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Abstract

Background Previous research has proposed an analytic method to decompose healthy life expectancy (HLE) in
discrete-time multistate frameworks, which relies on a particular parameterization for calculation. No published work
has considered how different HLE parameterizations might give inconsistent decomposition results and interpretations.

Objective We aim to explain (i) why HLE sensitivity and decomposition results are different between three specific
multistate parameterizations, (ii) how to translate decomposition results between different parameterizations, and
(iii) to propose the use of one parameterization for the interpretation of HLE decompositions.

Methods We compute the analytic sensitivities for three different HLE parameterizations by applying formulas for the
sensitivity of a recurrence. This enables us to decompose HLE using the life table response experiment approach and
analytically compare the three parameterizations. For our example data, we derive the transition probabilities between
health states from coefficients and formulas available in the literature, which summarize disability and mortality in the
USA between 1986 and 1990. With these transitions, we calculate parameter sensitivities and decompose the sex gap in
HLE under the three different parameterizations.

Results We obtain disability-free and disabled life expectancies (DFLE, DLE, respectively) and their sensitivities and
decompositions under three parameterizations. We show how the choice of parameterization affects the interpretation
of decomposition results on sex differences in DFLE (DLE). We give formulas to translate the sensitivity results between
parameterizations.

Conclusions Researchers should consider the choice of parameterization when calculating the sensitivity or decom-
position of a recurrence. We suggest the use of an attrition-based parameterization when interpreting HLE sensitivity

and decomposition.

Introduction

Healthy life expectancy (HLE), a measure of a popula-
tion’s average years in good health, is of primary impor-
tance in contemporary public health monitoring and de-
mographic research. HLE is often calculated by com-
bining information from a life table and the prevalence
of a health state, the so-called Sullivan method [Sulli-
van, 1971]. Multistate models of HLE offer a represen-
tation of health dynamics based on transitions between
health states and mortality risks differentiated by health
states. Demographic decomposition is a tool to help un-
derstand what accounts for the differences between two
populations in summary measures, such as HLE. Decom-
positions of differences in Sullivan HLE partition differ-
ences into prevalence and mortality components [Nus-
selder and Looman, 2004, Shkolnikov et al., 2017], but
they are unable to determine how much of a difference
is due to onset versus recovery from a health condition,

*tim.riffe@ehu.eus
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#Mauricio.GonzalezForero@gmail.com

or how much is due to mortality differentiated by health
state. Decomposition of multistate HLE tells us which
ages and transitions matter for explaining differences be-
tween populations. Such decomposition results can tell
us which transitions to alter or improve to narrow such
inequalities.

Shen et al. [2023] propose an analytic method to de-
compose discrete-time multistate indices, such as HLE,
into the respective contributions of health transitions.
This method is an instance of the Life Table Response
Experiment approach to decomposition [Caswell, 1989],
which is based on the sensitivity of survivorship to transi-
tion parameters. Shen’s method is designed for a specific
HLE parameterization used in matrix algebra calculations
[Caswell and van Daalen, 2021], which does not explicitly
rely on transitions to death. It yields a decomposition re-
sult and interpretation that are specific to and internally
consistent for this mortality-free parameterization.

In any multistate model, different parameterizations
of the age-dynamics of health survivorship can be used
to obtain the same HLE estimate. At first glance triv-
ial, this observation is consequential when decomposing
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HLE differences. Reliable and consistent decomposition
results are of utmost importance if demographic decom-
position is to be used as a means to identify priorities
among interventions designed to modify health transi-
tions and mortality. We show that the parameterization
chosen to decompose differences in HLE affects the es-
timated size and sign of the response of HLE to interven-
tion. For instance, altering the rate at which people return
from poor to good health may increase or decrease HLE
depending on the parameterization chosen. That is a big
problem. This discrepancy was pointed out by Riffe [2021,
2022] on the basis of decompositions using the linear in-
tegral decomposition approach of Horiuchi et al. [2008],
but further insights were hindered by a lack of analytic
treatment. In this paper we use the general formulas de-
rived by Gonzdlez-Forero [2024] for the sensitivity of a re-
currence to describe and treat this problem analytically
for a simple multistate model.

We begin with the basic setup by presenting three pa-
rameterizations for the state transition probabilities that
can be used to calculate multistate HLE. We then show
how the life table response experiment decomposition
method [Caswell, 1989] works with these three parame-
ter cases, each of which implies different sensitivity equa-
tions. We then discuss selected aspects of symmetry be-
tween the sensitivities of these three parameterizations
and how to transform between them.

To illustrate these findings, we use the estimates of
transition probabilities recalculated from Lievre et al.
[2003] to calculate the sensitivities for each of the three
parameterizations and then decompose the sex gap in
HLE. On the basis of this application, we argue for the use
of a particular one of our three parameterizations when
decomposing HLE. Specifically, we argue that HLE de-
compositions yield more intuitive interpretations when
transition parameters are limited to forces of attrition, i.e.,
excluding within-state transitions.

Three parameterizations to calculate healthy
life expectancy

Consider a population where individuals are in one of two
health states, namely full health (h) or reduced health (u),
or a single absorbing state of death (d). A life trajectory
can be summarized as a sequence of states in succes-
sive ages, Z(a). Denote the probability that an individ-
ual transitions from state i and age a to state j in age
a+1as P(Z(a+1) = jlZ(a) = i) or in a simplified form
as p;j(a). Let £;(a) be the fraction of individuals that have
survived from age 0 to age a and are in state i at age a. Say
we know or compute the initial composition (or radix) as
£;(0) = P(Z(0) = i), where }_; £;(0) = 1. In this basic multi-
state model, the set of all possible transition probabilities
in a given age a includes:

prn(a): remain in full health
pPhu(a): move from full to reduced health
Phd(a): move from full health to death

pun(a): move from reduced to full health

Figure 1: State space diagram for the discrete time health
model considered.
p

h phn

plul

d

puu(a): remain in reduced health
pud(a): move from reduced health to death,

and these can be displayed in a diagram like in Fig. 1.

