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Summary. We suggest a cure-mixture model to analyze bivariate time-to-event data, as motivated by the
article of Chatterjee and Shih (2001, Biometrics 57, 779–786), but with a simpler estimation procedure and
the correlated gamma-frailty model instead of the shared gamma-frailty model. This approach allows us
to deal with left-truncated and right-censored lifetime data, and accounts for heterogeneity, as well as for
an insusceptible (cure) fraction in the study population. We perform a simulation study to evaluate the
properties of the estimates in the proposed model and apply it to breast cancer incidence data for 5857
Swedish female monozygotic and dizygotic twin pairs from the so-called old cohort of the Swedish Twin
Registry. This model is used to estimate the size of the susceptible fraction and the correlation between the
frailties of the twin partners. Possible extensions, advantages, and limitations of the proposed method are
discussed.
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1. Introduction
Models for survival analysis typically assume that every-
body in the study population is susceptible to the event un-
der study and will eventually experience this event if the
follow-up is sufficiently long. This is often an unstated as-
sumption of the widely used proportional hazard models and
their extensions—frailty models (for more detailed informa-
tion about the frailty concept in the univariate case, see, e.g.,
Vaupel, Manton, and Stallard, 1979). However, there are situ-
ations when a fraction of individuals are not expected to expe-
rience the event of interest; that is, those individuals are cured
or insusceptible. For example, researchers may be interested
in analyzing the recurrence of a disease. Many individuals
may never experience a recurrence; therefore, a cured frac-
tion of the population exists. Historically, cure models have
been utilized to estimate the cured fraction. Cure models are
survival models that allow for a cured fraction of individu-
als. These models extend the understanding of time-to-event
data by allowing for the formulation of more accurate and
informative conclusions. These conclusions are otherwise un-
obtainable from an analysis that fails to account for a cured or
insusceptible fraction of the population. If a cured component
is not present, the analysis reduces to standard approaches of
survival analysis. Use of cure models has been popular for
joint modeling of the overall risk of a disease and the age-at-
onset distribution of the diseased individuals (e.g., Farewell,
1977, 1982; Kuk and Chen, 1992).

In cure models (we use “cure fraction” and “insusceptible
fraction” as interchangeable notions), the population is di-
vided into two subpopulations so that an individual either is
cured with probability 1 − φ, or has a proper survival func-
tion S0(t), with probability φ. A model for the distribution of
survival times that incorporates a cured fraction is given by

S(t) = (1 − φ) + φS0(t).

Traditional cure models assume that those individuals expe-
riencing the event of interest are homogeneous in risk. During
the last fifteen years, extensions of cure models were devel-
oped to allow for heterogeneity among the fraction under risk,
by using frailty models where the frailty distribution is a mix-
ture of a discrete and a continuous part (e.g., Aalen, 1988,
1992; Longini and Halloran, 1996). The frailty mixture distri-
bution has point mass at zero with probability 1 − φ, while
heterogeneity among those experiencing the event of interest
is modeled via a continuous distribution, with probability φ.
In the gamma frailty mixture model, the survival function is
given by

S(t) = (1 − φ) + φ(1 + σ2H0(t))
−1/σ2

.

Here, H0 denotes the integrated baseline hazard function re-
lated to S0(t). Price and Manatunga (2001) gave a good in-
troduction to this area, applying leukemia remission data to
different cure, frailty, and frailty cure models. They conclude
that frailty models are useful in modeling data with a cured
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fraction, and found that the gamma frailty cure model pro-
vides a better fit to their remission data compared to the stan-
dard cure model. Chatterjee and Shih (2001) considered an
extension of such univariate frailty cure models to a bivari-
ate setting. They used three different copulas in their two-
step analysis procedure. We suggest the use of the copula of
the correlated gamma-frailty model (an extension of Clayton’s
shared gamma-frailty model) and show, by using simulations,
that all the parameters are estimable in a one-step ML esti-
mation procedure.

