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Abstract

In probabilistic forecasting, the key to reasonable results is good cali-

bration of the forecast uncertainty. Analyzing forecasting errors offers an

empirical solution for the calibration of such forecasts. We propose a novel

quantile-mapping approach whereby we map non-calibrated forecasted out-

come trajectories from a forecast model to a target distribution derived from

historical out-of-sample forecasting errors. We present probabilistic forecasts

of the Finnish Total Fertility Rate (TFR) from 2024 to 2070 calibrated on

the historically observed distribution of forecasting errors. The forecasts

come from two scenario-based models. The postponement time series model

(PPS) assumes that fertility postponement will gradually decline and even-

tually stop. The second model is a naive freeze-rates approach to forecasting

fertility. The validation shows that our TFR forecasts calibrated on histor-

ical data outperform the non-calibrated TFR forecasts in coverage and in-
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terval score metrics. The results demonstrate the efficacy of empirical error

quantification and quantile-mapping in calibrating probabilistic demographic

forecasts.

Keywords: conformal prediction, quantile-mapping, empirical prediction

intervals, fertility forecasting, Finland

1. Introduction1

Demographic forecasting involves predicting future population trends based2

on factors such as birth rates, death rates, migration patterns, and aging.3

These forecasts are essential for governments, businesses, and policymakers4

to plan for future resource needs, including infrastructure, healthcare, and5

social services. However, demographic forecasting is subject to uncertainties6

due to unpredictable changes in behavior, policy, and environmental factors.7

Forecast uncertainty arises from variability in data inputs, model assump-8

tions, and external events such as pandemics or economic crises. Managing9

this uncertainty and expressing it in the forecasts requires is essential to10

providing a comprehensive view of future demographic outcomes.11

In the 1960s and early 1970s, Finland, and other Nordic countries, have12

experienced a sharp decline in fertility. After a period of recovery in the13

1980s, followed by relatively stable period fertility in the 1990s and 2000s,14

Finland’s Total Fertility Rate (TFR) fell again in the 2010s and reached a his-15

torical low of 1.26 in 2023 (Statistics Finland (2024)). Starting in the 1970s,16

fertility postponement, the delay of childbearing to older ages, has depressed17

fertility levels. However, the strong decrease in TFR in the recent decade18

is not only due to further acceleration of fertility postponement. Instead,19
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the decrease in Finnish period fertility likely is a quantum effect (Hellstrand20

et al. (2020)). This was not foreseen by demographic theories, making the21

future of Finnish fertility particularly interesting yet highly challenging to22

predict.23

In light of yet another fluctuation in the trend of Finnish fertility, it is24

important to capture and convey the uncertainty that comes with forecast-25

ing Finland’s fertility. Probabilistic forecasts, in contrast to deterministic26

point-forecasts, offer a solution to this problem. These type of forecasts27

assign a probability to each possible outcome and therefore allow one to dis-28

tinguish between likely and extreme scenarios and to plan accordingly (for29

an introduction to probabilistic forecasting see e.g. Lee (1998) and Keilman30

(2018)). However, probabilistic forecasts are only of use, if they are well31

calibrated. Good calibration means that the forecasted probabilities of an32

outcome are consistent with the observed relative frequencies of that out-33

come, or put differently, forecasted rare events occur rarely and forecasted34

typical events occur regularly. Further, because of the highly fluctuating35

nature of the Finnish period fertility in the past, forecast models that ex-36

trapolate observed trends of the past into the future are unlikely to provide37

reasonable results, as they are unable to predict trend changes. Therefore,38

we propose the use of scenario-based approaches that can take the changing39

nature of the fertility development into account.40

We present probabilistic forecasts of Finland’s Total Fertility Rate (TFR)41

from 2024 to 2070 from two scenario-based forecast models. The first model,42

introduced in Nisén et al. (2020), is the Postponement Time Series Model43

(PPS). The PPS model operates under the assumption that the trend of de-44
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laying childbirth to later ages, known as fertility postponement, will continue45

but at a gradually slower pace, until it eventually stops. Hence, the increase46

in the average age of childbearing slows down and stabilizes. As childbirth47

is postponed, fertility temporarily decreases because children are born later48

during the life course. Therefore, the TFR is lower, compared to a scenario49

where childbirth is not delayed. When fertility postponement slows down,50

fertility increases. To mitigate the delay’s impact on period fertility mea-51

sures, we use the tempo-adjusted TFR. This adjusted rate is an estimate of52

what the TFR would be if the timing of childbearing did not change (Bon-53

gaarts and Feeney (1998)). The PPS model assumes that the TFR and the54

tempo-adjusted TFR will converge due to the assumed slowing and stopping55

of fertility postponement by 2050.56

We use a second model as a näıve baseline to compare the results from57

the PPS model to. The freeze-rates model operates under the assumption58

that the recent decrease in Total Fertility Rate (TFR) isn’t a result of de-59

layed childbirth, meaning that fertility has declined without postponement60

of births by the population. While this hypothesis is theoretically feasible,61

considering demographic data, it seems improbable. The second assumption62

is that this fertility decline will come to a halt, and age-specific fertility rates63

