledge, has never640

been described in the literature: Decomposition results641

and interpretations depend on which transition probabil-642

ities are used to calculate the expectancy (or other syn-643

thetic index). We have treated this problem for one of644

the simplest recurrent multistate models: a health model645

with two reversible health states and death. We give three646

redundant parameterizations standing for different sub-647

sets of transition parameters to calculate the same value648

of health expectancy. For each of these parameteriza-649

tions, we give corresponding formulas to calculate pa-650

rameter sensitivities for expectancies. We show that the651

sensitivity of HLE (or ULE or LE) to a given transition652

can be very different, depending on the parameterization653

used to calculate it, and that this inequality between pa-654

rameterizations translates to inequality between decom-655

position results. Therefore, researchers must take care656

when interpreting decomposition results from multistate657

models. Certain symmetries and equalities exist between658

the sensitivities under different parameterizations, which659

can be exploited to translate sensitivities (and, by exten-660

sion, decomposition results) under one parameterization661

to those under another. We argue that the interpretation662

of HLE and related decomposition results is best for at-663

trition parameters (P2). We use transition probabilities664

recovered from Lievre et al. [2003] to illustrate these con-665

cepts.666
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Appendices779

A Parameter differences780

In this appendix, we show sex differences in transition parameters, the δ from e.g. Eq. 26.781
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Figure 5: Differences in transition probabilities (female - male) re-computed from Lievre et al. [2003]

B All sensitivities782

In this appendix, we show all sensitivities for DFLE, DLE, LE, and all three parameterizations for both males and783

females. The values depicted in Fig. 6 are also available in the main repository in the file all_sensitivities.csv.784

Sensitivity to initial conditions are not depicted in the Figure. These values are given in Table 3.785

sex DFLE DLE LE
1 f 4.87 -2.56 2.31
2 m 7.80 -1.77 6.03

Table 3: Sensitivities to initial conditions for parameterizations P1, P2, and P3, for disability free life expectancy (DFLE)
and disabled life expectancy (DLE), and total life expectancy (LE) for males and females re-computed from Lievre et al.
[2003]

C All decompositions786

In this appendix, we show sex-decompositions for all three parameterizations of DFLE, DLE, LE. The values depicted787

in Fig. 7 are also available in the main repository in the file all_decompositions.csv. Effects due to initial condi-788

tions are identical for the three parameterizations.789

This next table is generated excluding the computed effects of initial conditions. Notice the far smaller residuals.790

Possibly need to rethink initial conditions sensitivity calculations.791
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Figure 6: Sensitivities for parameterizations P1, P2, and P3, for disability free life expectancy (DFLE), disabled life
expectancy (DLE), and total life expectancy (LE) for males and females using parameters re-computed from Lievre
et al. [2003] Vertical axis ranges vary by expectancy.
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life expectancy (DLE), and total life expectancy (LE), using parameters calculated from Lievre et al. [2003] Vertical axis
ranges vary by expectancy.
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Expectancy Component P1 P2 P3

DFLE

phd 0.95 0.07
phh 1.53 0.89
phu -0.57 0.01
pud 0.55 1.32
puh -0.15 -0.08
puu 0.62 -0.85
Init. Cond. 0.02 0.02 0.02
Total 1.45 1.45 1.45
Residual 0.00 0.00 0.00

DLE

phd 0.46 0.80
phh 0.34 -0.30
phu 0.17 0.05
pud 0.61 0.34
puh -0.03 0.03
puu 0.67 0.30
Init. Cond. -0.01 -0.01 -0.01
Total 1.14 1.14 1.14
Residual 0.03 0.03 0.03

LE

phd 1.41 0.87
phh 1.86 0.59
phu -0.40 0.05
pud 1.16 1.66
puh -0.18 -0.05
puu 1.30 -0.55
Init. Cond. 0.02 0.02 0.02
Total 2.59 2.59 2.59
Residual 0.03 0.03 0.03

Table 4: Transition margins from sex decompositions for parameterizations P1, P2, and P3, for disability free life
expectancy (DFLE), disabled life expectancy (DLE), and total life expectancy (LE), using parameters calculated from
Lievre et al. [2003]
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