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ABSTRACT 

The concept of genetic identity–by–descent (IBD) has markedly advanced our understanding 

of the genetic similarity among relatives and triggered a number of developments in 

epidemiological genetics. However, no empirical measure of this relatedness throughout the 

whole human genome has yet been published. Analyzing highly polymorphic genetic 

variations from the Centre d’études du polymorphisme humain (CEPH) database, we report 

the first genome–wide estimation of the mean and variation in IBD sharing among siblings. 

From 1,522 microsatellite markers spaced at an average of 2.3 cM on 498 sibling pairs, we 

estimated a mean of 0.4994 and a standard deviation of 0.0395. In order to account for the 

impact of varying chromosomal lengths and recombination rates, the analysis was also 

performed at the chromosomal and marker levels and for paternal and maternal DNA 

separately. Based on the variation, we estimate an “effective number of segregating loci” of 

around 80 for sibling pairs over the whole genome (i.e., the number of loci that would yield 

the same standard deviation in IBD sharing if all loci were segregating independently). 

Finally, we briefly assess the impact of genotyping errors on IBD estimations, compare our 

results to published theoretical and simulated expectations, and discuss some implications of 

our findings. 

 

Keywords: Microsatellites; Genomic maps; Recombination rate; Effective number of loci; 

Typing errors  
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INTRODUCTION 

Finding genomic similarities among related individuals remains one of the fundamental 

challenges in human genetics. The identity–by–descent (IBD) approach provides a natural 

way to assess such similarities. When two genes at a given locus are inherited from a common 

ancestor, they are said to be identical–by–descent. While parent and offspring exactly share 

50% of their genes on autosomal loci, two siblings share the same proportion on average. At 

any locus, they may share no alleles (if both parents transmitted different alleles), one allele 

(if one parent transmitted the same allele to each offspring), or 2 alleles (if each parent 

transmitted the same allele to each offspring). As the contribution from the male and the 

female parent are independent, the respective probabilities of these events are ¼, ½, and ¼.

The locus–specific expectation of IBD in sib–pairs is thus ½ and the standard deviation 

around this value is 81 .

Independently introduced by Cotterman [1940] and Malécot [1941], the concept of IBD 

lies at the very heart of many epidemiological and mapping studies in genetics. It has 

triggered the development of quantitative trait loci (QTL) mapping [Haseman and Elston 

1972; Wang and Elston 2005], as well as other methods, such as linkage analyses based on 

allele sharing [Suarez, et al. 1978] and the multipoint interval mapping [Fulker, et al. 1995; 

Rijsdijk and Sham 2002]. The concept has also generated useful theoretical work with respect 

to the genetic identity among relatives. Suarez et al. [1979] used simulations to estimate the 

variability in sib–pairs genetic identity, while Risch & Lange [Risch and Lange 1979a; 

1979b] derived a theoretical expectation of this variability based on the probability generating 

function. Using the “recombination index”, Rasmuson [1993] derived the variability within 

kinships involving different kinds of relatives. She also addressed the relevance of IBD 

sharing in sociobiology, and speculated that kin recognition patterns may require the 
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assessment of genetic identity over a large number of loci. Recent developments in forensic 

analyses using DNA, which mostly base the identification of relatives through identity-by-

state sharing (see for instance [Leclair, et al. 2004; Presciuttini, et al. 2002]), can also benefit 

from IBD assessments in the determination of population substructure through coancestry 

coefficients [Weir 1994]. The most comprehensive theoretical studies on IBD sharing are 

probably those of Guo [1994; Guo 1995; Guo 1996]. Based on the work of K.P. Donnelly 

[1983], who has modeled each chromosome in an offspring as a two–state Markov chain, Guo 

has provided an extension of the concept to a group of relatives, as well as valuable 

computation methods and various applications.  