In the next section, we describe the proposed model, then
provide an application of the model to breast cancer data
from the Swedish Twin Registry in Section 3. This is followed
by a results section. In Section 5, we perform a simulation
study to show the identifiability and the performance of the
proposed method. The article concludes with a discussion of
further applications, drawbacks and advantages of the model.

2. Statistical Methods
Our approach is motivated by the article of Chatterjee and
Shih (2001). We define an individual as susceptible if he/she
will eventually develop the disease if followed up for a suffi-
ciently long time. For a pair of individuals, j = 1, 2, define

Yj =

{
1 if the jth individual is susceptible

0 otherwise
(1)

and use T ∗
j for the age of onset for the jth individual when

Yj = 1. Furthermore, let φj = P(Yj = 1) and Sj (t) =
P(T ∗

j > t |Yj = 1) describe the marginal distribution of Yj

and the failure time T ∗
j for the susceptible individuals, re-

spectively. Because of the symmetry in the twin data used as
an example later on, we assume φ1 = φ2 and S1(t) = S2(t).

Chatterjee and Shih (2001) used three different copulas—
Clayton’s model, Frank’s model, and the positive stable
model—to specify the dependency structure between the fail-
ure times of two susceptible individuals. Here, we use an
extension of Clayton’s model (better known as the shared
gamma-frailty model). Clayton’s model is given by

S(t1, t2) =

{(
S(t1)

−σ2
+ S(t2)

−σ2 − 1
)−1/σ2

if σ2 > 0

S(t1)S(t2) if σ2 = 0
(2)

where S(t) denotes the marginal univariate survival function,
assumed to be equal for both partners in a twin pair.

Shared frailty explains correlations within clusters (here,
twin sibships). However, it does have some limitations. First,
it forces the unobserved factors to be the same within the
cluster, which is not generally reasonable. For example, some-
times it may be inappropriate to assume that both twin part-
ners share all their unobserved risk factors. Second, the de-
pendence between survival times within the cluster is based
on marginal distributions of survival times. To see this, when
covariates are present in a proportional hazards model with
gamma distributed frailty, the dependence parameter and
the population heterogeneity are confounded (Clayton and
Cuzick, 1985), implying that the joint distribution can be
identified from the marginal distributions (Hougaard, 1986).
Elbers and Ridder (1982) show that this problem exists for
any univariate frailty distribution that has a finite mean.

Third, in most cases, univariate frailty will only induce pos-
itive association within the cluster. However, there are some
situations wherein the survival times for subjects within the
same cluster are negatively associated.

To avoid all these limitations, correlated frailty mod-
els (Pickles et al., 1994; Yashin and Iachine, 1995; Yashin,
Vaupel, and Iachine, 1995; Commenges and Jacmin-Gadda,
1997; Petersen, 1998; Wienke et al., 2002) are developed for
the analysis of multivariate failure time data, in which two as-
sociated random variables are used to characterize the frailty
effect for each cluster. For example, one random variable is as-
signed for twin 1 and another for twin 2, so that they would
no longer be constrained to have a common frailty. These
two variables are associated and jointly distributed; therefore,
knowing one of them does not necessarily imply the other.

In the following, we apply the correlated gamma-frailty
model, including an insusceptible fraction to fit bivariate
time-to-event (occurrence of breast cancer) data. The corre-
lated gamma-frailty model provides a specific parameter for
correlation between the two frailties. The interesting point
here is that individual frailties in twin pairs could not be ob-
served, but their correlation could be estimated by application
of the correlated gamma-frailty model.

The bivariate survival function is given by

S(t1, t2) =



S(t1)

1−ρS(t2)
1−ρ(S(t1)

−σ2

+S(t2)
−σ2 − 1)−ρ/σ2

if σ2, ρ > 0

S(t1)S(t2) if σ2 = 0 or ρ = 0

(3)

where S(t) denotes the marginal survival function, assumed
to be equal for both partners in a twin pair, and 0 ≤ ρ ≤
1 holds. Obviously, the shared gamma-frailty model (2) is a
special case of (3) when ρ = 1 holds.