A hypothetical individual in this model necessarily
moves from a transient health state (h, u) to one of the
three possible states (h, u, d), such that the possible tran-
sitions from a given origin state sum to one:

(@)=1
(a)=1.

(1a)
(1b)

pra(@) + pru(@) +p
pud(@ + pun(a@) +p
Given the radix composition ¢;(0), one can compute

the state-specific survivorship ¢;(a+1) at the next age us-
ing:

th(a+1)=lh(a)p
lyla+1)=Cly(a)p

(2a)
(2b)

(@) +lu(@)pun (@)
(a) + Lﬂh((l)phu (a),

where ¢}, (a) is the fraction of survivors in good health in
the a age group, and ¢y (a) is the fraction of survivors
in poor health. HLE is then approximately given by the
marginal sum of ¢}, over age, and its unhealthy counter-
part ULE is approximated in like form:

HLE=) /¢4(a) (3a)

ULE=) ¢y(a). (3b)
a

Eq. (3a) is an upward-biased approximation of HLE, with
an error usually around half an age interval, which we ig-
nore in the following, although one could add precision
using the approach of Schneider et al. [2023].

The first parameterization (parameterization 1, here-
inafter P1) given in Eq. (2) is the most common way to
calculate HLE, or rather its matrix algebra equivalent

([h(a+ 1)) B (p (@ p (a)) (Zh(a))
B (@) \lu(a)

ly(a+1) pru(@ p *1
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as described by Caswell and van Daalen [2021]. This for-
mulation uses only transitions between and within health
states (punh, Phu, Puh, Puu), and it does not use death tran-
sitions directly. One could compute the same values of ¢/},
and ¢, in other ways, however. Parameterization 2 (P2)
shown in Eq. (4) is based only on transitions capturing “at-
trition”, as it lacks py;, and p

th(a+1)=h(@) (1- puu(@ - pra(@) + (@ pun (@

(4a)
Cula+1)=0y(@ (1 - pun(@) = pua(@) + €n(@) pru(a)
(4b)
or, equivalently,
lhla+1) _
lula+1))
(1 ~ Phu(@ = pra(@) pun(a) ) (ih(a)) ®2)
Phu(a@) 1-pun(a)—pua(a) lu(a)

Parameterization 3 (P3), per Eq.(5), is based on all tran-
sitions except those between different health states:

th(a+1) = th(@)pyn(a) + lu(@) (1 - pua(a) — pu.(a)

(5a)
lula+1) =y @pu(@+lh(@) (1 pra(a) - pon(@)
(5b)
or, equivalently,
lh(a+1) _
lula+1)]
( pin(a) 1-pul@-p (a))(fh(a)) (P3)
1-pra(a) — pun (@) puu(a) lu(a)

We believe P3 has never been used in the literature be-
fore. All three parameterizations produce identical out-
put for ¢;, and by extension HLE, ULE, and total life ex-
pectancy.

The problem

For measures such as HLE, it does not matter whether
calculations are done using the transition matrices of P1,
P2, or P3. However, if we wish to decompose differences
in HLE into element-wise contributions from each tran-
sition parameter, e.g. using one of the generalized de-
composition approaches [Caswell, 1989, Andreev et al.,
2002, Horiuchi et al., 2008], results vary considerably de-
pending on which parameterization is used. This incon-
sistency has never been recognized in the literature, and
we try to thoroughly describe it in this paper. Reliable
and consistent decomposition results are of utmost im-
portance if demographic decomposition is to be used as
a means to identify priorities among interventions de-
signed to modify health transitions and mortality. Al-
though P1 will appear to many as the most straightfor-
ward choice, we later give substantive observations that
serve as a warning against this framing, and that lead us
to recommend P2 specifically for purposes of decompo-
sition.

The sensitivity of survivorship

We compute the sensitivity of survivorship using formu-
las for the sensitivity of a recurrence derived by Gonzéalez-
Forero [2024], which we briefly describe in the following.

General notation

Let us denote the vector of transition probabilities in-
cluded in P1 as

pun(a)
pun(a)
puula)
Phu(a))

(P1) _

G eR?, (6a)

in P2 as

Phala)
®2) _ | Pun(a@)
Pa = pud(a)

phu(a)

(6b)

and in P3 as

pun(a)
puula)
pud(a)
prala)

(P3) _

p = eR?. (6¢)

Thus, we can define, more generally, the vector of transi-
tion probabilities as

P9 @

(0
(o) _ P2 (a)
0 =

R, (6d)
o ()

oy (@

with respective entries depending on the parameteriza-
tion ¢ € {P1,P2,P3} at age a € {0,...,n} (e.g., ngZ)(a) =
pud(a)). Consider the matrix P whose a-th column is
pEf). Then, let us define the column vector of transition
probabilities used in parameterization ¢ over all ages as
p9 =vec(P) e R**1),

Let £, = (¢n(a),fu(@)" € R? be the (column) vector of
survivorship for the two health states at age a. Then, for
each c € {P1,P2,P3}, we can succinctly write the three pa-

rameterizations in Eqs. P1-P3 as
£d+1 = g(C) (ﬁur p;C)) ) (7)

where function gl (-) is given by the right-hand side of
Egs. P1-P3, respectively.