Though many have addressed the theoretical distribution of IBD sharing over the whole 

genome, no empirical study on the subject has yet been published. This is understandable in 

light of technical difficulties and the massive scale of the genome, which prohibited any such 

accomplishment until the late 1990’s. Recent advances in biotechnology have changed that 

situation. Two detailed comprehensive genetic maps have been published based on the CEPH 

and deCode families [Broman, et al. 1998; Kong, et al. 2002]. Development of single–

nucleotide polymorphisms (SNP) linkage maps [Matise, et al. 2003], and whole–genome scan 

of complex diseases based on these polymorphisms [John, et al. 2004; Middleton, et al. 2004; 

Pato, et al. 2005] are now possible.  

Using data on microsatellite markers from the eight “CEPH reference families”, we present 

the first genome–wide estimation of IBD sharing among pairs of siblings. We provide 

estimations for the mean and the standard deviation of this variable at different levels of 

observation (genome, chromosome, and marker levels), and compare these empirical 

estimations to published theoretical expectations and simulations. Furthermore, as several 

studies have shown that the recombination rate is higher in female gametes than in male 

gametes [Broman, et al. 1998; Jensen-Seaman, et al. 2004; Kong, et al. 2002; Matise, et al. 

2003; Yu, et al. 2001], all analyses were performed for maternal and paternal DNA 



5

separately, as well as for combined (maternal + paternal) DNA. Finally, we briefly assessed 

the impact of genotyping errors on IBD estimations from simulations of different rates of 

errors. Our aim is to furnish a baseline account of the variation in a dataset for which, a

priori, there is no reason to suspect any deviation from random proportions.  

MATERIAL AND METHODS 

IBD ESTIMATIONS 

We analyzed the proportion of alleles shared by siblings at highly polymorphic 

microsatellite loci of the 22 autosomal chromosomes among the eight large reference families 

of the CEPH. We focused on the ‘core’ CEPH families because the genotypes of these 

families have been extensively studied and are thus less likely to contain typing errors. The 

average number of children in the pedigrees is 11.75, and the total number of sib–pairs 517. 

In sibships larger than two (s>2) as in the CEPH families, only (s – 1) of the s(s – 1)/2 sib 

pairs may be considered as independent [Collins and Morton 1995]. Thus, the effective 

number of sib pairs in our study is approximately equal to 8(12 – 1) = 88. Although this non–

independence results in an asymmetrical restriction in the range of IBD values, it does not 

affect the variability of IBD scores in sibships [Suarez, et al. 1979].  

All genotypes were downloaded from the CEPH Genotype database browser V2.0b. We 

used the so–called “AFM markers”, which offer maximum accuracy among the CEPH 

markers (personal communication from Mourad Sahbatou of the CEPH). These dinucleotide 

repeats (AC)n markers were used in the construction of genetic maps (e.g. Genethon) and 

were thus submitted to numerous quality control checks [Dib, et al. 1996]. In order to 

minimize the ambiguity concerning the phase, only markers having a heterozygosity of at 

least 60% were first selected (N= 4,015). Because an uneven distribution of distances between 

markers would result in an artificial increase of the genome-wide variance in genetic identity, 

we trimmed this first set in such a way as to obtain a subset of the most heterozygous markers 
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separated by at least 1cM and at most 5cM. This resulted in a total number of markers of 

N=1,522, interspaced by 2.3cM on average. The Marshfield Map  [Broman, et al. 1998] was 

used to estimate the distances between the markers. Like the Genethon map, this more recent 

map is also based on the CEPH families, but comprises essentially tri– and tetranucleotide 

markers [Weber and Broman 2001]. 

All IBD measures were performed by the “––ibd” and “––extended” functions of the 

“Multipoint Engine for Rapid Likelihood Inferences” [Abecasis, et al. 2002]. “MERLIN” can 

rapidly solve for phase ambiguity by taking into account the information contained at the 

surrounding markers. The algorithm generates accurate probabilities that the siblings share 0, 

1, or 2 genes at the ambiguous locus provided that the phase is known at nearby loci. Such 

“multipoint” analysis, however, can buffer out a sizeable amount of the standard deviation of 

IBD sharing, an undesirable outcome given our main goal, i.e., to provide the most accurate 

estimations of the mean and the variation of actual IBD sharing at the genome level. 

