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Abstract

Tooth Cementum Annulation (TCA) is an age estimation method carried out on thin cross sections of the root of mammalian
teeth. Age is computed by adding the tooth eruption age to the count of annual incremental lines which are called tooth rings and
appear in the cementum band. The number of rings is computed from an intensity (gray scale) image of the cementum band, by
estimating the average ring width and then dividing the area of the cementum band by this estimate. The ring width is estimated
by modelling the image by a hidden Markov random field, where intensities are assumed to be pixelwise conditionally independent
and normally distributed, given a Markov random field of hidden binary labels, representing the“true scene”. To incorporate image
macro-features (the long-range dependence among intensities and the quasi-periodicity in the placement of tooth rings), the label
random field is defined by an energy function that depends on a parametric Gabor filter, convolved with the true scene. The filter
parameter represents the unknown of main interest, i.e. the average width of the rings. The model is estimated through an EM
algorithm, relying on the mean field approximation of the hidden label distribution and allows to predict the locations of the rings
in the image.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Coupled Markov chain; EM algorithm; Gabor filter; Hidden Markov random field; Mean field approximation; TCA

1. Introduction

Tooth Cementum Annulation (TCA; Crowe and Strickland, 1975; Naylor et al., 1985; Renz et al., 1997) is an age
estimation method based on annual incremental appositions in the cementum of mammalian teeth. Age is computed by
adding the tooth eruption age to the count of annual incremental lines which are called “tooth rings” and appear in the
cementum band. TCA is often implemented on human teeth, for forensic (Stott et al., 1982; Kagerer and Grupe, 2001)
and paleo-demographic applications (Hoppa and Vaupel, 2002). For example, the TCA images that motivated this work
are currently studied by anthropologists and demographers at the Max Planck Institute for Demographic Research in
Rostock (Germany), to identify mortality profiles of past human populations.

Validation studies on human teeth (Hoppa and Vaupel, 2002; Wittwer-Backofen et al., 2003) have shown that TCA
provides better results than traditional techniques, such as those based on pubic symphysis, auricular surface and cranial
sutures. Despite of TCA popularity, however, ring counting is still carried out manually, by visual inspection of a TCA
image such as that one displayed in Fig. 1. This picture belongs to a large data base containing 90–110 �m thick cross
sections of tooth roots, photographed using a Leica DC350F camera system with bright-field and 200 or 400 times
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Fig. 1. The horizontal incremental lines appearing in the cementum band of a tooth-root cross section. This 16-bit grey scale picture has been
taken by photographing a 90 �m thick tooth-root cross section with 400 times magnification (source: TCA database of the Max Planck Institute for
Demographic Research).

magnification. These images are then 8 or 16 bit gray scale pictures of 1030 × 1300 or 1016 × 1300 pixels in size.
Each annual ring is given by the juxtaposition of a horizontal low mineralized bright layer and a horizontal higher
mineralized dark layer. TCA analysis is based on the count of the dark layers which in effect represent one year of
life. In a ring, the dark layer is usually 1–3 �m thick and roughly results in a thin line of 5–20 pixels, with 400 times
magnification.

In the case of Fig. 1, we know the age of the person to whom the tooth belongs (41) and, as a result, we expect to find
34 horizontal rings in the displayed cementum band (the tooth under study is a permanent first molar and its average
eruption age is 7). Although Fig. 1 displays a TCA image of intermediate quality, ring counting by visual inspection is
time consuming and potentially subjective. A double-blind validation study based on two expert observers inspecting
400 TCA images (Klauenberg, 2007) reported a serious bias between the expected number of rings and the manual
estimates, emphasizing a high level of subjectivity in manual ring detection.

To improve on manual ring counting, a standard approach would rely on enhancing image quality via a computer-
assisted methodology, to help the observer with ring detection. Depending on the conceptualization of a TCA image,
several approaches could be pursued to restore the image, but no one of them is easy to implement. For example, ring
counting could be facilitated by denoising and deblurring pixel intensities. However, as Fig. 1 shows, blurring and
noise are difficult to model in a TCA image, because the observed intensities are affected by several disturbing factors
arising from the biological processes of TCA (anomalies in ring formation or tooth eruption), from the skeleton being
buried, from the preparation procedure (the slicing position and angle, which produce the diagonal saw cuts, apparent
in Fig. 1), from microscopy (the focus level) or from the imaging procedure (the brightness level). To some extent, these
disturbing effects can be removed by standard techniques of image analysis, such as image filtering, singular value
decomposition of the intensity matrix or Fourier image analysis (Klauenberg, 2007; Czermak et al., 2006). However,
even after the successful removal of these effects, the selection of a consistent number of significant dark layers is not
obvious, because of the random variation of the mineralization process and the resulting random intensity pattern within
each candidate layer. The variation of the mineralization process challenges approaches based on classification ideas,
too. In TCA image analysis, a classification approach would aim at assigning binary labels to pixels, partitioning the
image into dark and bright layers. Pixelwise, unsupervised classification methods based on pixel intensities are difficult
to implement because the distributions of intensities of any two layers may differ dramatically. For instance, Fig. 2
(top-right) displays the bimodal histogram of the intensities observed in a small portion of a TCA image, suggesting the
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Fig. 2. Top: the 501 × 501 area highlighted in Fig. 1 (left) and (right) the relating histogram of pixel (16 bit) intensities (scaled to the interval (0, 1));
bottom: intensity profiles of four selected columns extracted from the area displayed at the top of the picture.