Equation (7) indicates that survivorship to age a+1 de-
pends both on survivorship and transition probabilities at
the immediately preceding age. We will thus compute the
sensitivity of survivorship to perturbations of both sur-
vivorship and transition probabilities at any previous age.
Note that, while the transition probabilities p'¢ and the
function g depend explicitly on the parameterization c,
the survivorship €,.; does not. However, we will show
that the sensitivity of survivorship does actually depend
on the parameterization.
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To denote derivatives of vectors with respect to vectors,
we adopt the notation used by Caswell [2019] from ma-
trix calculus. For column vectors x € R” and y € R, we
denote the partial derivative of X" with respect to y as

ox, . oxy
0 0
6XT %/1 %,1 mxn
6_ = : : eR .
y 0x; 0xy,
0Ym 0Ym

The sensitivity of survivorship to perturba-
tions in survivorship

We now construct the formulas for the sensitivity of sur-
vivorship to perturbations in survivorship (at earlier ages)
that apply to all three parameterizations by applying the
formulas for the sensitivity of a recurrence derived by
Gonzélez-Forero [2024]. The direct effects on survivor-
ship at age a+1 (¢441) of perturbing survivorship at the
immediately preceding age (¢,) are given by the matrix

lp(a+1)  0lyla+1)
aﬂjm: 004 (a) IANG) c R2*2 @
a¢, lp(a+1)  0lyla+1)

04y (a) 0ly(a)

(from Eq. 19 in Gonzélez-Forero [2024]).

Consider the matrix L whose a-th column is €. Let us
define € = vec(L) € R2""*D a5 the column vector of sur-
vivorship for the two health states for allages a € {0, ..., n}.
The direct effects on survivorship at any age of perturbing
survivorship at any other age are given by the matrix

o} oy,
oer | %% 9o
o | ¢ i
o} o},
4 3,
o]
a¢
0 1 0 0
=l ©)
o},
0 o
aEn—l
0 0 - 0 I

€ RZ(n+1) ><2(n+1)’

(from Eq. 18 of Gonzdlez-Forero [2024]). Note that each
of the elements of the second matrix in Eq. (9) is a block
of dimension 2 x 2. The identity and zero block entries
arise because perturbing a variable at a given age can only
directly affect itself or another variable at the immediately
next age.

The sensitivity of survivorship is given by the total ef-
fects on survivorship of a perturbation, which are the ac-
cumulation of direct effects over life of the initial per-
turbation and indirect effects accumulated in later ages.
Whereas direct effects are given by partial derivatives, de-
noted by “0”, total effects are given by total derivatives, de-
noted by “d”. Thus, the sensitivity of survivorship at age

a' to a perturbation in survivorship at age a is given by

N
a’—l@[}_H _ 6€;+1 0[;, f /

ey, |1 ae T ot ot 4T

dé, I fora' =a
0 fora' <a

(10)

(from Eq. 12 in Gonzalez-Forero [2024]). The arrow ~ de-
notes right multiplication. In this equation, for a’ > a we
have the direct effects of the perturbation at age a on the
survivorship at the next age a + 1 multiplied by the direct
effects of such perturbation at age a + 1 on the survivor-
ship at the next age, and so on all the way to age a'. That s,
the total effects of the perturbation at age a on survivor-
ship at age a’ are the accumulation of direct effects of the
initial perturbation and unleashed direct effects.

In particular, the sensitivity of survivorship at age a >0
to an independent perturbation in the initial conditions
is given by

de],  0¢]
de,  a¢,

a7
6[0—1 .

The qualifier “independent” here means that the sensitiv-
ity in Eq. (11) perturbs, for instance, ¢}, (0) keeping ¢, (0)
constant, and vice-versa, without considering the con-
straint £, (0) + ¢ (0) = 1.

The sensitivity in Eq. (10) can be more succinctly com-
puted as the a-th block row and a’-th block column of

9 (1)
de BY;
d_e{ el de],
de, de, de,
ael .  de],
0 I R ok 3
de; de;
= . ) (12)
del
0 o0 &
den—l
0 0 0 I

(from Eq. 11 and Eq. S5.1.15 in Gonzdlez-Forero [2024]).
In particular, the sensitivity of survivorship in later ages
to independent changes in the initial conditions (i.e. the
fraction in each state at the first time step) is found in the
first block row of the matrix defined in (12). This ma-
trix of total effects of survivorship on itself describes the
survivorship feedback that occurs over life. This matrix
recovers values of the fundamental matrix of a Markov
chain when the function g in Eq. (7) is linear with respect
to €4, such that Eq. (8) gives the matrix of transitions (see
section 5.1.2.1 in Caswell [2001]).

Let v = (HLE, ULE)T € R? be the vector of healthy and
unhealthy life expectancy. Its sensitivity to independent
perturbations in the initial conditions is given by

dHLE dULE
dvT node] dén(0) dén(0
L — Z a _ h( ) h( ) ’ (13)
d¢, ~,df, | dHLE dULE

dey(0)  déy(0)
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which is the sum of the top block row in Eq. (12).

To compute the sensitivity of HLE to a perturbation in
the initial conditions, we must consider the necessary si-
multaneous perturbation of ¢}, (0) and ¢,,(0), constrained
to ¢, (0) + ¢, (0) = 1. We can express HLE as a function of
the initial conditions ¢1,(0) and ¢,,(0). Substituting for the
constraint, we have HLE = HLE(¢},(0),1 — #,,(0)). Hence,
using the chain rule, the sensitivity of HLE to perturba-
tion in the initial ¢}, (0) is

dHLE B dHLE d#,(0) dHLE d(1-¢4(0))
dly(0)  den(0) A6y (0)  dly(0)  dly(0)
_ dHLE 3 dHLE (14)
den0)  dey(0)

where we use the symbol d to denote a total differen-
tial considering the initial condition constraint, to distin-
guish it from the total differential d that ignores that con-
straint.

