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ABSTRACT
Tooth Cementum Annulation (TCA) is an age estimation
method carried out on thin cross sections of the root of the
human tooth. Age is computed by adding the tooth erup-
tion age to the count of annual incremental lines which are
called tooth rings and appear in the cementum band. Algo-
rithms to denoise and segment the digital image of the tooth
section are considered a crucial step towards computer-
assisted TCA. The approach in this paper relies on mod-
elling the images as hidden Markov random fields, where
gray values are assumed to be pixelwise conditionally in-
dependent and normally distributed, given a hidden random
field of labels. These unknown labels have to be estimated
to segment the image. To account for long-range depen-
dence among the observed values and for periodicity in the
placement of tooth rings, the Gibbsian label distribution is
specified by a potential function that incorporates macro-
features of the TCA image (a FRAME model). An estima-
tion of the model parameters is made by an EM algorithm
exploiting the mean field approximation of the label distri-
bution. Segmentation is based on the predictive distribution
of the labels given the observed gray values.

KEY WORDS
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1 Introduction

Tooth Cementum Annulation ([1, 2]) is an age estimation
method based on annual incremental appositions in the ce-
mentum of mammalian teeth. A 90-110 �m thick cross
section, polished or unpolished, is photographed using a
Leica DC350F camera system with bright-field and 200 or
400 times magnification. TCA images are then 8 or 16 bit
gray scale pictures of 1030x1300 or 1016x1300 pixels in
size. The dark parts of the annual lines, often called tooth
rings, are empirically 1 to 3 �m thick and roughly result in
thin lines of 5 to 20 pixel with 400 times magnification.

Figure 1 displays a typical TCA image of intermedi-
ate quality of the unpolished section extracted from a per-
son aged 41. It is expected to find 34 horizontal tooth rings
in the marked cementum band. Additionally, the image

contains diagonal saw cuts and artifacts (for example, on
the right). The marked rectangle delimits the area used for
the application in Section 5.

Paleodemographers at the Max Planck Institute for
Demographic Research use large databases of images such
as the one depicted in Figure 1 to identify mortality profiles
of past human populations. Hence, algorithms are needed
to denoise and segment these images automatically.

Standard methods such as singular value decompo-
sition, Fourier transform, and regression smoothing mea-
sure texture features and are for this reason not flexible
enough to fulfill the above task. In the course of this pa-
per, TCA images are therefore described by a statistical
model, namely a Hidden Markov Random Field (HMRF)
model. Section 2 introduces these models, and the distri-
bution of the hidden field is specified by a FRAME model
([3]). This is a Markov Random Field (MRF) that models,
macro-features of TCA images such as long-range auto-
correlation among observed gray values and periodic place-
ment of tooth rings. Section 3 describes the estimation of
the model parameters via an EM algorithm that exploits the
mean field approximation of the hidden field distribution.
Section 4 specifies the FRAME model for the application
to TCA images and describes the Gibbs sampler used to
simulate from this prior distribution. The sensible results
of fitting the hidden FRAME model to real images such as
the one depicted in Figure 1 by using the EM algorithm are
discussed in Section 5.

2 The Hidden FRAME Model

HMRF modelling allows us to address both denoising and
segmentation by means of a labelling problem ([4]). To
illustrate, let S = f1; : : : ; NMg be the set of pixels form-
ing a rectangular lattice of size N �M . In the course of
this paper, a pixel will interchangeably be denoted by i,
or (x; y) when the two dimensions of the lattice need to
be emphasized. The observed image is represented by ar-
ray Y , where Yi 2 R is the gray value observed at pixel
i. Value Yi is assumed to be drawn from the ith contin-
uous random variable Yi, belonging to the random field
Y = (Y1; : : : ;YNM ). Analogously, we define array � of
labels �i 2 G = f0; 1; : : : ; Gg that need to be estimated
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Figure 1. A typical unpolished TCA image of intermediate quality (IS-0000666 from the TCA database of the MPI DR)

at each pixel and assume that �i is sampled from the dis-
crete random variable �i, defined as the ith coordinate of
the random field � = (�1; : : : ;�NM ).

