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Summary

Haplotype based linkage disequilibrium (LD) mapping exhibits higher power than the single locus approach because
it makes use of the LD information contained in the flanking markers. New statistical methods have been proposed
to help to infer haplotype effects on human diseases using multi-locus genotype data collected from unrelated
individuals. In this paper, we introduce a statistical procedure for measuring haplotype effects on human survival using
the popular logistic regression model with haplotype based parameterizations. By modeling haplotype frequency
as a function of age, our model infers haplotype effects by estimating and testing the slope parameters under
different genetic mechanisms (multiplicative, dominant, or recessive). In addition, by estimating the sex-specific
slope parameters, our model allows the detection of sex-specific haplotype effects or haplotype-sex interactions. As
an example, we apply our model to an empirical dataset on a stress related gene, interleukin-6, to look for haplotypes
that affect individual survival and for haplotype-sex interactions. We show that our logistic regression based haplotype
model can be a helpful tool for researchers interested in the genetics of human aging and longevity.
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Introduction

Association based linkage disequilibrium mapping
(Jorde, 2000; Weiss & Clark, 2002) maybe a useful tool
in the genetic study of human aging and longevity (De
Benedictis et al. 2001). Taking advantage of the newly
emerging high-throughput SNP genotyping technique,
which enables high-density genome-wide screening of
complex trait genes, LD mapping is gaining more pop-
ularity (Gray et al. 2000). Such methodology challenges
the traditional locus-by-locus approach in association
studies. As lifespan is a complex trait, multi-locus sta-
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tistical approaches that take into account the interde-
pendence of genetic variants are crucial in mapping the
genes that modulate human survival.

Haplotype based LD mapping represents an increas-
ingly important association approach in localizing hu-
man complex disease genes (Collins et al. 1999). Be-
cause particular DNA variants may remain together on
ancestral haplotypes for many generations, groups of
neighbouring genetic variants can form haplotypic di-
versity with distinctive patterns of LD, and this can be
exploited in both genetic linkage and association studies
(Schork et al. 2000). Haplotype analysis is more efficient
than a locus-by-locus association test because it makes
use of the LD information contained in the flanking
markers (Akey et al. 2001). As what we observe in prac-
tice is multi-locus genotypes instead of haplotypes, di-
rectly calculating haplotype frequency is problematic
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in cases of missing parental genotype information or
on “ambiguous triad” (Hodge et al. 1999). With the
implementation of the EM algorithm, haplotype fre-
quencies can be estimated from data of unrelated indi-
viduals (Excofficer & Slatkin, 1995) and used to infer
haplotype effects in case-control studies (Zhao & Sham,
2002; Schaid et al. 2002; Epstein & Satten, 2003). In
longevity studies, the traditional haplotype estimating
technique has been applied to analyze multi-locus geno-
type data collected using a case-control setup, with cases
being the long-lived (usually centenarians) and controls
being young individuals (Bonafe et al. 2002; Ross et al.
2003; Geesaman et al. 2003; Christiansen et al. 2004).
Such practice suffers from the power problem, as with
the group-wise gene frequency approach in single locus
analysis (Yashin et al. 1999). In a recent development,
Lin (2004) proposed a semiparametric Cox proportional
hazard model for estimating relative risk of haplotype
on age at disease onset, using unphased genotype data
from cohort studies. Differing from age at disease onset,
longevity studies using a cohort setup have been rare due
to the expense of follow-ups both in term of time and
money. Although it is possible to implement the exist-
ing model in longevity studies, it is necessary to develop
alternative methods to apply to unphased genotype data
collected using the popular cross-sectional design.