We use a parametric approach by fitting a gamma-
Gompertz model to the breast cancer twin data, e.g., S(t) =
(1 + σ2α/β(eβt − 1))−1/σ2

, where α, β, σ2, ρ are the parame-
ters to be estimated.

Let (X11, X12), . . . , (Xn1, Xn2) be independent and iden-
tically distributed (i.i.d.) nonnegative two-dimensional ran-
dom vectors (pairs of lifetimes). The lifetimes (Xi1, Xi2)
(i=1, . . . ,n) are assumed to be independently censored from
the right by i.i.d. pairs of nonnegative random variables (C11,
C12), . . . ,(Cn1, Cn2). Thus, instead of (Xi1, Xi2) we only
observe

(Ti1, Ti2,∆i1,∆i2) (4)

with Tij = min{Xij , Cij }, ∆ij = 1(Xij ≤ Cij ) (i = 1, . . . ,n;
j = 1, 2), where 1(·) denotes the indicator function of the
event in the brackets. The likelihood function of the data in
(4) is given by Chatterjee and Shih (2001):

L(t1, t2, δ1, δ2) = δ1δ2φ11St1t2(t1, t2)

+ δ1(1 − δ2)
(
φ11St1(t1, t2) + φ10St1(t1)

)
+(1 − δ1)δ2

(
φ11St2(t1, t2) + φ01St2(t2)

)
+(1 − δ1)(1 − δ2)

(
φ11S(t1, t2) + φ10S(t1)

+φ01S(t2) + φ00

)
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where φ11 = P(Y1 = 1, Y2 = 1), φ10 = P(Y1 = 1, Y2 = 0), φ01 =
P(Y1 = 0, Y2 = 1), φ00 = P(Y1 = 0, Y2 = 0) and derivatives
Stj (t1, t2) = ∂S(t1, t2)/∂tj , St1t2(t1, t2) = ∂2S(t1, t2)/∂t1∂t2
and Stj (tj) = dS (tj)/dtj (j = 1, 2). Here, (t1, t2, δ1, δ2)
denotes a realization of the random vector (T 1, T 2, ∆1, ∆2).

As mentioned above, the twin pair data set used is not
randomly selected from the total twin population. Since both
members of a twin pair had to remain alive in 1958 to be in-
cluded in the study population, the survival times are sampled
from specific conditional distributions. If a twin pair was born
in year t∗ (where t∗ = 1886, . . . , 1925), the condition of sur-
vival of both twins until the year 1958 implies that both twins
had to survive until 1958 − t∗ to be included in the sample.
If the survival times are denoted by T 1 and T 2, with survival
function S(t1, t2), then the conditional survival function for a
twin pair born in year t∗ is

S(t1, t2 |T1 > 1958− t∗, T2 > 1958−t∗)=
S(t1, t2)

S(1958−t∗, 1958−t∗)
.

Consequently, the likelihood function of bivariate left trun-
cated and right censored lifetime data is given by

L(t1, t2, δ1, δ2, t
∗)

=
(
δ1δ2φ11St1t2(t1, t2) + δ1(1 − δ2)

(
φ11St1(t1, t2) + φ10St1(t1)

)
+(1 − δ1)δ2

(
φ11St2(t1, t2) + φ01St2(t2)

)
+(1 − δ1)(1 − δ2)

(
φ11S(t1, t2) + φ10S(t1)

+φ01S(t2) + φ00)
)/(

φ11S(1958 − t∗, 1958 − t∗)

+φ10S(1958 − t∗) + φ01S(1958 − t∗) + φ00

)
.