In the HMRF setting, the joint distribution of Y is
modelled according to the mixture

f(Y ) =
X

�2GN�M

P (�)
Y
i2S

f(Yij�i);

where P (�) is the distribution of a Markov random field
and f(Y j�) is called cost function or emission density. The
choice of both depends on the application. For TCA im-
ages, we have chosen a Gaussian cost function

f(Yij�i;�) = 1p
2���i

e

�
(Yi���i)

2

2�2
�i ;

where parameters � = f�g; �2g jg 2 Gg are unknown. MRF
P (�) may model spatial dependencies by means of speci-
fying a neighborhood structure. More precisely, let us de-
fine

• a neighboring relationship as a binary relationship on
lattice S that is anti-reflexive and symmetric;

• neighborhood N(i) of pixel i as the set

N(i) = fj 2 Sjj neighbor of ig; and

• neighborhood system N as the set of all neighbor-
hoods N = fN(i)ji 2 Sg:

Under this setting, random field � is a MRF with respect to
neighborhood system N , if for all � 2 GN�M

1. P (�) > 0 (positivity),

2. P
�
�ij�Sni

�
= P (�ij�N(i)) (Markovianity).

The specific form of the MRF model that will be
utilized for TCA images is called FRAME, which stands
for Filters, Random Fields and Maximum Entropy and
was mainly developed in [3], [5] and [6]. In the FRAME
model, prior knowledge of the image is efficiently mod-
elled by convolving label image � with suitable filters and
by evaluating the filter responses. In its simplest version,
the FRAME distribution is a Gibbs distribution

P (�) =
1

Z
e

P

i2S

�[(FT ��)(i)]

; (1)

where Z is the normalizing constant. The energy function
involves one filter FT that is known up to parameter T .
The filter responses (FT � �)(i) to � at pixels i are evalu-
ated pixelwise by the potential function �. The choice of
the parametric family FT and function � is driven by the
application (Section 4). The hidden FRAME model thus
elegantly combines two important areas of texture analy-
sis: HMRF modelling and filtering theory, and it can be
applied to a wide variety of even large scale textures.



3 Parameter Estimation and Segmentation

In order to estimate � and T , the maximum likelihood es-
timates (MLE) �̂ and T̂ can in principle be found by maxi-
mizing the likelihood function

L(�; T jY ) =
X

�2GN�M

P (�jT )
Y
i2S

f (Yij�i;�) : (2)

However, this maximization is intractable because of the
size of label space GN�M .

The EM algorithm is a widely used technique to solve
this kind of problem. The algorithm depends on the predic-
tive probability usually computed via MCMC. In our ap-
plication this is again not feasible because of the size of
TCA images. We suggest to use mean field approximation
to make the EM tractable.

To illustrate, let us recall that the EM algorithm starts
with the preliminary estimates �(0) and T (0) of the param-
eters � and T , and then proceeds iteratively by alternating
two steps. In the E-step of the t-th iteration, the conditional
expectation of the complete log-likelihood, with respect to
the unknown labels �

E

h
logP (Y; �j�; T )jY;�(t�1)

; T
(t�1)

i

=

Z
�2GN�M

P

�
�jY;�(t�1)

; T
(t�1)

�
logP (�; Y j�; T )d�

is calculated, where �
(t�1) and T

(t�1) are the estimates
from the previous iteration. The M-step of the EM algo-
rithm maximizes this expectation to update � and T :
�
�
(t)
; T

(t)
�
=argmax

f�;Tg

E

h
logP (Y; �j�; T )jY;�(t�1)

; T
(t�1)

i
:

Since each iteration is guaranteed to increase the (incom-
plete) log-likelihood (2) under mild assumptions, the EM
algorithm will converge to a local maximum ([7]).

With a Gaussian random field, the EM algorithm re-
duces to the three updating formulas ([7])

�
(t)
g =

P
i2S

YiP

�
�i = gjYi; �N(i);�

(t�1)
; T

(t�1)
�

P
i2S

P

�
�i = gjYi; �N(i);�

(t�1)
; T (t�1)

� ; (3)

�
�
(t)
g

�2
= (4)

P
i2S

�
Yi � �

(t)
g

�2
P

�
�i = gjYi; �N(i);�

(t�1)
; T

(t�1)
�

P
i2S

P

�
�i = gjYi; �N(i);�

(t�1)
; T (t�1)

� ;