As a widely used method in the field of epidemi-
ology, the logistic regression model has been applied
to estimate the genetic effects on human survival at
polymorphic loci in cross-sectional studies (Tan et al.
2003). In this paper, we extend the multinomial logis-
tic regression model (Hosmer & Lemeshow, 2000) to
deal with multi-locus unphased genotype data. By hap-
lotype based parameterization on the observed multi-
locus data, and assuming Hardy-Weinberg equilibrium
at birth, the model models haplotype frequency as a
function of age to infer haplotype effects on human
survival. Our strategic parameterization allows us to in-
vestigate the different genetic mechanisms concerning
the haplotype function (multiplicative, dominant and re-
cessive), and to estimate sex-specific haplotype effects or
haplotype-sex interactions. Important haplotypes can be
grouped into one model for extensive analysis, and the
Akaike information criterion (AIC) (Akaike, 1973) can
be used for selecting the best performance model from
the models with different haplotypes included. We apply

the model to an empirical multi-locus genotype dataset
collected in an association study on the interleukin-6
(IL-6) gene and human longevity (Christiansen et al.
2004), to show how our method can be used to search
for important haplotypes that affect human survival. We
end with a brief discussion on the significance of the
model and on practical issues concerning model appli-
cations.

Methods

The Multinomial Logistic Regression Model
with Haplotype Based Parameterization

We suppose that complete genotype information is
available at a series of m loci. Let G denote the col-
lection of all possible multi-locus genotypes observed
and H denote the collection of all the haplotypes. The
combinations of haplotypes in H form the haplotype
pairs or haplogenotypes that make up G. Assuming at
age x the frequency of haplotype pair (hi , h j ) is πi, j (x),
and defining the haplotype pair formed by the baseline
haplotype ho as the reference haplogenotype, we obtain
the multinomial logistic regression model with polyto-
mous responses (here the haplogenotypes) as

ln[πi, j (x)/πo ,o (x)]

=

{
αi, j + βi, j x i = j

ln 2 + αi, j + βi, j x i < j

αo ,o = 0, βo ,o = 0 i, j ∈ H (1)

In (1), πo ,o (x) is the frequency at age x
for the reference haplogenotype (ho , ho ). In this
model, age related changes in the haplogenotype
frequency are represented by the slope parame-
ter βi, j while the intercept αi, j is related to the
haplogenotype frequency at birth. Equation (1) is pa-
rameterized on the haplogenotypes or the pair-wise
combinations of the haplotypes in H. The number
of such combinations can increase drastically with the
number of loci covered and the degrees of their poly-
morphism. A parsimonious method of parameterization
is necessary to ensure the statistical power of the model.
Assuming Hardy-Weinberg equilibrium and multiplica-
tive haplotype effects, we introduce the haplotype based
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parameterization into (1) by letting αi, j = αi + α j and
βi, j = βi + β j for haplogenotype (hi , h j ). Now we can
rearrange (1) such that the haplogenotype frequency can
be expressed in terms of the haplotype parameters.

πi, j (x)

=




exp[(αi + α j ) + (βi + β j )x]
/∑

i ′ , j ′∈H

exp[(αi ′ + α j ′ ) + (βi ′ + β j ′ )x] i = j

2 exp[(αi + α j ) + (βi + β j )x]
/∑

i ′ , j ′∈H

exp[(αi ′ + α j ′ ) + (βi ′ + β j ′ )x] i < j

i, j ∈ H (2)

Given Hardy-Weinberg equilibrium, we easily obtain
the frequency of haplotype hi at age x from the square
root of πi,i (x) as

πi (x) =

exp(αi + βi x)

/√ ∑
i ′ , j ′∈H

exp[(αi ′ + α j ′ ) + (βi ′ + β j ′ )x]

i ∈ H (3)

For the baseline haplotype ho , because αo ,o = 2α0 = 0
and βo ,o = 2β0 = 0, we have αo = 0 and βo = 0. Then
the frequency of the baseline haplotype at age x is

πo (x) = 1

/√ ∑
i ′ , j ′∈H

exp[(αi ′ + α j ′ ) + (βi ′ + β j ′ )x].

(4)

Based on (3) and (4), we can estimate the odds ratio for
measuring the effect of haplotype hi for an increase over
k years in age x as

ORi (k) = [πi (x)/πo (x)]/[πi (x − k)/πo (x − k)]

= exp(βi k) i ∈ H. (5)

(5) means that when βi is significantly different from
zero, the frequency of the haplotype goes up if βi > 0
or down if βi < 0 with increasing age. Alternatively, we
can calculate the odds ratio over k years in age x for
carriers of haplotype pair (hi ,h j ) from (1) as

ORi, j (k) = [πi, j (x)/πo ,o (x)]/[πi, j (x − k)/πo ,o (x − k)]

= exp(βi, j k) = exp(βi k) exp(β j k)

= ORi (k)ORj (k) i, j ∈ H (6)

(6) shows clearly the multiplicative haplotype effects in
determining the odds ratio for the corresponding hap-
logenotype.