will stay at the levels observed in the last recorded year, 2023.64

To ensure a good calibration of the probabilistic forecasts, we use an em-65

pirical approach to calibration which has its roots in the analysis of errors66

of demographic forecasts (Williams and Goodman (1971); Stoto (1983); Co-67

hen (1986); Smith and Sincich (1988); Alho and Spencer (2005); Alho et al.68

(2008)). Notably, Keilman and Pham (2004) constructed empirical predic-69
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tion intervals around forecasts of Nordic fertility, deriving the intervals from70

the standard deviation of errors of historical forecasts published by statis-71

tical agencies. After comparing the width of the prediction intervals with72

those from time-series models, the authors concluded that empirical forecast73

errors provide useful information when constructing prediction intervals for74

TFR forecasts. However, they noted that their empirical errors might not be75

normally distributed and ”one has to be cautious” when using them.76

In the field of machine learning, the methodology is known under the term77

conformal prediction (CP, Shafer and Vovk (2008)) and is used to construct78

probabilistic forecasts calibrated on out-of-sample errors. Since its intro-79

duction in Gammerman et al. (1998) until today, there have been strong80

methodological advances in this field, resulting in a variety of CP methods81

for different applications including, in more recent publications, time series82

forecasting (Fontana et al. (2023); Angelopoulos et al. (2024)). In climate83

modeling, calibration of predictions using historical data is widely done under84

the term quantile-mapping as a form of bias-correction of forecast distribu-85

tions (Cannon (2018); Qian and Chang (2021)).86

The existing methodology provides probabilistic forecasts calibrated on87

historical data in the form of prediction intervals, meaning lower and upper88

bounds in which the forecast outcome will lie with a given probability, e.g.89

95%. However, so far, research has not provided solutions for forecast out-90

comes in the form of calibrated time series trajectories that correspond to91

these bounds. Simulated trajectories of demographic outcomes are needed as92

input for down-stream modeling, e.g. for the modeling of determinants of so-93

cial security systems. Therefore, we propose a flexible methodology to obtain94
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forecasts of demographic measures in the form of simulated trajectories that95

have been calibrated on historical data. We provide two sets of forecasts of96

the Finnish TFR from 2024 to 2070 from the PPS model and the näıve model97

that are designed to be transparent, probabilistic, well calibrated, and easy98

to integrate into further probabilistic modeling downstream. By “forecast-99

ing” TFR for the Nordic countries (Finland, Sweden, and Norway) for the100

years 1973 to 2023 we are able to learn the distribution of forecasting error of101

the two models and calibrate our future TFR forecasts accordingly. We build102

on the prevailing research, by proposing to combine existing approaches of103

empirical forecast calibration. First, we use the idea of learning a smoothed,104

time-varying distribution of historical forecasting error, as described in the105

”scorecaster” approach by Angelopoulos et al. (2024), which allows for bias106

in the forecasts. Second, we combine this approach with the technique of107

quantile-mapping (Cannon (2018)) in order to calibrate stochastic forecast-108

ing paths to a target distribution of empirical forecasting errors, as opposed109

to providing upper and lower bounds of prediction intervals around a point110

forecast.111

In the remainder of this paper, we first describe the PPS and the näıve112

forecast model and our methodology of empirical forecast calibration in de-113

tail. After we present the results of Finland’s probabilistic TFR forecasts, we114

validate our forecast models and summarize the quality of the probabilistic115

forecast with several calibration metrics.116
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2. Methods and data117

We construct prediction intervals around time series forecasts of the118

Finnish Total Fertility Rate (TFR) which are calibrated on out-of-sample119

forecasting errors for Finland, Sweden, and Norway, and change dynamically120

over the forecasting horizon. The width of the prediction interval should121

reflect the distribution of forecasting errors as observed in the past for the122

same prediction model. We pool the forecasting errors from Finland, Sweden123

and Norway to achieve more robust estimates of the forecasting error distri-124

bution by decreasing autocorrelation (Alho et al. (2008)) and validate the125

results on data from Finland, Sweden, Norway, and Denmark. The empirical126

prediction intervals are then used to calibrate 5,000 forecast paths of future127

Finnish TFR. We source the time series of the fertility data from the Human128

Fertility Database (Max Planck Institute for Demographic Research (Ger-129

many) and Vienna Institute of Demography (Austria)) for the years 1944 to130

2023 for Finland and Sweden, years 1968 to 2023 for Norway, and years 1946131

to 2023 for Denmark.132

2.1. Forecast Models133

We use two different forecast models to forecast the fertility:134

1. Postponement Time Series Model (PPS): The scenario is based on the135

demographically meaningful assumption that fertility postponement136

would continue but gradually slow down and eventually stop. Due137

to biological factors, fertility postponement cannot continue forever,138

as fecundability declines with age, and especially fast for women in139

their mid to late 30s (Rothman et al. (2013)). According to Gold-140
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stein (2006), the mean age at first birth could plausibly rise to around141