T
(t) = argmax

fTg

X
i2S

GX
g=0

logP
�
�i = gj�N(i); T

�

�P
�
�i = gjYi; �N(i);�

(t�1)
; T

(t�1)
�
: (5)

The conditional probabilitiesP
�
�i = gjY; �N(i);�; T

�
are

not available in closed form and could be evaluated by an
MCMC algorithm ([8]). This would require to generate a
Markov chain at each pixel, which is not feasible. The al-
ternative approach we suggest is based on the approxima-
tion

P (�) �
Y
i2S

P

�
�ij~�N(i)

�
: (6)

In this paper, the configuration ~� is chosen according to the
theory of mean field approximation ([9]), where ~� is set to
the expected values of the label image:

~�j = E[�j ] for all j 2 N(i):

The product
Q
i2S

P (�ijE[�N(i)]) is then a valid probabil-

ity distribution and minimizes the Kullback-Leibler diver-
gence to the true prior distribution P (�) among all prod-
ucts of this kind. The E-step of the EM algorithm hereby
changes to

E

h
logP (�; Y j�; T )jY;�(t�1)

; T
(t�1)

i

�
X
i2S

GX
g=0

log
�
P

�
�i = gj~�N(i);�; T

�
f(Yij�i;�; T )

�

�P
�
�i = gjYi; ~�N(i);�

(t�1)
; T

(t�1)
�

=
X
i2S

GX
g=0

�
logP

�
�i = gj~�N(i); T

�
+log f (Yij�i = g;�)

�

�
P

�
�i = gj~�N(i); T

(t�1)
�
f

�
Yij�i = g;�

(t�1)
�

GP
g=0

P

�
�i = gj~�N(i); T

(t�1)

�
f

�
Yij�i = g;�

(t�1)
� :

The parameter estimates can therefore be updated by Equa-
tions (3) to (5) and replacing �N(i) therein by ~�N(i), which
are computed iteratively. Our EM algorithm then takes the
following form:

EM algorithm using MFA for fitting a hidden FRAME model

1. input TCA image Y
Initialization
2. initialize label configuration �(0) by thresholding
3. initialize parameters
Updating
4. for t = 1 : tmax

update label image �(t) by
5. h�i = �(t�1)

6. for each site i (randomly permuted)
7. for g = 0 : G

8. calculate the conditional probability

f
�
Yij�i = g; �

(t�1)
; �

(t�1)
�
/ e

�

�
Yi��

(t�1)
g

�2

2

�
�
(t�1)
g

�2

9. approximate the prior energy and probability

U
�
�i = gj�N(i); T

(t�1)
�
�
X

j2C(i)

�

��
F
T
(t�1)

j

� �

�
(j)

�



P
�
�i = gj�N(i); T

(t�1)
�
�

eU(�i=gj�N(i);T
(t�1)

)

GP
g=0

eU(�i=gj�N(i);T
(t�1))

10. calculate the posterior probability

P
�
�i = gjYi; �N(i); �

(t�1)
; T

(t�1)
�

=

f
�
Yij�i = g;�(t�1)

�
P
�
�i = gj�N(i); T

(t�1)
�

GP
g=0

f
�
Yij�i = g;�(t�1)

�
P
�
�i = gj�N(i); T (t�1)

�
11. calculate the expected label

h�ii =

GP
g=0

g � P
�
�i = gjYi; �N(i); �

(t�1); T (t�1)
�

GP
g=0

P
�
�i = gjYi; �N(i); �

(t�1); T (t�1)

�

12. set �(t) = h�i

update parameters
13. for g = 0 : G

14. update �g according to Equation (3)

15. update
�
�
(t)
g

�2
according to Equation (4)

16. update T according to Equation (5)

The initialization of � and the sequential updating of
the labels were chosen according to the recommendations
in [9]. The number of iterations tmax was chosen according
to the last gain in the likelihood

L(�(t�1)
; T

(t�1)jY ) =

X
i2S

log

GX
g=0

P

�
�i = gjYi; �N(i);�

(t�1)
; T

(t�1)
�
:

Segmentation can finally be carried out by exploiting

P

�
�i = gjYi; �N(i); �̂; T̂

�
by means of thresholding.

4 Application

This Section is devoted to specifying the filter family FT

and the potential function � that we have used for TCA
image analysis and to describe a simulation algorithm for
generating a typical image from this model.