For a combined analysis of monozygotic and dizygotic twins,
we include two correlation coefficients, ρMZ and ρDZ, respec-
tively. These correlations between monozygotic and dizygotic
twins provide information about genetic and environmental
influences on frailty within individuals.

3. Breast Cancer Data of Swedish Twins
Breast cancer incidence data of identical (MZ) and frater-
nal (DZ) female twins were provided by the Swedish Twin
Registry. This was founded in the years 1959–1961 as the

Table 1
Results of breast cancer data with correlated gamma-frailty model without and with cured fraction

Without cure fraction With cure fractiona With cure fractionb

Parameter estimates (std) estimates (std) estimates (std)

α 1.31 · 10−5 (1.04 · 10−5) 7.64 · 10−5 (4.84 · 10−5) 1.175 · 10−5 (1.170 · 10−5)
β 0.099 (0.016) 0.091 (0.012) 0.086 (0.015)
σ 5.736 (0.680) 2.107 (0.406) 1.576 (0.951)
ρMZ 0.154 (0.052) 1.000 ( – ) 1.000 ( – )
ρDZ 0.125 (0.040) 0.934 (0.361) 0.962 (0.457)
φ11 1.000 ( – ) 0.049 ( – ) 0.038 (0.021)
φ10 0.000 ( – ) 0.173 ( – ) 0.133 (0.058)
φ00 0.000 ( – ) 0.605 ( – ) 0.696 (0.136)
φ 1.000 ( – ) 0.222 (0.045) 0.171c ( – )
Likelihood 5122.7020 5120.5408 5120.4237

a constrained by φ11 = φ2, φ10 = φ01 = φ(1 − φ), φ00 = (1 − φ)2.
b constrained by φ10 = φ01, φ11 + φ10 + φ01 + φ00 = 1.
c calculated by φ = φ11 + φ10.

world’s largest nation-wide twin registry and has been con-
tinually developed ever since. This population-based registry
includes all (traced) twins born in Sweden in the period 1886–
1990. We restrict our analysis to the so-called old cohort
(born 1886–1925), because of small numbers in the middle co-
hort. The old cohort consists of all same-sex twin pairs with
both individuals alive when the registry was established in
1959–1961. The data set was created by merging the Swedish
Twin Registry with the Swedish Cancer Registry maintained
by the National Board of Health and Welfare. At the time
of record linkage, the Swedish Cancer Registry contained all
cases of cancer that were diagnosed during the period from
1959 through 2000. The Swedish Cancer Registry classifies
cancer according to the seventh revision of the International
Classification of Diseases (ICD).

The church registers from all parishes of the relevant time
period were manually checked to identify all twin births. In
1959–1961, a questionnaire was sent to all twins, including
a question about phenotypic similarities to assess the zy-
gosity: “Where you as children as alike as two peas in a
pod?” When both partners agreed, they were defined as MZ
twins. This zygosity classification was compared with labora-
tory methods (serological markers). The misclassification rate
for this method was found to be very low (Cederlöf et al.,
1961). The data set provided by the Swedish Twin Registry
contains records of 5857 female twin pairs with both part-
ners alive in 1959–1961. Consequently, lifetimes are bivariate
left truncated. Individuals were followed from 1959–1961 to
October 27, 2000. Altogether, we have 2003 monozygotic twin
pairs and 3854 dizygotic twin pairs. 715 cases of breast cancer
were identified during the follow-up. More detailed informa-
tion about the composition of the Swedish Twin Registry can
be found in Lichtenstein et al. (2002).

Mortality in the study population was determined by link-
age to the Mortality Registry of Statistics, Sweden. Analy-
sis was made with the standard statistical software packages
SPSS and GAUSS.