33 years before reaching biological and social limits. Further, Sobotka142

(2017) suggests that fertility postponement would continue another two143

to three decades. In line with these previous findings, in our scenario,144

fertility postponement stops in 2050 and the mean age at childbirth ap-145

proaches 33, which is approximately the current highest value reported146

in the Human Fertility Database (32.9 years in the Republic of Korea in147

2020, Max Planck Institute for Demographic Research (Germany) and148

Vienna Institute of Demography (Austria) (2024)). This assumption149

about the fertility postmponement is implemented in the forecast model150

by calculating the tempo-adjusted TFR for 2023 and forcing the TFR151

and the tempo-adjusted TFR to converge by 2050. After the conver-152

gence is completed, the TFR stayes fixed until the end of the forecast153

period. The model was introduced in Nisén et al. (2020). The time154

series of 5-year age group fertility rates are forecasted by a random-155

walk-with-drift model ln(ŷx,t) = βx,t + ln(yx,t−1) + ϵx,t, ϵx,t ∼ N(0, σ2
x),156

where x is the age group, t is the calendar year, βx,t is the model drift157

and ϵx,t is the error term. The drift term βx,t is forecast under two158

calculation assumptions. First, the increase in the average age at birth159

slows down and the TFR approaches the tempo-adjusted TFR. There-160

after, there is no drift term, i.e. βx,t = 0. Finally, the TFR is obtained161

by adding up the age-group-specific fertility rates and multiplying it162

with the width of the age-groups: TFRt = 5 ∗
∑45

x=15 ŷx,t.163

2. Näıve freeze-rates model: In this model, no drift-term is added to the164

random walk, so that the average 5-year age-group fertility rate of the165
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future is at the same level as the last observed value of 2023, result-166

ing in the following model: ln(ŷx,t) = ln(yx,t−1) + ϵx,t, ϵx,t ∼ N(0, σ2
x).167

Similarly, the TFR is calculated as the sum of the forecast age-group-168

specific fertility rates multiplied with the width of the age-groups. The169

model serves as a näıve baseline model.170

2.2. Split data171

The time series of observed annual ASFR values yt for each country is172

partitioned into three data sets: the calibration data Dcal, validation data173

Dval, and application data Dapp. See Figure 1 for a visual representation of174

the data splitting and resulting data sets. We use Dcal to estimate the time-175

dependent distribution of the forecasting error around yt and to calibrate the176

empirical prediction intervals accordingly. The hold-out set Dval is used to177

validate the properties of the empirical prediction intervals and Dapp holds178

the data we want to forecast. The calibration data of Finland and Sweden179

hold two cross-validation series and the validation data one series, each with180

30 years of training data, yTrain, followed by 47 years of test data, yTest.181

Due to data constrains, we split the Norwegian data into 11 smaller cross-182

validation series with 30 years of training data, each, and reduced the test183

data to 15 years. The last one of these series is the validation data. The184

Danish data holds one cross-validation series of validation data of the same185

length as the Swedish and Finnish data. This increases the amount of left-186

out data, i.e. data that was never used in calibration, to validate on. The187

validation series of the other countries are partially overlapping with series188

from the calibration data. Thus, excluding Denmark from the calibration189

data set avoids over-fitting. The application series holds a single Finnish190
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series yTrain of length 30. See Tables 1, 2 and 3 for the input years of each191

data set.192

Figure 1: Visualization of data splitting into cross-validation series.
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2.3. Generate forecasts193

Given a prediction model ŷT+h = f(h|yTrain) we produce central TFR194

forecasts ŷt over forecasting horizon h ∈ 1, 2, . . . , H. Forecasts are produced195

for Dcal, Dval, and Dapp and for all cross-validation series c. The models196

considered are the PPS model and the näıve model described in Section 2.1.197

2.4. Calculate forecasting errors198

We define a scoring function, S(yt, ŷt), to measure the deviance between199

the observed TFR value, yt, and the prediction, ŷt, as S(yt, ŷt) = ln(yt/ŷt) =200

st. The log-ratio scoring function, being a measure of relative error, is suitable201
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for positive values which vary in scale, like the TFR (Alho et al. (2008)). We202

calculate sT+h = S(yT+h, ŷT+h) for each point prediction over the forecast203

horizon of Dcal. We denote the inverse of the scoring-function as S−1(st, ŷt) =204

exp(st) · ŷt.205

2.5. Model time-dependent distribution of forecasting errors206

Given the observed forecasting errors uT+h we estimate the cumulative207

error distribution F̂UT+h
(u) = P(UT+h ≤ u) over the forecast horizon of Dcal.208

We employ a Time-varying Skew-normal model (SN) for the distribution of209

the error: UT+h ∼ SkewNormal(µ, σh, τ), where σh = exp(β1 + β2 · h). The210

estimated distribution function, F̂UT+h
, and quantiles, Q̂UT+h

, are then an-211

alytically given by the Skew-Normal distribution. Due to data limitations212

in the training data resulting in fewer long-term forecasts, it is necessary213

to model the distribution of the forecasting errors rather than using their214

distribution as is. Figure 4, which is a scatter plot of the calculated fore-215

casting errors with the modelled error distribution at the 0.025 and 0.975216

quantiles, illustrates the need for modelling. Angelopoulos et al. (2024) take217

on the same approach and call the model of the forecasting error distribution218

a scorecaster. In our case, we have chosen a time-varying skew-normal model219

as our scorecaster which allows for bias in the forecasts, because we expect220

the bias in the forecasting error distribution to also be present in the future.221