The Likelihood Function

For each multi-locus genotypeg , there is a set of hap-
lotype pairs, denoted as S(g ), that are consistent with
g . With this relationship, the frequency of multi-locus
genotype g at age x can be calculated as the sum of fre-
quencies for all the haplogenotypes S(g ) as expressed in
terms of the haplotype parameters in (2), i.e.

πg (x) =
∑

i, j∈S(g )

πi, j (x). (7)

(7) is important because, in practice, what we observe
are multi-locus genotypes instead of haplotypes. Equa-
tion (7) links the observed multi-locus genotypes with
the ambiguous haplotypes which we don’t observe. De-
noting the number of individuals carrying multi-locus
genotypeg with ng (x), we construct the likelihood func-
tion at age x using the multinomial distribution of the
multi-locus genotype frequencies in the population as

log Ldata(x) ∝
∑
g∈G

ng (x) log πg (x). (8)

The likelihood of the entire data is simply the sum of
(8) over all the observed ages.

Sex-specific Haplotype Effects

Similar to Tan et al. (2003), we can modify our logistic
regression model to account for sex-specific haplotype
effects by assigning different slope parameters to the two
sexes, such that (1) becomes

ln[πi, j (x)/πo ,o (x)]

=

{
αi, j + mβi, j xU + f βi, j x(1 − U ) i = j

ln 2 + αi, j + mβi, j xU + f βi, j x(1 − U ) i < j

αo ,o = 0, mβo ,o = 0, f βo ,o = 0 i, j ∈ H (9)

where U is an indicator of sex with U = 1 for males
and U = 0 for females. Based on the law of segrega-
tion, and assuming the gene of interest does not affect
in utero survival, we assign the same intercept parame-
ter for both sexes to reduce the number of parameters
in the model. By constructing the Wald test using the
variance-covariance matrix, statistical significance can
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be assessed to infer if the slopes are different for the two
sexes. When no haplotype-sex interaction exists, the
same slope parameter can be assigned so that (9) reduces
to (1).

Dominant or Recessive Effects

In (2), we assume the effects of haplotypes are mul-
tiplicative such that βi, j = βi + β j for haplogenotype
(hi ,h j ) and βi,i = 2βi for (hi , hi ). When the effect of
haplotype hi is dominant, we have βi, j = βi,i = βi .
While in the case of a recessive effect, we have βi, j = 0
and βi,i = βi . Note that in the multiplicative model,
at any age x, πi, j (x) = 2πi (x)π j (x) for heterozygous
and πi,i (x) = πi (x)2 for homozygous haplogenotypes.
This amounts to the requirement of Hardy-Weinberg
equilibrium over all the ages in the sampled data. How-
ever, in the non-multiplicative models, the symme-
try in the slope parameters no longer exists. In this
case, haplotype frequencies are no longer in Hardy-
Weinberg proportion, which in turn means that the
Hardy-Weinberg assumption can be relaxed when fit-
ting a non-multiplicative model.

Data Analyzing Strategies

In order to carry out the analysis, we first collect all the
unique multi-locus genotypes occurring in the data to
form G, and then count the numbers of each of the
multi-locus genotypes at each age; for example multi-
locus genotype g at age x, to use as ng(x) in (8). Then
for each multi-locus genotype g, find the collection of
all the haplotype pairs that are consistent with g to form
S(g) to use in (7). In the likelihood function (8), the fre-
quency of each multi-locus genotype g is expressed in
terms of the haplotype parameters through the linkage
provided by (7) and (2). Once the relationship is estab-
lished, parameters can be estimated by maximizing (8)
with the observed data.