The sensitivity of survivorship to perturba-
tions in transition probabilities

We can similarly construct the formulas for the sensitiv-
ity of survivorship to perturbations in transition proba-
bilities that apply for all three parameterizations. The di-
rect effects on survivorship at age a+1 of perturbing state-
transition probabilities at the immediately preceding age
a are given by the matrix

0fn(a+1) 0lyla+1)
(C)(a) (C)(a)
déh(a+ 1) Géu(a+ 1)
s _ = 095 (@ 095 (@ e RP? (15)
0p@ | 0lna+ D) 6£da+r
(C)(a) (C) (a)
0fn(a+1) Mu(a+ 1)
(C)((l) (C)(a)

(from the equation following Eq. S5.2.7 in Gonzdlez-
Forero [2024]). With this, the direct effects on survivor-
ship at any age of perturbing transition probabilities at
any other age are given by the matrix

I4 or],
Jge 6p(c) 6p(c)
90 :
p aéT azT
ap(c) ap(c)
MT
0 0
ap(c‘)
0 0 e 0 0
o (16
0 0 0 (ML
69521
0 0 o 0 0

€ R4(n+l) x2(n+1)

(from Layer 2, Eq. S2b in Gonzélez-Forero [2024]).

As the sensitivity of survivorship is the accumulation of
direct effects over life, the sensitivity of survivorship at age
J to a perturbation in survivorship at age a < j is given by
a6 _oey,, I .
dp®  9p'? dlan

(from Eq. S5.2.17 in Gonzdlez-Forero [2024]), where the
first derivative on the right-hand side is given by Eq. (15)
and the second is given by Eq. (10). The sensitivity in
Eq. (17) can be more succinctly computed as the a-th
block row and a’-th block column of

der o0 det
dp© ~ 0p©@ de
der de},
dp(c) dpgc)
dET def
dp;; dp;;
de’ e’ ael
dp(C) dp_r((]C) dpéc)
0 0 % des,
dp'® dp'®
- P a8)
dﬁT
dp(c)
0 0 0 0

(from Eq. 10 and Eq. S5.2.16 in Gonzélez-Forero [2024]).

The sensitivity of HLE

Since HLE = ZZ:() ¢y (a), the sensitivity of HLE to pertur-
bation in the i-th transition probability pgc) (a) of param-
eterization c atage ais (i €{1,...,4}):
dHLE &
dpgt‘) (a)

_ & b
j=a dPE'C)(a) ,

(c) —
h,o(i,c),a —

19)

where o is a function such that o (i, ¢) gives the input and
output states for the i-th entry of p, under parameteri-
zation c (e.g., hh; Eq. (6)). We can write this equation in
a form that separates the factors that depend on the pa-
rameterization. Substituting Eq. (17) evaluated at the i-th
entry of p(C) and the h entry of 2} into Eq. (19) yields

© % 00, de()
—u Opg.c)(a) dl ;41

h,o(i,c),a —

Taking the factor that is independent of j outside of the
sum yields

a[qul
6 (C) j:a

= dn())
d€a+l '

(c)
h,o(i,c),a —
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Recalling that €, = (¢,(a); ¢y (a)) and expanding the indi-
cated matrix multiplication yields

Kol :aﬁh(a+1) o déy())
hoti.c).a 00\ (a) j=dlnla+1)
+05u(a+1) L dén())
OpE.C)(a) jzadﬁu(a+l)'

Denoting the two sums by A and B, respectively, we have

0ly(a+1)
ap'(a)

(C) _6[h(ﬂ+ 1)
h,o(i,c),a — (c)
0p; " (a)

B. (20)

The quantities A and B do not depend on the parameter-
ization because they only depend on the direct effects of
states (Eq. (12)), which we will see are independent of the
parameterization.

The vector of sensitivities of HLE to perturbation in
transition probabilities at age a for parameterization c is

= = . (21)
Modpl = del?
and over all ages is
dHLE & dén(j
(c) _ _ Z h(Jf) 22)

h ™ dp@ =, dp® )
Similarly, the sensitivity of HLE to independent pertur-

bation in the initial conditions is given by

dHLE " don(j

d¢y 5 déo ’
which is the left column of the 2x2 matrix given in
Eq. (13).

The decomposition of HLE

Following Caswell’s decomposition of the effect of a treat-
ment on a vital rate ([Caswell, 1989], Caswell 2001, p. 261),
we compute the contributions of marginally perturbed
transitions to a change in HLE as follows: Consider two
vectors of transition probabilities, p© and p©’, and let
HLE and HLE' be the healthy life expectancies that arise
under each of them. p'© and p(c)/ might be the health and
mortality transitions of two distinct populations, or the
same populations at two points in time, or an observed
population versus a hypothetical scenario. The first order
approximation of HLE' with respect to p(c)’ around p(© is

(p(C)’ _p(CJ)
p
4 n dHLE
=HLE+ ) ) o
k=1j=0 dp,” (j)

. dHLE
HLE = HLE+ ———
dp(C)T

e (-0

P
2 dly (D)

=HLE+iZ >

1720 =0 dp' ()

T

=0,

o

(24)
where the derivative d ¢y, (i)/ dpscc) (j) necessarily evaluates
to zero in ages i < j due to the upper triangular structure

of the matrix Eq. (18). The derivatives are conventionally
evaluated at

(25)

to improve the approximation (Caswell 2001, p. 261-262).
Each kj-th term in the sums in Eq. (24) gives the contri-
bution of the k-th transition probability at age j to the re-
sulting differences in HLE.