We added the constraint that the scorecaster’s width is not allowed to narrow222

with time, because we assume that as the forecast length increases, so does223

the forecast uncertainty.224
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2.6. Calibrate forecast paths with quantiles of forecasting error distribution225

We calibrate the forecasted TFR paths such that their distribution at fore-226

casting step h reflects the modelled historical distribution of out-of-sample227

forecasting errors at h. We do so for the central forecasts ŷT+h around which228

we construct empirical prediction intervals, and for the forecasted fertility229

paths ŷT+h,i.230

1. Probability transform method: Because the forecasting error Ut is a231

transformation of the random variable Yt, Ut = S(Yt, ŷt), with central232

forecast ŷt being treated as non-random and scoring function S be-233

ing a smooth and monotonic function over the range of Yt, we have234

FYt(y) = FUt(S(y)). Thus, the p quantile of the distribution of pre-235

dicted values YT+h can be derived from the corresponding quantile of236

the error distribution UT+h via QYT+h
(p) = S−1(F̂−1

UT+h
(p), ŷT+h).237

2. Quantile-mapped paths: We calibrate a set of i ∈ 1, 2, . . . , N forecast238

fertility paths, ŷT+h,i, such that the marginal distribution of the cali-239

brated paths FŶ ∗
T+h

is equal to some target distribution F+
YT+h

, which240

reflects the historical out-of-sample forecasting error. This calibration241

is achieved by having calibrated paths ŷ∗T+h,i = Q+
YT+h

(F ecdf
ŶT+h

(ŷT+h,i)),242

where F ecdf
ŶT+h

is the empirical cumulative distribution function over the243

non-calibrated forecast paths and Q+
YT+h

is the quantile function of the244

target distribution at T + h. To prevent the calibrated paths from245

taking infinite values, we adjust F ecdf
ŶT+h

for the maximum values of the246

forecast paths, ŷT+h,max. Instead of F ecdf
ŶT+h

(ŷT+h,max)) = 1, which results247

in Q+
YT+h

(F ecdf
ŶT+h

(ŷT+h,max)) = ∞, we set F ecdf
ŶT+h

(ŷT+h,max)) = 1 − 0.5
1
N .248

This adjustment places the empirical cumulative distribution function’s249
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value halfway between 1 and the value for the second-highest ŷ∗T+h,i, en-250

suring that the calibrated paths remain finite. The target distribution251

is constructed via the Probability transform method described above.252

2.7. Validate prediction intervals253

The validation of the empirical prediction intervals is done on the valida-254

tion data set Dval over the years of the training data, yTrain. Three calibration255

scores are evaluated and compared for the model-based prediction intervals256

of the PPS and the näıve model and the empirical prediction intervals stem-257

ming from the quantile-mapped paths of the PPS model. We evaluate the258

calibration scores over the full range of the forecast years (47 years) and over259

sub-sections of the forecast years (1 to 5, 6 to 15, 16 to 25, and 26 to 47260

years).261

1. Coverage: We compare the nominal 80%, 90% and 95% coverage with262

the actual coverage of the prediction intervals across the cross-validation263

series c. The actual coverage is the fraction of observations n that are264

inside the bounds of the declared prediction interval of all observations265

N : Cov = n{l≤yt≤u}
N

where l and u are the α
2
and 1− α

2
quantiles.266

2. Mean Interval Width: We define the mean interval width as the mean267

difference between the upper and lower bounds of the prediction inter-268

val over the forecast years: W =
∑t ut−lt

N
, where lt and ut are the

α
2
and269

1− α
2
quantiles at time t.270

3. Mean Interval Score (MIS): The interval score S takes both the cov-271

erage and the width of the prediction intervals into account. Given272

the same actual coverage, a prediction interval that is on average wider273
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is penalized by the interval score (Gneiting and Raftery (2007)). The274

score is defined as follows:275

Sint
α,t(lt, ut; yt) =

 (ut − lt) +
2
α
(lt − yt) for yt < lt

(ut − lt) +
2
α
(yt − ut) for yt > ut

(1)

where lt and ut are the α
2
and 1− α

2
quantiles at time t, and 2

α
(lt − yt)276

and 2
α
(yt−ut) are the penalty terms for observations that fall below or277

above the bounds, respectively. The penalty is proportional to the 1−α278

level. We aggregate the interval score for every observation y over time279

t using the mean to be able to compare the different forecast models280

(Bracher et al. (2021)): MISint
α =

∑t Sint
α,t

N
. In terms of interpretation,281

the smaller the MIS, the better the prediction interval.282

3. Results283

In the following, first, we present the forecast results of the PPS and284

the näıve model, followed by the calibration of the PPS forecasts with the285

historical error data. Second, we present the results from the validation286

analysis.287

3.1. Forecast Results288

Figure 2 and 3 show an intermediate outcome of the two forecast models289

in form of the forecast paths of the age-specific fertility rates (ASFR) of Fin-290

land, together with the observed ASFR of 5-year age-groups. The observed291

ASFR values, represented by black dots, cover the period from 1944 to 2023,292

followed by 250 of the 5,000 forecast paths up to the year 2070. As described293

in Section 2, the ASFR paths are then used to calculate the forecast TFR294
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Training Period Calibration Period