4. Results
Applying the correlated frailty model, with and without the
cure fraction, to the breast cancer data described above yields
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the results given in Table 1. We consider two different cases
of cure models. In the first case, we assume that the suscepti-
ble status of the individuals in a pair is independent of each
other, e.g., P(Y1 = p1, Y2 = p2) = P(Y1 = p1)P(Y2 = p2)
with p1, p2 ∈ {0, 1}. In that case, the cure fraction is uniquely
described by the univariate probability φ = P(Y1 = 1) =
P(Y2 = 1), which results in φ11 = φ2, φ10 = φ01 = φ(1 − φ),
φ00 = (1 − φ)2. In the second case, which is an extension of
the first one, we relax the above restriction of independence
between the susceptibility status of the two partners in a pair,
and use the weaker constraints φ10 = φ01, φ11 + φ10 + φ01 +
φ00 = 1. Comparing the likelihood of the two, it turns out
that the cure model with the independent susceptible status
of the twin partners shows a significantly better fit than the
model without the cure fraction (χ2

1 = 4.32, p = 0.04). The
more complicated cure model without the independence as-
sumption between the susceptible status of the twin partners
shows no significant improvement compared to the cure model
assuming independence (χ2

1 = 0.23, p = 0.63).

5. Simulations
All simulations involve generating gamma-distributed frail-
ties, bivariate lifetimes, censoring, and truncation times, as
well as the inclusion of a cured fraction in the study popula-
tion. We will try to mimic the characteristics of the Swedish
twin data that we analyzed in the previous example. A total
of 6500 twin pairs are simulated, a number which is reduced
by the truncation process to a final sample size of around 5700
twin pairs. Samples are generated as follows:

� Generate frailty variables using independent gamma-
distributed random variables.

� Generate bivariate lifetimes given the frailties using
S(t |Z) = e−Zα/β(eβt−1).

� Define cured individuals by using a random variable.
� The censored (bivariate) lifetimes are generated by using

the year 2000 as the end of the study.
� Birth years are generated by using a uniform distribution

on [1886,1925] to mimic the truncation pattern.
� The year of truncation is 1958.

The simulated data were generated assuming independence
between the susceptibility status of the partners (second col-
umn in Table 1), but in the estimation procedure, the more
general model with a dependent susceptibility status was ap-
plied (third column in Table 1). The simulation program was
written using the GAUSS language. We simulated 1000 data
sets.

The mean parameter estimates of the model are shown
in Table 2, in comparison with the true values used for
simulation. There appears to be nearly no bias in the pa-
rameter estimates, and the overall performance is quite
accurate.

6. Discussion
In this article, we have suggested a cure-mixture model for
the modeling of correlations in bivariate time-to-event data.
This model extends the approach outlined in the article of
Chatterjee and Shih (2001) in various ways. First, instead
of the shared gamma-frailty model, we use the much more
flexible correlated gamma-frailty model, which includes the

Table 2
Parameter estimation in the simulation study

Mean of Standard
Parameter True value estimates deviation

α 1·10−5 1.16 · 10−5 6.70 · 10−6

β 0.120 0.120 0.010
σ 2.000 2.016 0.270
ρ 0.600 0.606 0.132
φ11 0.160 0.164 0.027
φ10 0.240 0.241 0.014
φ00 0.360 0.354 0.046

shared gamma-frailty model as a special case. Second, we pro-
pose using a direct estimation procedure in the parametric
model, instead of the two-step estimation procedure used by
Chatterjee and Shih. Third, we think that our twin data are
more appropriate as an illustrative example than the fam-
ily data of Chatterjee and Shih (who ignored higher order
correlations in their family data) for such bivariate models.
Nevertheless, our estimate of the size of a susceptible frac-
tion (due to breast cancer) with 0.222 (0.045) is very close to
the estimate 0.22 (0.0093) in the parametric model found by
Chatterjee and Shih in a completely different study popula-
tion. Furthermore, this finding is in line with the results of
Peto and Mack (2000). Fourth, we allow the lifetimes to be
truncated in our model.