Hence, denoting & = p© — p'© and A = HLE' -~ HLE, we
have

A=8Ts\p, (26)

which is the dot product between the vectors é and sif) lp
returning the scalar A. Since in Eq. (26), both the sensitiv-
ity vector and perturbation vector depend on the param-
eterization c as we will see, the effect on HLE of changing
state transitions depends on the parameterization.

Parameterization 1

We now compute the matrices of direct effects for P1. The
direct effects of the states on themselves under P1 are
(Eq. (8)):

% = pun(a@) (27a)
% = (a) (27b)
% =pul(a) (27¢)
% = phu(a@). (274d)

We then have the matrix of direct effects of states at age a:

0ln(a+1) 0fy(a+1)
Wi _| 0@ @ |_(pn@ phua
¢, 0ln(a+1) 0ly(a+1) pum(@ pul(a).)”
0¢y(a) 0ly(a)
(28)

which equals the transition matrix due to the linearity of
g'9 with respect to states in Eq. (7).

Similarly, the direct effects of the transitions on healthy
years lived in the next age, ¢y,(a + 1), are (Eq. (15) under
P1):

dln(a+1)  0lyla+1)

= =/ 29
aﬁh(;cll)+ 1) _ 0fp(a+1) — (@) (29b)
opy V@)  Opun(@
aéh(:;)+ D _0twa+)) _ | 290
op; (a) opuu(a)
0fln(a+1) _afh(a-kl) —0, (29d)

00 @  Opwila)

and the direct effects of the transitions on the reduced
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52 We then have the matrix of direct effects of the transitions
53  on the states at a

(Eq. (15)):
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and the direct effects of the transitions on unhealthy years
lived in the next age, ¢, (a+ 1), are:
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(31)
s Parameterization 2
sss  We now compute the matrices of direct effects for P2.
356 The direct effects of the states on themselves under P2
sz are (Eq. (8)):
M =1- (a)— (a) (32a)
a[h(a) - p Phu
0ln(a+1)
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—_—= 32
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0ly(a+1)
4 11— - . 2
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sss  We then have the matrix of direct effects of states at age a:

We then have the matrix of direct effects of the transitions
on the states at age a

0fn(a+1) 0dlyla+1)
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(36)

which is different from that of P1 in Eq. (31).

Parameterization 3
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350 the entries of which are identical to that for P1 in Eq. (28)

se0 due to Eq. (1).

361 Similarly, the direct effects of the transitions on healthy
se2 years lived in the next age, ¢n(a + 1), under P2 are

We now compute the matrices of direct effects for P3.

The direct effects of the states on themselves for P3 un-

der P3 are (Eq. (8)):

dlna+1)
W = (a) (37a)
0fn(a+1) B
GRS 1-pua(a) —pu(a) (37b)
Y@t _\_p, (@-pu@ (370)
TACEE pra(a) = pun(a c
0ly(a+1) :
olat@ P 7

365

366

368

369



373

379

380

381

382

We then have the matrix of direct effects of states at a:
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whose entries are identical to those of P1 in Eq. (28) due
to Eq. (1).

Similarly, the direct effects of the transitions on healthy
years lived in the next age, ¢p(a + 1), under P3 are
(Eq. (15)):
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and the direct effects of the transitions on unhealthy years
lived in the next age, ¢, (a+ 1), are:
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We then have the matrix of direct effects of the transitions
on the states at a
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(42)

which is different from those of P1 in Eq. (31) and P2 in
Eq. (36).

Symmetries between the sensitivities
of each parameterization

From Eq. (20), many relationships between the sensitivi-
ties follow. Some examples are below.

Using the direct effects of transitions in Eq. (20), for P1
(Eq. (31)) we have the sensitivities

(P1)

Sho(,l)a sf(fl) a=tn(@A (43a)
Sl(lf,)é)(Z,l),a = 31(51) o= tu@A (43b)
Sl(lf,,;)(&l),a = St(fl) a=tul@)B (43¢)
355)(4,1),54 = sl(fﬁzl,a ={n(a)B. (43d)

For P2 (Eq. (36)), we have the sensitivities
Sl(nI,Ji)(l,z),a = 31(11,)2) a= —lh(@)A (44a)
Shotz.2,a = Shoha = (u@A=Lu(@B (44b)
Shot32),0 = Shta = ~Cu(@B (44c)
Shota,a = Shona = ~{n(@A+lh(a)B. (44d)

For P3 (Eq. (42)), we have the sensitivities
Shotara = Shiha = (h(@A=(h(@B (45a)
81(11,)2)(2,3),a = 51(11,)3) o= tul@A+ty(a)B (45b)
Sk(ll,)i)(s,s)'a = 53,3331,“ =—lu(@A (45c)
s}(f?m,g),a = 553) a= —fn(a)B. (45d)

Hence, for instance, dividing Egs. (43a) and (43b), or
(43d) and (43c), we obtain the sensitivity ratios

(P1) (P1)

Sh,hh,a _ Sh,hu,a _ ty(a) (46a)
Py T (P) T :

sh, ,a Sh, ,a fu((,l)

Also, from Egs. (43a) and (44a), or from Egs. (43c) and
(44c), we have a sensitivity relationship between P1 and
P2

P2)  _
a + 5y 0.

(P1)
sh, oud,a

(46b)

(P2)
,a + Sy ,

_ (PD)
hda = Sh,
Similarly, from Egs. (43b) and (45c), or from Egs. (43d)
and (45d), we have a relationship between the sensitivi-
ties of P1 and P3

(P1)
Sh,

(P3)
h,ud,a —

= ¢®PD

(P3)  _
h,hu,a =0.