Consequently, for each marker, we selected only the sibling pairs for which the phase was 

known without any ambiguity. Note that all allele matching estimates refer to IBD, not to 

identity by state. The IBD status was determined from the parents’ genotypes uniquely.  

THE IMPACT OF GENOTYPING ERRORS ON IBD ESTIMATIONS 

Estimates of the rate of genotyping errors range from  0.5% [Nicolae and Cox 2002] and 

1% [Ott 1999] to 3% [Brzustowicz, et al. 1993]. Some errors may be easily detected when the 

genotypes of the parents, along with the genotype of the siblings in focus, are known. In such 

situations, the occurrence of an allele absent in the parental generation clearly indicates a slip–

up in the genotyping. Fortunately, the AFM markers of the CEPH database that we used were 

already cleaned for these simple Mendelian errors. If multipoint data are available, additional 

unlikely genotypes can also be detected. The “––error” procedure implemented in Merlin 

finds genotypes that imply a recombination pattern that is not supported by the surrounding 

markers [Abecasis, et al. 2002]. In the present analysis, some inconsistencies of that kind 
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were found, and the unlikely genotypes were removed using the “––pedwipe” command also 

implemented in Merlin. That being said, we found no inconsistencies on chromosome 8, 14, 

15, 16 and 17 and very few on the others, perhaps with the exception of chromosome 13, for 

which 4 individuals had an unlikely genotype at marker D13S1274. 

Having minimized the occurrence of genotyping errors in our data as much as possible, we 

nevertheless attempted to assess their general impact. Although errors can be a major 

nuisance in linkage analysis [Mitchell, et al. 2003; Zou and Zhao 2004], it remains to be 

determined whether or not they significantly affect genome–wide IBD estimations. We put 

forth a simple analysis that replicates the prevailing conditions when the multipoint procedure 

is not performed. At any locus, an allele may be confused with the other allele present in the 

same parent, an eventuality which is compatible with Mendelian inheritance and may easily 

go undetected if the phase at nearby loci is not taken into account. Starting from a reduced 

sample of our data (with a minimum of 345, a maximum of 517, and an average of 452.55 

markers), we simulated such swapping of parental alleles in 5 replicates. To simplify, only 

one allele per marker was susceptible of being changed. A genotyping error rate of 1%, which 

falls within reported values, was first simulated. Higher rates of 5% and 10% (an extreme, 

unlikely case scenario) were also simulated in order fully assess the range of the impact of 

errors. The IBD estimation analysis that thus followed was identical to the one performed on 

the original, non–simulated data (except that, of course, the “––error” and “––pedwipe” 

procedure were not performed on the reduced, “experimental” dataset). 

RESULTS 

THE OVERALL DISTRIBUTION OF IBD SHARING 

Our analysis provided no evidence for any significant deviation from random expectations. 

Over 397,831 pairwise comparisons considering each pair of siblings separately for each 

marker, the mean IBD sharing was 49.984% and the standard deviation 35.34%. These 
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percentages are almost identical to the expectation and the standard deviation of a random 

variable that can take the values 0, ½, and 1 with the probability ¼, ½ and ¼, respectively. As 

previously stated, such a random variable has a mean of ½ and a standard deviation of 8/1

(= 35.36%). A test of proportion using a value of n=8,800 for the number of “trials” yielded a 

test statistic of Z = –0.030 and a large P–Value of 0.976.

Breaking down the tabulations by sibling pairs, and using 600 to 900 markers on the 22 

autosomal chromosomes, a mean IBD sharing of 49.94 % and a standard deviation of 3.95% 

were found for 498 sibling pairs. (The number of sibling pairs is smaller than 517 because all 

pairs for which the IBD status was not known for more than 600 markers were removed). 