Country Series Nr. Start End Start End

Finland 1 1944 1973 1974 2020

2 1945 1974 1975 2021

Sweden 1 1944 1973 1974 2020

2 1945 1974 1975 2021

Norway 1 1968 1997 1998 2012

2 1969 1998 1999 2013

3 1970 1999 2000 2014

4 1971 2000 2001 2015

5 1972 2001 2002 2016

6 1973 2002 2003 2017

7 1974 2003 2004 2018

8 1975 2004 2005 2019

9 1976 2005 2006 2020

10 1977 2006 2007 2021

Table 1: Calibration data Dcal

paths, shown in Figure 6 for the näıve model, and in Figure 5 (panel a) for295

the PPS model.296

After calculating the forecasting errors of the PPS model for the cross-297

validation series of the calibration data, we model the error distribution as298

described in 2. The empirical distribution of the forecasting error, see Figure299

4, shows that the PPS model tends to overpredict the Total Fertility Rate300

(TFR) in Finland. The asymmetry of the forecasting error is already visible301
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Validation Period

Country Nr. of Series Start End

Finland 3 1976 2022

Sweden 3 1976 2022

Norway 11 1976 2022

Denmark 1 2008 2022

Table 2: Validation data Dval

Country Training Period Forecast Period

Start End Start End

Finland 1994 2023 2024 2070

Table 3: Application data Dapp

in the first three forecast years and increases with the forecast length, justify-302

ing the use of the Time-varying Skew-normal model to model the forecasting303

error distribution. Another reason for modeling the forecasting error distri-304

bution rather than using raw quantiles is the need for interpolation, because305

the data scarcity results in fewer data points with increasing forecast length.306

The asymmetry of the empirical forecasting errors towards over-prediction307

and their magnitude in the early forecast years leads to the differences in the308

probabilistic forecast for Finland that can be observed in Figure 5. Panel a309

shows the TFR paths from the PPS model without calibration to the histor-310

ical error data. Due to the assumption of the PPS model that the fertility311

postponement will continue but slow down and eventually stop, the median312

of the forecast paths rises in the first 15 forecast years and then levels off313

to reach a TFR of 1.56 in 2070. The 95% prediction interval starts narrow314
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Figure 2: Observed ASFR of Finland and 250 forecast paths from PPS model by 5-year

age-groups.
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around the first forecast and increases with increasing forecast length, rang-315

ing from a TFR of 1.20 to 2.03. Panel b shows the TFR trajectories derived316

from the PPS model and calibrated to the historical forecast error distribu-317

tion. In contrast to the non-calibrated forecasts, the 95% prediction interval318

is notably narrower, ranging from 1.07 to 1.69. As a result of the shape of319

the empirical foresting error distribution, the prediction interval is negatively320

skewed and starts notably wider in 2024 than the non-calibrated prediction321

interval. Further, the median forecast of 1.44 is lower. The changed shape322
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Figure 3: Observed ASFR of Finland and 250 forecast paths from naive model by 5-year

age-groups.
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and median of this forecast distribution is the result of calibrating the fore-323

cast paths to represent the historical forecasting error distribution that starts324

wider, widens more slowly, and is skewed towards overestimation. We illus-325

trated the different distributions of forecast paths by adding the density plots326

for the years 2024 and 2070 (in grey color). These highlight the difference327

in width and skewness of the forecast distributions before and after the cal-328

ibration to the historical error data. Overall, the calibrated PPS forecast329

predicts that Finland’s TFR is likely to be higher in 2070 than last observed.330
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Figure 4: Forecasting errors from calibration data series with 95% quantiles of modeled

error distribution (blue).
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The probability that the TFR will fall below the level of 2023 (1.26) is 14%.331

3.2. Forecast Validation332

The validation analysis supports the visual differences between the PPS333

forecast paths that have been calibrated to historical error data and those334

that were not, and shows a consistently higher performance of the calibrated335

forecast paths for the validation data, compared to the non-calibrated PPS336

and näıve forecasts. Table 4 summarizes the calibration scores for three337

different nominal coverage levels (95%, 90% and 80%) for the full forecast338

horizon of 47 years. For all nominal coverage values, the calibrated PPS paths339

have the closest actual coverage, while also being better calibrated in terms340

of width, as indicated by smaller MIS values. Looking at the validation341
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Figure 5: Observed TFR of Finland and 250 forecast paths from PPS model (a) and after

calibration on historical error data (b), with median and 95% quantiles, and density in