Filtering theory is well recognized in texture analysis
at least since [10]. Marčelja ([11]) has shown that two-
dimensional Gabor functions closely conform to the recep-
tive field profiles of simple cells in the striate cortex.

We define filter FT;� on the basis of the real valued,
even-symmetric Gabor function:

GcosT;�(x; y) = c � e
�(rx02+y02)

2T2 cos

�
2�

T
x
0

�
; (7)

with x0 = x cos�+y sin�; y0 = �x sin�+y cos�, r = 4

being the aspect ratio and c being a normalizing factor. The
Gaborcosine function above is an elongated Gaussian bell,
multiplied by a cosine wave, where parameter T changes
the wavelength and � determines the orientation of the co-
sine wave. For example, Figure 2 shows the Gaborcosine
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Figure 2. 3-D surface and image of a Gaborcosine function
with T = 16 and � = 0

Figure 3. A typical image of 128x128 pixels in size sim-
ulated by the Gibbs sampler using the FRAME model (1),
with the filter displayed in Figure 2, � = j:j and 8 gray
levels.

function for T = 16, � = 0 and x; y 2 [�13; 13]. This
filter can capture waves or lines of width 16 and orientation
0°.

In the application for TCA images, we fix � = 0,
which is the main direction of tooth rings. In order to
cover the range of possible tooth ring widths, we chose
T 2 f2; 4; 6; 8; 10; 12; 14; 16; 18g. We remark that our
approach is different to that in [3], because we are inter-
ested in reconstructing tooth rings that resemble only one
feature of interest. We do not want to synthesize percep-
tional equivalent images, including noise. Besides simpli-
fying the FRAME model to incorporate only one filter (one
feature), the potential function � that evaluates the filter
response is assumed to be known and chosen to be the sim-
plest among the upright curves, namely the absolute value
� = j:j.

Figure 3 displays a typical image drawn from the
FRAME model using the Gaborcosine filter with param-
eters T = 16 and � = 0 and the absolute valued potential
function. This image comes very close to the ideal TCA
image that one could have in mind about parallel running
tooth rings. The orientation and width of these lines are
determined by both parameters of the Gaborcosine filter.

The image in Figure 3 was generated by Gibbs sam-
pling. (See for example [4].) The single site Gibbs sampler,
for example, initializes �(0) at time t = 0 and then updates
each pixel by repeatedly sampling a candidate � (t+1)

i from

the full conditional P
�
�
(t+1)

i j�(t)
Sni

�
. The transition prob-

abilities P (�(t)j�(t�1)) are then guaranteed to converge to
the stationary distribution P (�).



The Gibbs sampler can be applied to the present case
because the FRAME model is a MRF model. This can be
proven by the application of the Hammersley-Clifford the-
orem ([12]).

When choosing a random initial image and a random
updating order of the pixels, the Gibbs sampler consists of
the following steps for the FRAME model:

Gibbs sampling algorithm for the FRAME model

1. input initial white noise image �(0) and filter F
2. precompute the filter response F � �(0)

3. repeat sufficiently often
4. repeat N �M times (N �M = jSj size of the image)
5. randomly select site (x; y)
6. for all (x0; y0) 6= (x; y)

7. set �(t+1)(x0;y0) = �
(t)

(x0;y0)

8. for each gray value g of label �(t+1)(x;y)

9. for all (x0; y0) 2 fN(x; y); (x; y)g
10. calculate the new filter responses�

F � �(t+1)
�
(x

0

; y
0

) =

�
F � �(t)

�
(x

0

; y
0

)

+F (x� x
0

; y � y
0

)

�
�
(t+1)

(x;y)
� �

(t)

(x;y)

�

11. for each gray value g of label �(t+1)(x;y)

12. set �(t+1)(x;y) = g with (conditional) probability

P
�
�
(t+1)

(x;y) = gj�
(t)

N(x;y)

�
=

e

0
@ P
(x0;y0)2N(x;y)

j(F��(t+1)
)(x

0
;y
0)j

1
A

GP
g=0

e

0
@ P
(x0;y0)2N(x;y)

j(F��(t+1))(x0;y0)j

1
A

13. update the filter response F � �(t+1)

If the computer precision is not enough to calculate the

conditional probabilityP
�
�
(t+1)

(x;y)
= gj�(t)

N(x;y)

�
in step 12,

one can easily insert a nourishing one.
To detect convergence, the Gelman-Rubin multi-

variate convergence statistic R ([13]) is used on every
(20x20)th pixel of the image. The Gibbs sampler stops it-
erating when R < 1:2. The algorithm above needs about
O(jF j�NM �G�S) operations, where jF j is the area covered
by the filter and S is the number of sweeps of the Gibbs
sampler.