These figures agree with results obtained from simulations. Simulating a Poisson process for 

the breaks (and recombination) without interference along each chromosome, a mean of 50% 

and a standard deviation of 4.2% were obtained. For maternal and paternal DNA, our 

estimated standard deviations are, respectively, 4.82% and 6.19%. 

Based on the variation in IBD sharing, we can define and estimate an “effective number of 

loci” ne in the human genome, that is, the number of loci that would yield the same standard 

deviation in the proportion of genome shared between siblings if all loci were segregating 

independently. When only one locus is considered, the standard deviation of IBD sharing is 

81 or 125. . For ne independent loci, it is en/125. . Equating the latter to our estimated 

s.d. of 3.95%, we find ne = 80.2. In other words, ~80 loci segregating independently in the 

human genome would give the same standard deviation in IBD sharing among siblings as the 

actual partially linked loci do. An effective number of loci can also be calculated for sex–

specific DNA. Noting that the standard deviation would be en/25. in this case, we obtain 

ne ≈ 108 and ne ≈ 65, respectively, for maternal and paternal DNA.   

––– Figure 1 about here ––– 

Figure 1 shows the distribution of IBD sharing in sibling pairs for combined (maternal + 

paternal), maternal, and paternal DNA. Two panels are presented with histograms on the same 
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data using different binning sizes. For example, the bars located at the middle of each of the 

three distributions in Figure 1a (low resolution panel) includes all pairs of siblings who share 

between 47.5% and 52.5% of their combined, maternal, and paternal DNA, respectively. In 

Figure 1b (high resolution panel), the sizes of the bins are reduced to gives more details about 

the distribution. It can be seen, for example, that exactly 50 sibling pairs shared between 

49.5% and 50.5% of their combined (maternal + paternal) DNA. 

It is clear that the sharing of paternal alleles has a larger spread than that of maternal 

alleles. This was expected inasmuch as the recombination rate (and the number of 

independent segregating units) is smaller in paternal than in maternal gametes. Note that the 

sharing of paternal DNA may vary between 30% and 69%, whereas the sharing of maternal 

DNA is never less than 34% or greater than 66%. More generally, the quarter of sib pairs who 

share the least DNA share 44.9% of their alleles on average, while those who share the most 

share 54.8%. The corresponding proportions are 43.8% and 55.9% for maternal DNA, and 

42.0% and 57.7% for paternal DNA. The scores are even more spread out at the chromosomal 

level.  

DISTRIBUTION PER CHROMOSOME 

Table I lists first, for each chromosome, the mean and the standard deviation of IBD 

sharing among siblings for all (maternal + paternal) DNA, as well as for maternal and paternal 

DNA separately. From chromosome 1 to 22, one sees a sizable increase in the standard 

deviation. For combined (maternal + paternal) DNA, the standard deviation goes from 13.5% 

on chromosome 1 up to 27.2% on chromosome 22. Again, the most extreme tendencies are 

seen in paternal DNA, with standard deviations ranging between 20.9% and 38.6%. Table I 

also displays the effective number of loci for each chromosome for all DNA. For instance, 

chromosome 1 has about 7 effective loci, while chromosome 22 has less than 2. Note that by 

summing all the individual ne pertaining to each chromosome, we obtain 80.3 effective loci, a 

result almost identical to the one obtained above for the whole genome (80.2; see preceding 
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section). This remarkable property of additivity is not a coincidence and is apparent in Guo’s 

[1996] formula relating chromosomal lengths to variations in IBD sharing. 

––– Table I about here ––– 

Table II shows the proportions of siblings who share no DNA or their entire DNA on each 

chromosome. These proportions provide a way to estimate the total length (TL) of the 

chromosomes for each sex, and to assess the validity of our results. For example, 8.5% of 

sibling pairs do not share any paternal DNA on chromosome 19, while about the same 

proportion (7.9%) shares all. The corresponding figures for maternal DNA are 5.5% and 

3.9%. Baring the unlikely events that crossovers repeatedly occur at the same spot, the 

proportion of sib-pairs sharing all or nothing on a chromosome is the probability of having no 

recombination at two independent meioses. This probability can be approximated by: 