2024 and 2070.
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results for short, medium and long term forecast years (see Table 5), we342

can see why the calibrated forecasts perform better. The non-calibrated343

prediction intervals from the naive and the PPS model have the problem344

of being too narrow in the beginning (indicated by small average width W )345

while simultaneously having strong under-coverage, resulting in higher Mean346

Interval Scores (MIS). In contrast, the calibrated PPS forecasts, which start347

wider and widen more slowly, have better coverage and smaller values for the348

MIS.349
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Figure 6: Observed TFR of Finland and 250 forecast paths from naive model, with median

and 95% quantiles, and density in 2024 and 2070.
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Nominal Coverage Model Cov. W MIS

95% PPS (cal.) 91% 0.66 0.98

PPS (non-cal.) 73% 0.77 2.38

Naive 82% 0.73 1.59

90% PPS (cal.) 84% 0.56 0.87

PPS (non-cal.) 65% 0.64 1.71

Naive 77% 0.61 1.17

80% PPS (cal.) 75% 0.44 0.74

PPS (non-cal.) 47% 0.50 1.26

Naive 70% 0.48 0.87

Table 4: Evaluation of model calibration for full forecast length of 47 years using the Cov-

erage (Cov.), the Mean Interval Score (MIS) and the average width (W) of the prediction

intervals.
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Forecast Period Model Cov. W MIS

1-5 Years PPS (cal.) 87% 0.43 0.72

PPS (non-cal.) 33% 0.25 3.46

Naive 40% 0.26 2.68

6-15 Years PPS (cal.) 77% 0.58 1.85

PPS (non-cal.) 53% 0.50 4.25

Naive 60% 0.49 3.22

16-25 Years PPS (cal.) 100% 0.69 0.69

PPS (non-cal.) 77% 0.73 2.05

Naive 87% 0.71 0.78

26-47 Years PPS (cal.) 95% 0.73 0.78

PPS (non-cal.) 89% 1.03 1.44

Naive 100% 0.96 0.96

Table 5: Evaluation of model calibration for different forecast lengths with a nominal

coverage of 95% using the Coverage (Cov.), the Mean Interval Score (MIS) and the average

width (W) of the prediction intervals.

4. Discussion350

We introduced a novel approach by combining the methods of empirical351

prediction intervals with the scorecaster method and with quantile-mapping352

to produce probabilistic demographic forecasts. By incorporating empirical353

forecasting errors into the forecast uncertainty we provide a data-driven es-354

timate of the forecast uncertainty. Using a scorecaster, i.e. a model of the355

empirical forecasting error distribution, allows for greater generalizability356

through smoothing and interpolation. The chosen skew-normal model does357
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so using only four parameters. Moreover, the calibration of forecast paths358

with quantile-mapping, rather than providing uncertainty intervals, offers359

more flexibility for downstream modeling. Our results demonstrated strong360

performance in the validation analyses. These findings reflect the strength361

and versatility of the techniques and their combined use.362

We presented probabilistic forecasts of the Finnish Total Fertility Rate363

(TFR) from 2024 to 2070. We use two different models to forecast the TFR364

of Finland. The first model is a scenario-based approach that assumes that365

the fertility postponement, i.e. the delay of childbearing to older ages, that366

started in Finland in the 1970s, will slow down and eventually stop. The367

second scenario-based model serves as a näıve baseline and assumes that the368

most recently observed age-specific fertility rates will remain constant. In a369

next step, we calibrate the results of the postponement scenario model (PPS)370

using a methodology based on empirical prediction intervals and quantile-371

mapping. More specifically, we construct prediction intervals around the time372

series forecasts that are based on a model of the out-of-sample forecast errors.373

We then calibrate 5,000 paths of future TFR values so that the distribution374

of the paths matches the distribution of the modeled historical out-of-sample375

errors. These TFR paths can be easily integrated into further analyses, such376

as population projection models or economic and health planning models.377

The paths of the PPS model which have been calibrated on the historical378

error data predict the TFR to increase until 2050 and then level off. This is a379

result of the assumption about the trend in fertility postponement. Using this380

method, the median of the TFR paths reaches a value of 1.44 in 2070 (95%381

PI [1.08, 1.72]). The validation analysis shows that the uncertainty around382
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these calibrated forecasts has a better coverage and is better calibrated in383

terms of width, compared to the non-calibrated paths from the PPS model384

(median 1.56, 95% PI [1.20, 2.03] in 2070) and the näıve baseline model385

(median 1.31, 95% PI [1.00, 1.71] in 2070).386

Similar to our results, the latest edition of the UN World Population387

Prospects (UNWPP 2024) projects Finland’s TFR to slightly increase in388

their median variant and to level off at 1.51 children by 2100, reaching389

a value of 1.47 by 2070. The 95% prediction interval around this median390

ranges from 0.89 to 2.0 children in 2070, which is wider than the 95% pre-391

diction intervals of our results. The UN produces probabilistic projections392

with country-specific assumptions based on the country’s past experience393

(see United Nations, Department of Economic and Social Affairs, Popula-394

tion Division (2024) for detailed methodology). The UN categorizes Finland395

as having entered a low-fertility post-transition phase. Finland’s TFR is then396