5 Results

The aim of analyzing TCA images in this paper was to un-
cover the black and white labelling (G = f0; 1g) in order
to be able estimate the number of tooth rings. For this pur-
pose, a Gaussian hidden Markov random field was fitted to
the TCA image in Figure 1. The MRF model was speci-
fied by the FRAME model (1). Parameters �0, �1 and a
common variance �2 as well as the filter parameter T were
estimated by an EM algorithm, as stated in Section 2. La-
bel image � was obtained from the mean field at the last
iteration.

Figure 4 shows the predictive probability
P (�ij~�N(i); �̂; T̂ ) of the pixels in the cementum band of

Figure 4. The mean field approximation of the cementum
band of TCA image 1

Figure 5. The black rings from the mean field approxima-
tion of part of TCA image 1 overlayed onto the original

Figure 1, where �̂ and T̂ are the estimates of the last itera-
tion. The parameter estimates are the means �̂0 = 29026,
�̂1 = 29052, the common variance �̂2 = 4:8 � 107, and
the ring width T̂ = 14. For illustration purposes, a smaller
part (marked in Figure 1) of this mean field is thresholded
(�i = 0 if P (�ij~�N(i); �̂; T̂ ) < 0:5 and �i = 1 otherwise).
The middle lines of the black rings are then superimposed
on the original image (see Figure 5). The median number
of dark rings in label image 4 is 35. From the known age,
we expect 33.61 tooth rings in the image presented in
Figure 1.

Additional experiments with TCA images of mixed
quality gave the following results (the expected number of
rings is the known age minus average tooth eruption age):

Image number of rings Image number of rings
IS-000 expected estimated IS-000 exp. estim.
0231 40.94 46 1157 34.39 30
0592 60.39 64 1225 40.94 46
0682 35.44 33 1547 38.19 28
0688 35.44 34 1692 34.39 34



These results are competitive to the manually counted
number of rings.

6 Conclusion

For segmentation of TCA images, we set up a hidden
Markov random field model and exploited the EM algo-
rithm. This procedure required the approximation of the
posterior probabilities P

�
�i = gjY; �N(i);�; T

�
and the

final segmentation �. The Gibbs sampler proved to be in-
feasible in both cases except for small images. For exam-
ple, the simulation of the predictive distribution in Figure
3 took about 55 hours on a PC and programmed in Mat-
lab. We therefore chose to use the mean field approxima-
tion to estimate the posterior probabilities and thresholded
the mean field of the last iteration for the final segmenta-
tion. This compound estimation procedure took 10 hours
and yielded reasonable results.

Despite of the good overall age estimate, the reader
can see in Figure 5 that some rings are not well met and
that bifurcations occur in the label image (Figure 4). This
is due to two reasons. On the one side, the reconstruction
of the TCA image is heavily influenced by the shape of the
single filter we estimated. The hidden FRAME model in
this form can only take into account strong local changes of
tooth rings. In order to overcome this global property of the
FRAME model, one would need to select location depen-
dent filters. But estimating the filter parameter T at each
pixel i destroys the neighborhood relationship and gives
provable biased estimates for T . On the other side, we
assumed that the orientation of tooth rings is mainly hor-
izontal. By estimating not only ring width T from the bank
of filters, but also orientation �, one could overcome this
limitation and would therefore avoid the bifurcations that
now mainly occur in areas where tooth rings have another
orientation.

Additionally, different variance parameters � 2
0 6= �

2
1

might also change results and therefore such heteroscedas-
ticity assumption should be tested. The mean field approx-
imation is not the only possible one for the approximation
(6). Celeux, Forbes, and Peyrard ([9]) also mention mode
field approximation and simulated field approximation that
should be tested for quality and speed in the case of TCA
image analysis. Moreover, a larger number of experiments
on the images of different quality need to be implemented
in order to test the accuracy of the procedure.
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