+ Sh, a

a +5 (46¢)

Along the same lines, from Egs. (44b) and (45b), or from
Egs. (44c) and (45a), we have a relationship between P2
and P3

(P3)

_ (P3)
h,uu,a —

(P2)
S h,hh,a

(P2)
h, S

h,hu,a

ats + =0. (46d)

From Egs. (44b), (43b), and (43c), we can also write a sen-
sitivity under P2 in terms of sensitivities under P1

s _ (P (PD

h,uh,a h,uh,a h,uu,a’ (46e)

From Egs. (44d), (43a), and (43d), we can similarly write
another sensitivity under P2 in terms of sensitivities un-
der P1

®2)  _ (P 1)
h,hu,a — Sh, ,a + Sh,hu,a'

(461
From Egs. (45a), (43a), and (43d), we can further write a
sensitivity under P3 in terms of sensitivities under P1

(P3) _ (PD)
Shhh,a = Sh,

(P1)
h,hu,a’

a=S (46g)
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and from Egs. (45b), (43b), and (43c), we can further write
another sensitivity under P3 in terms of sensitivities un-
der P1
P IRE
Aside from giving us a healthy dose of ambiguity re-
garding the drivers of HLE differences, these symmetries
can be used to help translate the sensitivities of one pa-
rameterization to those of another without the need for
further re-framing or recalculation of the whole sensitiv-
ity exercise. Especially for HLE calculated using P1 (the
transitions widely used in the matrix algebra approach),
one might nonetheless wish to discuss decomposition re-
sults in terms of P2 sensitivities.

Data

Lievre et al. [2003] give parameters for their fitted model
of transition probabilities in their Table 2. We convert
these parameters directly to monthly transition probabil-
ities for ages 50 through 110 for males and females using
their equation 33 and the ALR inverse implementation of
the {compositions} R package [van den Boogaart et al.,
2022]. We then convert these to annual transition proba-
bilities by raising age-step submatrices to the 12th matrix
power using the {expm} R package [Goulet et al., 2021].
We display the resulting transition probabilities in Fig. 2.

Results

Using the transitions estimated by Lievre et al. [2003] we
calculate health expectancies. We compute the initial
conditions at age 50 (¢;(0), where 0 here means age 50)
assuming that the probabilities we have for age 50 are
constant in younger ages. With these initial conditions,
the probabilities of Fig. 2 imply the expectancies shown
in Table 1, where HLE is specifically disability free life
expectancy (DFLE) and ULE is disabled life expectancy
(DLE).

Table 1: Expectancies derived from Lievre et. al. (2003)
Sex DFLE DLE LE
Females 27.15 2.84 29.99
Males 25.69 1.67 27.37
Difference 1.46 1.17  2.62

Sex differences shown in the last row of Table 1 are the
differences we now aim to decompose in terms of Lievre
et al.’s [2003] transition probabilities. Differences in ex-
pectancies are due to transition parameter differences
(see appendix Fig. 5), but their net contribution to the dif-
ference depends on the model parameterization.

Applying the Eq. (22) for the three parameterizations
(P1 = “no-death”, P2 = “no-self”, P3 = “no-health”), we
generate the sensitivities displayed in Fig. 3 (only females
shown), where one may visually verify that sensitivities
for the same transition vary in important ways depending
on which parameter case is used. Some of the symmetries
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Figure 2: Transition probabilities re-computed from

Lievre et al. [2003]
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Figure 3: Sensitivities for women, for parameterizations
P1, P2, and P3, for disability free life expectancy (DFLE)
and disabled life expectancy (DLE), re-computed from
Lievre et al. [2003]. Note the different scales in the ver-
tical axes for DFLE and DLE.

and equalities mentioned in Eq. (46) may also be spot-
ted in Fig. 3. We show the sensitivities for DFLE and DLE
(note vertical axis different ranges), and omit LE, which is
also the sum of the other two and looks qualitatively like
that of DFLE in this example. Male and female sensitivi-
ties for all expectancies can be found in Appendix B.

To explain why it is that males have 1.46 fewer years
lived disability-free than females, we should multiply a
sensitivity by the corresponding difference in transitions
per Eq. (26). Clearly, from the results in Fig. 3, we know
that main findings will be heavily dependent on the pa-
rameterization used to calculate the sensitivity (P1-P3).
Following Eq.(26) the decomposition results as shown in
Fig. 4 (here only shown for female DFLE) are indeed strik-
ingly different.

Not only do age patterns of decomposition results dif-
fer depending on which parameterization we choose, but

marginal sums for the given transition types differ, per Ta-
ble 2.
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Figure 4: Decompositions of the sex difference (female -
male) for parameterizations P1, P2, and P3, for disability
free life expectancy (DFLE) and disabled life expectancy
(DLE), re-computed from Lievre et al. [2003].

Transition P1 P2 P3
p 095 0.07
p 1.53 0.89
Phu -0.57  0.01

Pud 0.55 1.32
p -0.15 -0.08

p 0.62 -0.85
Init. Cond. 0.02 0.02 0.02
Total 1.45 1.45 1.45
Residual 0.00 0.00 0.00

Table 2: Marginal sums of the transition components of
the decomposition of the sex gap in DFLE based on tran-
sitions derived from Lievre et al. [2003].

The total effects of different transitions in Table 2 lead
to qualitatively different understandings and, therefore,
might recommend different intervention priorities. Note
that for each parameterization we arrive at the same ef-
fect of the initial state mixture (more favorable for fe-
males), and the same total over all transitions. The re-
maining residual is comparatively small (= 0.001).