TLeP 2−= so that 2/)ln(PTL −= . Thus, the paternal and maternal lengths of chromosome 19 

should be approximately equal to 2/%)4.16ln(−=TL = 90.2cM, and 2/%)4.9ln(−=TL =

118cM, respectively. The first of these two estimates agrees with deCode’s findings (92.6cM; 

[Kong, et al. 2002]). However, our estimated length for the maternal chromosome is smaller 

than that of deCode (126.8cM; ibid.). Random fluctuations may explain this discrepancy, as 

the total number of independent sib pairs in our sample is approximately equal to 88 (see 

above). Another likely possibility may be that interference in crossovers and the existence of 

recombination “hotspots” and “deserts” significantly affect the markers’ lengths [Crawford, et 

al. 2004; McVean, et al. 2004]. 

DISTRIBUTION PER MARKER 

Figure 2 shows that the overall distribution of IBD sharing among siblings per marker is 

positively skewed. This skew arises because of the large progeny sizes in the CEPH families. 

At any given locus, alleles may be all identical in the sibship if parents systematically transmit 

the same one to their progeny, although the probability for this to occur is low. On the other 

hand, siblings cannot have alleles that are all different from one another on a given marker 
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because the parents have only 2 alleles to transmit. Consequently, when the progeny exceeds 

two, the mode and the median are shifted left to the mean. Note the very high paternal IBD 

sharing for one marker (D–number: D16S3068) on the high resolution panel (69.3). 

––– Figure 2 about here ––– 

THE EFFECT OF TYPING ERRORS ON IBD SHARING 

Table III shows the results of three simulations corresponding to typing error rates of 1%, 

5%, and 10%. In the initial, free of errors simulated dataset, the average IBD sharing was 

49.94% and the standard deviation 4.15% (the standard deviation is higher than the one 

calculated on the main dataset because the marker coverage is now more sparse and uneven; 

remember that the purpose here is to illustrate with a replication of experimental conditions). 

As expected, the means of the different simulation rounds were very close to the theoretical 

value of IBD sharing (50%). The standard deviation, on the other hand, decreased with 

increasing error rates. Each error can be seen as a virtual double crossing over event that 

artificially increases the number of segregating units and thus decreases the standard deviation 

of IBD sharing. Concomitantly, the recombination fraction is inflated, resulting in increased 

apparent map distance [Buetow, et al. 1994; Mitchell, et al. 2003]. In the worse case scenario 

envisaged, a 10% genotyping error rate brings down the standard deviation from 4.15% to 

3.66%, a reduction of about 12%. A more realistic error rate of 1% would slightly reduce the 

standard deviation from the same expected 4.15% to about 4.10%, representing a 1.2% 

decrease. At the intermediate level of a 5% error rate, one falls back on our estimated value of 

the standard deviation, i.e., ~3.95% (3.92% in Table III).  

––– Table III about here ––– 

DISCUSSION 

Although Mendel largely ignored several genetic mechanisms involved in the 

determination of traits (dominance, epistasis, interaction, etc.), he accurately described the 
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actual process of gene transmission at the locus level. Genes are truly transmitted randomly 

with a fair chance of 50%, which results in an average of 50% of DNA sharing among 

brothers and sisters. However, there is a considerable amount of variation around the mean 

that has not yet been accurately sized and accounted for. The purpose of this paper was to 

provide a glimpse of the variation that could trigger more advance studies. Here are some 

comparisons of our results with estimations reported in the literature and some observations 

that can be derived from our findings. 