Cure models with the right censored observations suffer
from an inherent identifiability problem. For such observa-
tions, the event under study has not occurred, either because
the person is insusceptible, or because the person is suscep-
tible, but follow-up was not long enough for the event to be
observed. The identifiability problem increased with increas-
ing censoring, but is lessened by the parametric modeling of
the baseline hazard. The simulation study shows that the esti-
mation procedure works well under the given truncation and
censoring scheme with our sample data set. Stronger right
censoring causes strong identifiability problems. For example,
in an additional simulation study (not shown here), using the
same parameters as described in the simulation section, but
using the birth years 1926–1958 (which is the situation in
the so-called middle cohort of the Swedish Twin Registry),
resulted in a complete breakdown of the estimation proce-
dure. In cure models with fixed censoring times (caused by
the end of the study), censoring is no longer noninformative,
even when the censoring times and the survival times are in-
dependent. The proportion of censored observations contains
important information about parameters in the model. For
example, in the (usually ideal) case of no censoring, it holds
φ = 1.

The present article is restricted to the parametric case,
meaning in our case, the marginal survival function is
specified parametrically up to a few (one-dimensional)
parameters,

S(t) =

(
1 + σ2 α

β
(eβt − 1)

)−1/σ2
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with Gompertz parameters α and β. From a statistical point
of view, such a parametric assumption is unsatisfactory, be-
cause it is nonjustifiable. Frailty models of univariate data
have been strongly criticized, because assumptions have to
be made about both the shape of the underlying mortal-
ity trajectory and the distribution of the frailty: different
pairs of assumptions can result in equally good fits to the
data. Without an insusceptible fraction in the population
(φ = 1), this problem can be solved by using the nonpara-
metric correlated gamma-frailty model (Yashin and Iachine,
1995). Applying the (true) parametric and semiparametric
estimation procedures to the same (simulated) data gener-
ated from the correlated gamma-frailty model, the semipara-
metric estimation procedure shows good performance, de-
spite the fact that it does not make use of the additional
information about the parametric structure of the marginal
survival functions. The estimates of σ2 and ρ are similar in
both cases (results are not shown here). Nevertheless, using
the wrong parametric model may result in biased parameter
estimates.

To what extent this method is applicable in the much more
complicated semiparametric model with cure fraction is still
an open question, one that needs further careful considera-
tion. Dealing with a disease with late age of onset, resulting
in heavily censored data, may lead to problems in estimating
the (infinite dimensional) nuisance parameter—the marginal
survival function—and, consequently, in estimating the pa-
rameters of interest, σ2 and ρ.

Our study points to the existence of an important insuscep-
tible fraction. The suggested model gives a clear illustration
of how survival analysis and cure models could be merged for
analysis of time-to-event data of related individuals.
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Résumé

Nous proposons un modèle de mélange avec taux de guérison,
pour analyser des données de survie bivariées, à la suite
du papier de Chatterjee et Shih (2001, Biometrics, 57, 779-
786), mais avec une procédure d’estimation plus simple et le
modèle de fragilité gamma corrélée, à la place du modèle de
fragilité gamma partagée (ndt : le deuxième modèle cité est
celui de Clayton, le premier en est une extension). Cette ap-
proche nous permet de travailler avec des données de survies
tronquées à gauche et censurées à droite et de prendre en
compte l’hétérogénéité et aussi bien qu’une fraction non sus-
ceptible (guérie) de la population étudiée. Nous réalisons une
étude de simulation pour évaluer les propriétés des estima-
tions dans le modèle proposé, et nous l’appliquons à des
données d’incidence du cancer du sein, issues de la vieille
cohorte de registre suédois des jumeaux, concernant 5857
femmes suédoises, jumelles, monozygotes ou dizygotes. Ce

modèle est utilisé pour estimer la taille de la fraction suscepti-
ble dans la population, et la corrélation entre les fragilités des
jumelles. Les extensions possibles, les avantages et les limites
du modèle proposé sont discutés.
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