Discussion

A case for P2 decomposition of HLE

In each of the three parameterizations considered, one
type of transition is lacking: For P1 this is mortality, P2
lacks self-transitions, and P3 lacks health-transitions. Re-
fer to the DFLE (HLE) sensitivities depicted in the top
panel of Fig. 3, specifically the green lines, which refer to
the sensitivity to a perturbation in py,,, a transition only
included in parameterizations 1 and 2. For P1, this sen-
sitivity is positive, but for P2, it is negative. That is, un-
der P1 an increase in py,, increases DFLE, whereas under
P2, it decreases DFLE. What are we to make of this? Each

transition
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is mathematically correct, given the respective recursion
systems P1 and P2, but only one of these two stands up
to substantive scrutiny: the effect of increasing disability
onset is unambiguously to decrease DFLE, not increase
it. Consider an axiom: exiting a state cannot lead to in-
creased time spent in the state being left. For our data
application, women had a lower disability onset before
age 74 and a higher onset in older ages; hence, the de-
composition effect of this transition seen in Fig. 4 only
gives the expected pattern for P2: a positive contribution
to the female DFLE advantage before the crossover age,
and a negative contribution thereafter. In the net, for P2,
the small female advantage in younger ages has a slightly
larger positive effect than the disadvantage in older ages.
The unintuitive opposite would hold for P1. A similar ar-
gument could be made for the recovery transition p,;,
which is harder to see in the figures as it plays a smaller
role. On the other hand, each transition in P2 has an in-
tuitive sensitivity sign: increases in mortality reduce oc-
cupancy times, and increases in health transitions out of
origin state i reduce occupancy time in i and increase it
in destination state j. The sensitivity of HLE to increases
in p,, and the sensitivity of ULE to increases in py,;, are
each inconsistent between P1 and P3. An increased prob-
ability of staying in state i has an ambiguous effect on
occupancy time in the other state j: remaining in state
i might (1) increase the chance of future transitions to j,
thereby indirectly increasing time in j, or it might (2) in-
crease the chances of death in i, at the expense of poten-
tial time spentin j.

A softer and simpler argument for P2 may also be made,
at least for models of health and mortality: If one finds
P3 unsettling, due to its lack of health transitions — after
all, this is a model of health and mortality — then P1 may
now strike the same feeling for its lack of mortality, at least
for this family of research questions. Specifically, for pur-
poses of decomposition, treating attrition as the funda-
mental force lends itself to straightforward interpretation
for the present application of multistate models. Other
sorts of substantive arguments for preferring different pa-
rameterizations are also possible, and by no means do we
rule them out, especially but not only for other domains
of multistate model application.

A decomposition based on P2 will always attribute dif-
ferences to mortality or health transitions. This is also
the closest analog among the three parameterizations
to what a direct decomposition of Sullivan-style [Sulli-
van, 1971] inputs attempts to achieve: differences are
due to mortality (a life table envelope) or health (preva-
lence) [Andreev et al., 2002, Nusselder and Looman, 2004,
Shkolnikov et al., 2017], strong endogeneity between the
mortality and prevalence notwithstanding. To the extent
that transitions are well-estimated, the decomposition of
incidence-based HLE using P2 gives more reliable and
actionable information than a Sullivan-style decomposi-
tion: Mortality components are separated by states, and
health is represented by flows (transitions) rather than a
stock variable (prevalence).

11

Comparison with other approaches

There are two versions of multistate decomposition of
HLE that we know about [Shen et al., 2023, Moretti et al.,
2023].

Shen et al. [2023] also decomposed a sex gap in HLE us-
ing data from Payne [2022], following an approach anal-
ogous to P1. According to our symmetry findings (com-
pare e.g. Eqs. (43a) and (44a)), their interpretation of the
effects of remaining healthy or unhealthy was correctly
interpreted as due to mortality differences, although the
respective magnitudes will be somewhat different due to
differently composed é used in Eq. (26), which destroys
the symmetry. Referring to our own example, this loss of
symmetry is somewhat visible in comparing the lines for
e.g. Pl and P2 in Fig. 4, but it is easier to spot in
Table 2 where we see the marginal total for in P1 is
1.51, whereas the corresponding effect in P2 amounts
to 0.95, despite these two transitions having exactly sym-
metrical sensitivities between P1 and P2.

More problematically, the overall effects of onset and
recovery (pn, and , respectively) are very different
from those of P2. In the Shen et al. [2023] data, females
show a higher probability of disability onset (py,,) in all
ages, yet the effect was interpreted to have contributed to
the sex-gap in HLE rather than attenuate it, as per P2 and
our own intuition. As described in the section on sym-
metries, one could translate the Shen et al. [2023] results
to an attrition-only interpretation (P2) with a few simple
steps. We offer a short reanalysis of the Shen et. al. results
in the code repository.

Moretti et al. [2023] take a decomposition approach
based on P2, but using the Horiuchi et al. [2008] method,
which eliminates the need for an analytic sensitivity, al-
beit at high computational cost, especially if confidence
intervals are desired. Our analytic approach is more com-
putationally efficient if bootstrapping is required. Point
estimates of decomposition effects should be consistent
between the two approaches.

General guidance

As mentioned, each of the three parameterizations re-
sults in decompositions with consistent overall sums, but
most likely slightly off from the observed difference in ex-
pectancies (too small for two decimal places in Table 2).
This residual can be forced to 0 either (i) by calculating the
sensitivity from parameters at a well-selected intermedi-
ate point (we used the average of females and male health
and mortality transitions, see Caswell [2001], p. 261-262)
or (ii) by repeating the exercise interpolated over small in-
tervals, partly borrowing the linear integral strategy from
Horiuchi et al. [2008], in which case the residual ap-
proaches 0 as the number of interpolation steps between
parameter sets increases. The researcher should weigh
whether such steps are really necessary, as these will add
both programming and computational overhead to the
problem, whereas the size of the residual is usually triv-
ial. We give R code demonstrating how to implement both
approaches in the reproducibility repository, and we find
that the optimization strategy (i) is more computationally
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efficient than the interpolation strategy (ii).