The standard deviation in IBD sharing for the 498 sib–pairs of our sample was 3.95%, 

a score falling within the range of previously published theoretical expectations or simulations 

(Table IV). The lowest standard deviation found so far is that of Rasmuson [1993] who, using 

the “recombination index” (RI), derived a value of 3.53%. It is not clear how exactly 

Rasmuson obtained the value 100 for the RI. As noted above, it is probably an overestimation, 

which results in a low variation in IBD sharing. The highest standard deviation documented is 

that of Suarez et al. [1979]. Based on a simulated model of “chiasma localization”, they 

obtained a value of 5.60%. Such localization may render the loci more dependent on one 

another, and may thus increase the variance in genome-wide IBD sharing. However, it is hard 

to imagine how this could have such a large effect. Judging from Guo’s results, the increase in 

variation associated with the use of a chiasma model appears to be small, if not undetectable 

(Table IV). The reason for the discrepancy lies elsewhere: Suarez et al. [1979] used Hultén’s 

data [1974] on male meiosis to calculate the variance of identity by descent, which has 

artificially decreased the number of independent meioses for the combined sex autosomes. 

 ––– Table IV about here –––

In our opinion, the first “accurate” estimate of IBD variation was done by Risch and Lange 

as early as in 1979 [Risch and Lange 1979b]. Developing a probability generating function 

for the number of crossovers, and using the relative lengths of each of the 22 autosomal 

chromosomes from available maps, they estimated a standard deviation of 4.00%. The latter 
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result is closer to our empirical value than the low scores of 3.67% and 3.78% offered by Guo 

[1996] who used chromosomal lengths amounting to 4,000 cM (taken in Buetow et al.’s 

[1994] and Morton’s [1991] maps). Plotting the more recent and probably more accurate 

lengths from the deCode’s map (amounting to a total of 3,435 cM) in Guo’s formula, one 

finds a standard deviation of 3.91%, which is consistent with our estimate. Note that the 

results are almost identical when using the 3,498 cM SNP map from Matise et al.’s [2003] or 

the 3,488 cM microsatellite Marshfield map from Broman et al. [1998], i.e., 3.89%.  

There are, however, some discrepancies at the chromosomal level between our results and 

those obtained with the use of Guo’s formula (not shown). In comparison, our standard 

deviations are slightly lower for longer chromosomes and, conversely, slightly higher for 

smaller chromosomes. This is probably due to the limitation of our sample. The number of 

independent sib pairs in the 8 CEPH families is approximately equal to 88. This number of 

“trials” may not be sufficient to allow, on the one hand, a complete unfolding of the variation 

to the extremes on large chromosomes and, on the other hand, to limit the random fluctuations 

occurring on the smaller ones. Admittedly, the two biases may have acted in opposite 

directions. Even on the largest chromosomes, the proportion of sib pairs who share no DNA 

or all their DNA should be greater than zero in a sufficiently large sample. Table II shows that 

it is not the case in our sample. The large CEPH family structures may also asymmetrically 

constrain the range of variation [Suarez, et al. 1979]. Figure 2 clearly illustrates how this can 

lead to a high false positive rate in classic linkage studies. Just by chance, a few markers may 

be shared by many siblings, while most will display less than 50% of sharing. 

An improper marker coverage could have affected our results, but to a relatively small 

extent. In order to assess this possibility, we made successive random trims of the markers at 

different random positions, leaving a coarse, uneven distribution of anchors on the map. The 

results remained unchanged until reaching an average of 4 cM. After this threshold, the 

standard deviations in IBD sharing increased rapidly over 4%. The inclusion of only one type 
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of markers in our analysis (dinucleotides) may also be seen as a potential source of bias.  For 

instance, dinucleotide repeats are more prone to strand slippage (skipping of repeats during 

amplification resulting in fragments smaller than original fragments) than trinucleotide or 

tetranucleotide repeats [Weber and Broman 2001]. However, owing to higher mutation rates, 

dinucleotides have higher heterozygosity rates than markers with higher repeat lengths 

[Chakraborty, et al. 1997], a highly desirable property in a study of the variation in IBD 

sharing. Similarly, although a cost effective set of tightly spaced SNPs provides superior 

power to detect linkage than the more widely spaced microsatellites [Evans, et al. 2004; 

Middleton, et al. 2004; Pato, et al. 2005], the strong reduction in heterozygosity of such 

markers could result in a highly uneven distribution of loci with unambiguous phase, which 

would unduly increase the variance in the estimation of genome-wide IBD sharing. 