projected using a time-series model, ”assuming that the fertility level would397

approach and, in the long run, fluctuate around an ultimate country-specific398

level” (United Nations, Department of Economic and Social Affairs, Popu-399

lation Division, 2024, p. 30). In addition to the the median variant, other400

scenarios are published to give an idea of possible future fertility develop-401

ments, including high and low fertility variants with +/- o.5 children and a402

freeze-rate approach.403

Calibrating time series forecasts using historical data is data intensive.404

This need for long available time series is the main limitation of the proposed405

methodology of empirical prediction intervals. In addition, the scenario na-406

ture of the PPS model restricted the applicability of the model to periods407
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where fertility change is strongly affected by tempo effects and the main408

assumption of continuing but slowing down fertility postponement holds.409

Therefore, we extended the training data set for Finland by including data410

from Sweden and Norway, which have similar childbearing patterns in terms411

of the timing and level of fertility. We also allowed the cross-validation series412

to overlap to increase the number of series. However, the overlapping of the413

cross-validation series carries the risk of over-fitting the model of the forecast414

error distribution. To mitigate this, we included data from Denmark that415

were only used in the validation analyses and not in the calibration of the416

forecasts.417

However, there is another approach to obtaining a forecast error distribu-418

tion to derive empirical prediction intervals that does not involve forecasting419

historical data using the same model as for the actual forecast. Keilman and420

Pham (2004) introduce the use of published historical forecasts from statis-421

tical agencies and other official sources to calculate forecast errors and thus422

derive empirical prediction intervals. In this way, the uncertainty of expert423

forecasts in the past informs the uncertainty of the forecasts today, regard-424

less of the methodology used to produce the historical forecasts. This type425

of empirical prediction intervals can be a valuable tool for scenario-based426

forecast models, where the lack of applicability to historical data limits the427

data availability for the training data.428

The underlying assumption that allows us to use empirical forecasting429

errors to derive measures of forecast uncertainty is that future forecasting430

errors will resemble past errors. One might ask, however, why this should be431

the case. Alho et al. (2008) argue that ”[...] if one does not believe that they432
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will be, it is necessary to provide arguments as to why the future is expected433

to be different from the past”. Demographers have for a long time been434

aware of the distorting impact of changes in fertility timing on period fertility435

(Hajnal (1947); Bongaarts and Feeney (1998). While not explicitly predicting436

the end of fertility postponement, they illustrated how fertility rises due437

to slowing down fertility postponement or catching up of postponed births.438

This has later been referred to as “the third phase of fertility recuperation”439

Sobotka (2017). Further, Finnish research of the past expected that the440

observed fertility postponement would not go on forever: “At present it seems441

reasonable to assume in long-range studies that fertility will stabilize at the442

level prevailing at the end of the 1980s” (Auvinen, 1989, p. 54). This believe443

is also reflected in the ”high”-scenario of the 1984 population projection444

of Statistic’s Finland (Hämäläinen and Honkanen (1984)). Therefore, we445

believe that applying our scenario-based PPS model to past periods is a446

valid choice. We see no reason why the historic forecasting errors of the447

PPS model should not be used to inform the uncertainty of the current PPS448

forecasts.449

Although the validation analyses have shown that the prediction inter-450

vals calibrated to historical data perform notably better in terms of coverage451

and width than the non-calibrated ones, the calibration scores are not per-452

fect. The main problem is the under-coverage of the prediction intervals for453

forecasts up to 15 years ahead due to over-prediction of the TFR. Although454

we have taken this forecast bias into account when modeling the forecasting455

error distribution, the problem persists to some extend as revealed in the456

validation. A possible reason for these results is the lack of data, which lead457
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to less robust validation results, as we only have four data series available for458

the validation analysis. In addition, the empirical error distribution shows459

that the overestimation of the TFR in the first forecast years is a problem460

inherent to the PPS model, because the slowing of the fertility postponement461

is assumed to start at the first forecast year. Looking at the TFR forecasts462

up to 2070 together with the observed data up to 2023 (Figure 5), the model463

would benefit from a smoother transition between the last observed value and464

the first forecast year that takes the short-term trend in the latest observed465

years into account.466

In contrast to modelling the forecasting error distribution using a score-467

caster, empirical prediction intervals could also be derived by taking the raw468

quantiles of the error distribution. However, we chose to model it using a469

time-varying skew-normal distribution. The resulting prediction intervals are470

still informed by empirical forecasting errors. However, the modeling helps to471

increase their generalizability in the presence of data scarcity by smoothing472

and extrapolation.473

The results of this study show how empirical prediction intervals and474

quantile-mapping serve to improve the quality of probabilistic demographic475

forecasts. We would like to emphasize that this is a flexible methodology476

that can be applied to all kinds of demographic (or non-demographic) mea-477

sures, regardless of the type of forecast model or outcome. In this study478

we have applied it to a scenario-based model for forecasting Finland’s Total479

Fertility Rate. However, any type of forecast model can be calibrated using480

the presented methodology, e.g. models based on expert opinions, or simple481

extrapolation models. The critical component for successful application is a482
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long time series of historical data to which the chosen forecast model can be483