Marginal age patterns of decomposition results are
equal between the different parameterizations, and we
give R code to demonstrate this in the repository. Know-
ing the overall age pattern explaining an observed differ-
ence in health expectancy is not particularly informative
beyond contextualizing more detailed results. Unlike an
all-cause life expectancy decomposition, where it is suffi-
cient to determine the effects of a particular age group, for
multistate processes, we would like to know the influence
of each transition.

One should bear in mind, especially if these methods
are used to decompose overall life expectancy (LE), that
results are expected to vary depending on which health
conditions are considered. In our example (See appendix
Table 4), we see that sex differences in LE are almost en-
tirely explained by mortality, whereas contributions from
health transitions balance out.

In this paper, we only treat the case of two transient
and reversible states, a rather simple model as multistate
models go. Further work is required to generalize our an-
alytic solution to a more general representation of state
spaces. Our recommendation to use the attrition-only
parameterization (P2) for sensitivities and decomposition
applies only to models of health and mortality. Other ap-
plications of multistate models should carefully consider
which parameterization produces the soundest decom-
position results.

Conclusions

We describe a problem in the decomposition of discrete
time multistate models that to our knowledge, has never
been described in the literature: Decomposition results
and interpretations depend on which transition probabil-
ities are used to calculate the expectancy (or other syn-
thetic index). We have treated this problem for one of
the simplest recurrent multistate models: a health model
with two reversible health states and death. We give three
redundant parameterizations standing for different sub-
sets of transition parameters to calculate the same value
of health expectancy. For each of these parameteriza-
tions, we give corresponding formulas to calculate pa-
rameter sensitivities for expectancies. We show that the
sensitivity of HLE (or ULE or LE) to a given transition
can be very different, depending on the parameterization
used to calculate it, and that this inequality between pa-
rameterizations translates to inequality between decom-
position results. Therefore, researchers must take care
when interpreting decomposition results from multistate
models. Certain symmetries and equalities exist between
the sensitivities under different parameterizations, which
can be exploited to translate sensitivities (and, by exten-
sion, decomposition results) under one parameterization
to those under another. We argue that the interpretation
of HLE and related decomposition results is best for at-
trition parameters (P2). We use transition probabilities
recovered from Lievre et al. [2003] to illustrate these con-
cepts.
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= A Parameter differences
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In this appendix, we show sex differences in transition parameters, the é from e.g. Eq. 26.
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Figure 5: Differences in transition probabilities (female - male) re-computed from Lievre et al. [2003]

B All sensitivities

In this appendix, we show all sensitivities for DFLE, DLE, LE, and all three parameterizations for both males and
females. The values depicted in Fig. 6 are also available in the main repository in the file all_sensitivities.csv.
Sensitivity to initial conditions are not depicted in the Figure. These values are given in Table 3.

sex DFLE DLE LE
1 f 487 -256 231
2 m 7.80 -1.77 6.03

Table 3: Sensitivities to initial conditions for parameterizations P1, P2, and P3, for disability free life expectancy (DFLE)
and disabled life expectancy (DLE), and total life expectancy (LE) for males and females re-computed from Lievre et al.
[2003]

C All decompositions

In this appendix, we show sex-decompositions for all three parameterizations of DFLE, DLE, LE. The values depicted
in Fig. 7 are also available in the main repository in the file al1_decompositions.csv. Effects due to initial condi-
tions are identical for the three parameterizations.

This next table is generated excluding the computed effects of initial conditions. Notice the far smaller residuals.
Possibly need to rethink initial conditions sensitivity calculations.
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Figure 6: Sensitivities for parameterizations P1, P2, and P3, for disability free life expectancy (DFLE), disabled life
expectancy (DLE), and total life expectancy (LE) for males and females using parameters re-computed from Lievre
et al. [2003] Vertical axis ranges vary by expectancy.
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Figure 7: Sex decompositions for parameterizations P1, P2, and P3, for disability free life expectancy (DFLE), disabled
life expectancy (DLE), and total life expectancy (LE), using parameters calculated from Lievre et al. [2003] Vertical axis
ranges vary by expectancy.



Expectancy Component P1 P2 P3

p 0.95 0.07
p 1.53 0.89
Phu -0.57  0.01
Pud 055 1.32
DELE p -0.15 -0.08
p 0.62 -0.85
Init. Cond. 0.02 0.02 0.02
Total 1.45 1.45 1.45
Residual 0.00 0.00 0.00
p 0.46  0.80
p 0.34 -0.30
Phu 0.17 0.05
Pud 0.61 0.34
DLE p -0.03  0.03
p 0.67 0.30
Init. Cond. -0.01 -0.01 -0.01
Total 1.14 1.14 1.14
Residual 0.03 0.03 0.03
p 1.41  0.87
p 1.86 0.59
Phu -0.40  0.05
Pud 1.16  1.66
LE p -0.18 -0.05
p 1.30 -0.55
Init. Cond. 0.02 0.02 0.02
Total 2.59 2.59 2.59
Residual 0.03 0.03 0.03

Table 4: Transition margins from sex decompositions for parameterizations P1, P2, and P3, for disability free life
expectancy (DFLE), disabled life expectancy (DLE), and total life expectancy (LE), using parameters calculated from
Lievre et al. [2003]

17



	wp-2024-014-text
	Parameter differences
	All sensitivities
	All decompositions