In our “no errors” simulation dataset, a sparse and non–uniform distribution of markers 

was deliberately chosen, resulting in an overestimate of the variations in IBD. Genotyping 

error rates of 1%, 5%, and 10% resulted in smaller standard deviations. The intermediate rate 

of 5% produced a result that closely matched our above–reported final estimate of 3.95%. All 

these manipulations have left the mean unchanged to 50%, while showing how two 

counterbalancing biases may cancel each other out so as to finally yield reasonable estimates 

of the standard deviation. Nevertheless, overall, an unlikely high error rate (5% or more) is 

needed to appreciably affect the variation in IBD sharing. In a sib–pair study with no parental 

DNA available, other typing errors would be likely, such as those involving alleles that are 

absent in the parent generation. Such errors would reduce the mean but increase the standard 

error of IBD sharing. 

 Our empirical study may provide useful insights for research involving linkage analyses 

and human identity assessment in general. For instance, the high proportions of sibling pairs 

who share no DNA or their entire DNA on small chromosomes (Table II) highlights the 

difficulties for detecting linkage in those chromosomes. As another example, multi-locus 
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match probabilities in forensic inquiries usually assume independence between loci [Ayres 

2000], and typing additional loci on small chromosomes, which contain very few independent 

loci, may rapidly produce decreasing returns [Weir 1994].  

Using the effective number of loci, we can derive the approximate number of markers that 

one could expect to fall in the critical area at a given level of significance. The variation in 

IBD that we measured for the sib pairs is that of a random variable with about 80 independent 

“trials”. Dividing the total number of markers included in the analysis (1,522) by the number 

of independent loci (80.2), we obtain the size of the “blocks” that segregated independently in 

the genome of the sib pairs (=1,522/80.2 ≈ 19). The markers contained in such a hypothetical 

block do not segregate together as parts of a haplotype on a given chromosome; they form a 

bloc in the sense that they are “statistically” linked. At a 95% level of confidence, and with 

100 independent sib pairs, we would expect about (0.05).80 = 4 of such blocs, for which the 

IBD sharing would fall over 56.9% or under 43.1% (= 100/125.96.15.0 ×± ). In other 

terms, out of 1,522 markers, 38 would have IBD scores greater than 56.9% and the same 

amount would have scores lower than 43.1%. These calculations are fairly simple and open 

the way for a quick assessment of the genome-wide significance threshold for sib pairs in a 

descriptive, preliminary phase of a linkage study.  
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TABLES 

Table I. Proportion (%) and variation (%) of DNA shared IBD in sib–pairs per chromosome 

Combined Maternal Paternal
Chromosome 

Mean Std. dev. ne Mean Std. dev. Mean Std. dev. 

1 48.7 13.5 6.8 49.4 16.5 48.1 20.9

2 49.4 14.0 6.4 49.2 16.5 49.6 22.2

3 50.1 14.9 5.6 48.8 19.3 51.3 22.4

4 52.5 16.7 4.5 50.6 19.3 54.4 25.2

5 49.4 16.6 4.5 49.2 19.2 49.7 27.0

6 49.3 18.7 3.6 48.8 22.2 49.8 27.7

7 49.3 16.1 4.8 49.2 18.6 49.4 26.6

8 51.1 18.1 3.8 50.4 19.7 51.8 29.1

9 49.5 18.7 3.6 50.1 22.8 48.8 28.2

10 48.8 17.9 3.9 49.0 20.6 48.6 27.6 

11 49.9 19.2 3.4 50.5 22.0 49.3 30.9 

12 50.4 17.9 3.9 50.3 19.9 50.5 28.0 

13 49.8 21.3 2.8 50.8 26.7 48.8 33.5 

14 50.7 21.4 2.7 50.3 23.9 51.1 32.7 

15 51.3 21.7 2.7 51.0 25.0 51.6 33.5 

16 50.7 20.5 3.0 49.5 23.2 51.9 33.0 

17 49.5 20.1 3.1 49.7 23.7 49.3 31.8 

18 49.7 20.7 2.9 50.9 22.9 48.6 32.6 

19 49.3 21.7 2.6 49.9 26.4 48.6 33.4 

20 50.1 24.2 2.1 50.6 26.2 49.6 37.9 

21 49.3 26.6 1.8 49.2 36.0 49.5 38.6 

22 50.8 27.2 1.7 50.2 33.8 51.4 38.5 
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Table II. Proportion (%) of sibling pairs sharing no or their entire DNA per chromosome 