Because the number of haplotypes goes up exponen-
tially with the number of loci, the model can be weakly
powered due to the large number of parameters to be
estimated. We suggest, in an initial analysis, estimating
the slope parameter for each single haplotype separately,
by assuming no effect from the other haplotypes, with
their slopes set to zero. This can be done for the different
models assuming multiplicative, dominant or recessive

haplotype effects. For each estimation, we record the
AIC for selecting the top performance haplotypes. The
selected haplotypes, together with their corresponding
modes, can be put into one model for an extensive anal-
ysis. Models with different combinations of the selected
haplotypes can be fitted and compared again, according
to their newly recorded AICs, to find the best perfor-
mance model. Parameter estimates in the best perfor-
mance model are reported as the final results.

As the number of haplotypes increases with the num-
ber of loci and degree of polymorphism at the loci, so
does the number of rare haplotypes. It has been shown
that the power for detecting association with rare haplo-
types is very low (Comeron et al. 2003). Depending on
the sample size and the number of possible haplotypes,
a frequency threshold could be set up such that low fre-
quency haplotypes can be pooled together to form a
combined haplotype (Lake et al. 2003). The combined
haplotype could be used as the baseline haplotype in the
analysis, although other alternatives such as the most
frequent or wild-type haplotype may also be a good
choice (Lake et al. 2003). Combining the rare haplo-
types could improve the power of the model due to the
reduced number of parameters to be estimated for the
same data. At the same time, the reduction in multiple
testing can help to reduce the type 1 error rate as well.
In the parameter estimation, as just mentioned, only the
slope parameter for the haplotype of interest is estimated
while the slopes of the other haplotypes are set to zero.
This means that the baseline to the slope parameter is
formed by all the other haplotypes. This not only re-
duces the number of parameters in the model but should
also help to increase stability in the estimates.

Application

The interleukin-6 gene (IL 6) has been associated with
stress conditions that are characterized by the aging pro-
cess, such as Alzheimer’s disease (Licastro et al. 2003),
cardiovascular events (Cesari et al. 2003) and type 2 dia-
betes (Vozarova et al. 2003). In a recent study, Chris-
tiansen et al. (2004) investigated the influence of IL
6 on human survival in the Danish population. Hap-
lotype analysis was carried out on a total of 1143
Danes genotyped at two single-point polymorphisms
(-572G/C and -174G/C) and one AT-stretch polymor-
phism (-373AnTm, 4 alleles) in the promoter region. Of
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Table 1 Parameter estimates in the logistic regression model in
the initial analysis

Fitted logistic regression model

Slope

Haplotype α β S.E. p−value AIC

Multiplicative
G/A8T12/C 2.806 −0.004 0.002 0.040 5405.459
G/A9T11/G 1.560 0.002 0.003 0.369 5408.883
G/A10T11/G 1.448 0.004 0.003 0.161 5408.726
G/A10T10/G 0.736 −0.002 0.004 0.656 5409.499
C/A10T10/G 0.071 −0.001 0.005 0.815 5409.657
C/A9T11/C −1.774 0.013 0.009 0.139 5407.302

Dominant
G/A8T12/C 2.472 0.000 0.001 0.778 5409.619
G/A9T11/G 1.767 −0.001 0.002 0.739 5409.588
G/A10T11/G 1.522 0.003 0.002 0.104 5407.003
G/A10T10/G 0.473 0.002 0.004 0.628 5409.435
C/A10T10/G 0.181 −0.003 0.005 0.560 5409.401
C/A9T11/C −1.774 0.013 0.009 0.139 5407.302

Recessive∗

G/A8T12/C 2.559 −0.003 0.002 0.078 5406.553
G/A9T11/G 1.691 0.003 0.002 0.225 5408.266
G/A10T11/G 1.738 −0.002 0.002 0.476 5409.181
G/A10T10/G 0.647 −0.015 0.010 0.147 5406.651
C/A10T10/G −0.034 0.007 0.008 0.435 5409.195

∗Estimation on C/A9T11/C haplotype was not possible due to
low frequency.