applied. We encourage researchers to use probabilistic forecast methods, to484

be transparent about their assumptions, and to calibrate and validate their485

results using historical data. Time has shown that demographic forecasts486

made by researchers in the past to the best of their knowledge have turned487

out to be wrong. We see no reason why current forecasts should be any dif-488

ferent. It is intuitive to us, therefore, to use the knowledge of past forecast489

errors to our advantage and let it inform our forecasts of today.490

Author contributions491

R.D.: Conceptualization, Methodology, Formal analysis, Software, Visu-492

alization, Writing - Original Draft. J.S.: Conceptualization, Methodology,493

Software, Supervision, Writing - Review & Editing. J.H.: Methodology, Soft-494

ware, Writing - Review & Editing. M.M.: Conceptualization, Methodology,495

Supervision, Writing - Review & Editing, Funding acquisition.496

Acknowledgements497

The authors would like to thank Nico Keilman, Rob Hyndman and Marie-498

Pier Bergeron-Boucher for discussions on empirical uncertainty quantifica-499

tion. R.D. gratefully acknowledges the resources provided by the Interna-500

tional Max Planck Research School for Population, Health and Data Science501

(IMPRS-PHDS).502

Funding sources503

R.D. was supported by the Finnish Centre for Pensions (ETK2023031).504

28



J.H. was supported by the Strategic Research Council (SRC) of the505

Academy of Finland, FLUX consortium (Family Formation in Flux—Causes,506

Consequences, and Possible Futures), decision numbers 345130 and 345131,507

and by the European Research Council under the European Union’s Horizon508

2020 research and innovation programme (grant agreement No 101019329).509

M.M. was supported by the Strategic Research Council (SRC), FLUX510

consortium, decision numbers 345130 and 345131; by the National Insti-511

tute on Aging (R01AG075208); by grants to the Max Planck – University of512

Helsinki Center from the Max Planck Society (Decision number 5714240218),513

Jane and Aatos Erkko Foundation, Faculty of Social Sciences at the Univer-514

sity of Helsinki, and Cities of Helsinki, Vantaa and Espoo; and the European515

Union (ERC Synergy, BIOSFER, 101071773). Views and opinions expressed516

are, however, those of the author only and do not necessarily reflect those of517

the European Union or the European Research Council. Neither the Euro-518

pean Union nor the granting authority can be held responsible for them.519

Views and opinions expressed are, however, those of the authors only520

and do not necessarily reflect those of the European Union or the European521

Research Council. Neither the European Union nor the granting authority522

can be held responsible for them.523

References524

Alho, J.M., Cruijsen, H., Keilman, N., 2008. Uncertain demographics and525

fiscal sustainability. Cambridge University Press, Cambridge. chapter Em-526

pirically based sprecification of forecast uncertainty. pp. 34–54.527

Alho, J.M., Spencer, B.D., 2005. Statistical demography and forecasting.528

29



Springer. volume 2016. chapter Uncertainty in Demographic Forecasts:529

Concepts, Issues, and Evidence. pp. 226–268.530

Angelopoulos, A., Candes, E., Tibshirani, R.J., 2024. Conformal pid con-531

trol for time series prediction. Advances in neural information processing532

systems 36.533

Auvinen, R., 1989. Finland’s low fertility and the desired recovery. Finnish534

Yearbook of Population Research , 53–59.535

Bongaarts, J., Feeney, G., 1998. On the quantum and tempo of fertility.536

Population and development review , 271–291.537

Bracher, J., Ray, E.L., Gneiting, T., Reich, N.G., 2021. Evaluating epidemic538

forecasts in an interval format. PLoS computational biology 17, e1008618.539

Cannon, A.J., 2018. Multivariate quantile mapping bias correction: an n-540

dimensional probability density function transform for climate model sim-541

ulations of multiple variables. Climate dynamics 50, 31–49.542

Cohen, J.E., 1986. Population forecasts and confidence intervals for Sweden:543

a comparison of model-based and empirical approaches. Demography 23,544

105–126. doi:10.2307/2061412. publisher: Duke University Press.545

Fontana, M., Zeni, G., Vantini, S., 2023. Conformal prediction: a unified546

review of theory and new challenges. Bernoulli 29, 1–23.547

Gammerman, A., Vovk, V., Vapnik, V., 1998. Learning by transduction.548

arXiv:1301.7375.549

30



Gneiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, prediction,550

and estimation. Journal of the American Statistical Association 102, 359–551

378. doi:10.1198/016214506000001437. publisher: Informa UK Limited.552

Goldstein, J.R., 2006. How late can first births be postponed? some il-553

lustrative population-level calculations. Vienna Yearbook of Population554

Research , 153–165.555

Hajnal, J., 1947. The analysis of birth statistics in the light of the recent556

international recovery of the birth-rate. Population Studies 1, 137–164.557
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