Combined Maternal Paternal
Chromosome

zero all zero all zero all 

1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.2 0.2

3 0.0 0.0 0.0 0.0 0.0 0.2

4 0.0 0.0 0.2 0.0 0.8 1.0

5 0.0 0.0 0.8 0.4 0.8 1.4

6 0.0 0.0 1.2 0.2 2.4 3.4

7 0.0 0.0 0.4 0.0 3.0 2.6

8 0.0 0.0 0.4 0.2 3.0 3.2

9 0.0 0.0 0.4 0.6 2.4 2.2

10 0.0 0.0 0.6 0.2 2.4 1.6 

11 0.0 0.6 0.0 1.0 2.2 4.0 

12 0.0 0.0 0.2 0.0 2.6 2.0 

13 0.2 0.8 2.8 4.8 6.0 5.8 

14 0.2 0.2 2.6 1.4 3.4 5.2 

15 0.0 0.0 2.6 2.6 4.8 3.8 

16 0.0 0.0 1.4 0.6 6.6 5.8 

17 0.0 0.0 1.2 1.2 6.4 4.6 

18 0.0 0.0 1.4 0.8 5.6 4.8 

19 0.2 0.2 5.5 3.9 8.5 7.9 

20 1.0 1.0 3.4 3.6 16.1 14.7 

21 4.2 3.0 18.1 15.3 21.7 21.5 

22 2.2 2.6 11.2 10.4 20.7 20.3 
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Table III. Mean and standard deviations (%) of IBD sharing among siblings with simulated 

genotyping error rates of 1%, 5% and 10% (from a subset of our data having an initial 

standard deviation of 4.15% in IBD sharing) 

Genotyping error 

Rate 

1% 5% 10% 

Simulation Round Mean Std. dev. Mean Std. dev. Mean Std. dev. 

1 49.95 4.12 50.09 3.96 50.01 3.66 

2 49.94 4.04 49.96 3.88 49.96 3.65 

3 49.95 4.11 49.92 3.91 49.94 3.73 

4 49.92 4.12 49.91 3.97 49.95 3.61 

5 49.95 4.12 50.00 3.90 49.95 3.63 

Mean Total 49.94 4.10 49.97 3.92 49.96 3.66 
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Table IV. Estimations of the standard deviations of the proportion of the genome shared by 

siblings in the literature and in this study 

Study Method Std. dev. 

(%) 

Corresponding 

ne

Suarez et al.[1979] Simulations using male chiasma 

distribution  
5.59 40 

Risch and Lange 

[1979b] 

Analytical estimation based on a 

probability generating function 
4.00 78 

Rasmuson [1993] Estimation based on the recombination 

index 
3.53 100 

Guo [1996] Analytical result based on a two–state 

Markov chain, using a sex–averaged 

linkage map 

3.67 93 

 Ibid, using a chiasma map 3.78 87 

 Ibid, using data from deCode’s map 

[Kong, et al. 2002] in Guo’s formula 
3.89 83 

This study Empirical, with CEPH data 3.95 80 
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FIGURE LEGENDS 

 

Fig. 1. Frequency distribution of the proportion of genome shared identical by descent among 

CEPH siblings (n = 498 sibling pairs) 

 

Fig. 2. Frequency distribution of the proportion of DNA shared identical by descent per 

marker among CEPH siblings (n = 1,257 markers) 
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Figure 1. 
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Figure 2. 
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