the 16 possible haplotypes arising from the three loci,
only 10 are present in the Danish population. Hardy-
Weinberg equilibrium was observed for the overall and
the age-grouped data (Christiansen et al. 2004). Hap-
lotype frequencies in the young (<70 years, 567 indi-
viduals) and old (93 years, 576 individuals) age groups
were compared for the 6 most common haplotypes. A
noticeable decrease with age in the frequency of the
−572G/-373A8T12/-174C haplotype (indicated as
G/A8T12/C) was reported (Christiansen et al. 2004).
Taking the IL 6 data as an example, we show how our
logistic regression model can be applied to infer the hap-
lotype effects on individual survival, as well as to estimate
the haplotype frequencies over the observed ages. Sim-
ilar to Christiansen et al. (2004), we combine the 4 rare
haplotypes to form one haplotype group, and assign it
as the baseline haplotype in the analysis. Following the
analyzing strategy, we first conduct an initial analysis on
each haplotype and estimate the parameters by introduc-
ing the multiplicative, dominant, and recessive models

(Table 1). The Wald test statistics are calculated for the
slope parameters to assess their statistical significance.

In Table 1, haplotype G/A8T12/C has the lowest AIC
in the multiplicative model. The p-value for its slope is
0.040. The negative slope for the haplotype indicates
that it is a harmful haplotype. The second and third
well performing models are the recessive model for the
G/A10T10/G haplotype and the dominant model for
the G/A10T11/G haplotype, respectively. However, the
p-values for the slope parameters of the two haplotypes
are all above 0.05. In addition to the assessment of hap-
lotype effects, with the estimated haplotype parameters,
we calculate frequencies for all the haplotypes in the
multiplicative model by using (3) (Table 2). The es-
timated frequency for the G/A8T12/C haplotype de-
creases from 0.481 at age 46 (the lowest observed age)
to 0.431 at age 93 (the highest observed age), due to
the increased rate of death for carriers of the haplo-
type. Most importantly, our logistic regression model
produces haplotype frequency estimates comparable to
those obtained by the EM algorithm (Christiansen et al.
2004).

In Table 3, we use the AIC for selecting the best per-
formance model from the three models, built up by
consecutively adding the above three top haplotypes
in the models according to their corresponding AICs
in Table 1. Adding the recessive G/A10T10/G haplo-
type to model 1, which only includes a multiplicative
G/A8T12/C haplotype, results in a smaller AIC in model
2. However, adding the third haplotype to model 2 does
not improve performance in model 3 (AIC increases).
We thus choose the two-haplotype model (model 2)
as the best model. From model 2, we estimate, using
formula (5), the odds ratio for haplotype G/A8T12/C
over the observed age range as 0.83, indicating the mod-
est and deleterious effect of the haplotype on individual
survival as reported by Christiansen et al. (2004).

By using (9), we also fit the logistic regression model
with sex-specific slope parameters to each haplotype.
The sex-specific slope parameters for the G/A8T12/C
haplotype (β = −0.005, p-value = 0.025 for males;
β = −0.004, p-value = 0.078 for females) show dif-
ferent statistical significance, with males more signif-
icant than females. We then assess the difference in
the two slope parameters by calculating the Wald test
statistic using the covariance information, which re-
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Table 2 Comparison of haplotype frequencies estimated by the logistic regression model and by the EM algorithm

Haplotype

Age G/A8T12/C G/A9T11/G G/A10T11/G G/A10T10/G C/A10T10/G C/A9T11/C

Logistic regression∗

46 0.481 0.201 0.192 0.072 0.038 0.012
93 0.431 0.218 0.220 0.066 0.036 0.021
EM algorithm∗∗

<70 0.470 0.203 0.196 0.071 0.038 0.013
93 0.432 0.217 0.222 0.066 0.035 0.020

∗Multiplicative effect model.
∗∗From Christiansen et al. (2004).

Table 3 Comparison of the top performance models using AIC in the extensive analysis

G/A8T12/C G/A10T10/G G/A10T11/G
Multiplicative Recessive Dominant

Model α1 β 1(p−value) α2 β 2(p−value) α3 β 3(p−value) AIC

1 2.806 −0.004(0.040) 5405.459
2 2.809 −0.004(0.037) 0.649 −0.015(0.144) 5404.306
3 2.760 −0.004(0.085) 0.644 −0.014(0.149) 1.580 0.002(0.273) 5405.094

sults in a p-value of 0.597. We thus conclude that our
data cannot yet confirm that there is a significant sex-
dependent effect for this haplotype.

Discussion

Similar to genetic association studies in human com-
plex diseases (Risch, 2000; Botstein & Risch, 2003),
association based LD mapping is more powerful than
linkage approaches in localizing genes that contribute
to human survival (Tan et al. 2004). With the comple-
tion of the human genome project and newly emerging
high throughput SNP genotyping techniques, abundant
genetic information is becoming available for mapping
human complex trait genes. New statistical methods for
accommodating this situation are appealing. In this pa-
per, we have presented a logistic regression approach
to estimate haplotype effects on human survival using
multi-locus genotype data collected from cross-sectional
studies. Different from the group-wised approach, our
model makes full use of individual phenotype informa-
tion by modeling haplotype frequency as a function of
age. In our model, haplotype effects on survival can be
detected by estimating and testing the corresponding
slope parameters under different genetic mechanisms
(multiplicative, dominant, or recessive). By specifying

sex-specific slope parameters, our model also allows the
investigators to infer sex-dependent haplotype effects or
haplotype-sex interactions. With the fitted model, the
haplotype frequency at any given age can be easily calcu-
lated to examine the age pattern in haplotype frequency.
Moreover, the AIC can be used for discriminating the
models fitted under different modes of haplotype func-
tion, and for selecting the best performance model when
multiple haplotypes are involved.

The observed individual age in our data is the age
at participation, or the age when biological sample was
taken. This means that, though we are dealing with a
survival trait, we don’t actually observe the individual’s
life span. Although completely censored, such data is
not a problem for our model because we are modeling
the haplotype frequency by age. In survival modeling,
new statistical methods have been proposed to analyze
single locus data collected using the cross-sectional de-
sign to estimate allele or genotype relative risks (Yashin
et al. 1999). Recently, we have extended the single
locus model to estimate haplotype relative risks using
unphased multi-locus genotype data. It is interesting
that application of the survival model to our IL 6 data
has produced consistent results. As the logistic regres-
sion model is widely used in epidemiologic studies, we
think our logistic regression based approach may be an
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important alternative to those who are unfamiliar with
survival modeling.

In fitting the logistic regression model, we as-
sume haplotype frequencies at birth follow the Hardy-
Weinberg law. As long as the genes we are interested
in do not affect in utero survival, and there is no pref-
erential transmission of a particular genetic variant in
the region under investigation, such an assumption is
sensible: differential survival driven by the association
between the haplotypes and hazard of death has not yet
imposed survival selection on the subjects. With this
assumption, genotype frequency information at other
ages can contribute to the estimation of haplotype fre-
quencies at birth. As long as Hardy-Weinberg equilib-
rium holds at birth, we can relax the assumption on
haplotype frequencies at the other ages, except in the
multiplicative model. This is important because dif-
ferent genetic mechanisms of haplotype function in
human survival can be tested without the require-
ment for Hardy-Weinberg equilibrium at advanced
ages.

Although new haplotype based approaches have been
proposed for mapping binary (Epstein & Satten, 2003),
categorical, and continuous (Schaid et al. 2002) disease
traits, and even survival traits in cohort studies (Lin,
2004) using unphased genotype data, to our knowledge
there has been no statistical method derived for analyz-
ing survival traits using a cross-sectional setup. Given
the popularity of the cross-sectional design in genetic
studies on human aging and longevity, we hope that
application of our model can help to promote haplo-
type based analysis in this field. Moreover, by modeling
haplotype frequency as a function of the disease status,
or of the disease trait, our logistic regression model can
easily be applied to infer haplotype effects on human dis-
eases (binary or categorical traits). Although our model
is proposed for analyzing unrelated data collected using
a cross-sectional design, the same setting also applies to
cohort data from unrelated individuals if available. In
such a case, we are modeling the haplotype frequency
change in the aging cohort. In all situations, similar to
any association design that deploys data from unrelated
individuals, efforts should be taken to assess (Freedman
et al. 2004), and to account for (Satten et al. 2001), popu-
lation substructure in the sampling population whenever
necessary.
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