mixture of two distributions representing dark and bright layers. Although a classification on the basis of this histogram
is tempting, it would be affected by a serious pixel misclassification, because many pixels belonging to dark (bright)
layers contribute to the right-hand (left-hand) tail of the histogram. Alternatively, image labelling could be carried out
via a supervised classification methodology, by comparing image regions to a bank of typical textures. Unfortunately,
little is known about textures that typically feature the juxtaposition of bright and dark layers in a TCA image and, as a
result, supervised classification methods lack of a suitable bank of textures. Alternative approaches for improving the
quality of a TCA image could rely on segmentation methods, seeking to locate the boundaries between dark and bright
layers. However, gray intensities change smoothly and often unpredictably between adjacent layers (Fig. 2, bottom)
and edge detection is challenging.

Since in computer-assisted TCA ring counting is more important than ring detection, image analysis could seek
to locate only the centroids of the dark layers, rather than trying to restore the shape of each layer. Czermak et al.
(Czermak et al., 2006) pursue this approach, assuming that, ideally, each column of a TCA image should be a sequence
of alternating grey levels representing the dark and bright layers of the rings.Accordingly, the relative minima (maxima)
of each column should correspond to the centroids of the dark (bright) layers and the number of rings could be estimated
by the average of the distribution of the relative minima within the columns. In their work, a pixel is referred to as
a minimum point when not only its grey value is smaller than a pre-set maximum level, but also when at least one
grey value of the two adjacent pixels above this as well as one gray value of the two points below are greater than
the grey value of the pixel value scanned. When exploited on the image displayed in Fig. 1, their procedure selects
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21 rings, seriously underestimating the expected number (34). We believe that such a bias is motivated by two issues.
First, layers centroid detection is challenging, (1) because of the large variability of the grey levels taken by extreme
intensities within columns (rings do not arise at similar gray levels), and (2) because of the mismatch between locations
of extreme intensities at different columns (rings are not perfectly horizontal). Second, estimation of the number of
rings on the basis of the distribution of the relative minima relies on the erroneous assumption that the columns of a
TCA image are independent replications of the same process, i.e. the spatial dependence structure resulting from image
macro-features is not taken into account.

To improve on these drawbacks, we suggest (1) to focus on the estimation of the average ring width, rather than
trying to locate ring centroids, and (2) to constrain this estimate to account for the spatial autocorrelation between pixel
intensities. Dividing the area of the cementum band by the estimated average ring width provides us with an estimate
of the number of rings in the TCA image.

More precisely, we model the image by a hidden Markov random field (MRF) model. These models are popular in
procedures of image analysis that operate at the pixel level, after the seminal work by Besag (1986). Hidden MRF models
usually consist of a degradation model of the conditional distribution of the image intensities, given an unknown “true
scene”, in conjunction with a MRF model which reflects known features of the true scene. Although the degradation
model should allow blur and noise, we consider a simple noisy process, by assuming that the intensity observed at each
pixel is drawn from the mixture of two Gaussian distributions, representing the emission in a dark and a bright layer,
respectively. The two mixing weights specify the pixelwise marginal distribution of a parametric MRF, which generates
rectangular arrays of binary labels (“true” scenes). To incorporate image macro-features (the long-range dependence
among intensities and the quasi-periodicity in the placement of tooth rings), the MRF distribution is specified by an
energy function that depends on the convolution of a parametric Gabor filter (Marčelja, 1980; Jain and Farrokhnia,
1991) with the true scene. Filter-based specifications of MRFs are often referred to as FRAME models (Zhu et al., 1998),
and have been introduced in the literature for the purpose of texture modelling. In our application, the filter depends
on a parameter, T, that represents the unknown average ring width, i.e., the average distance between the centroids of
two consecutive dark layers. The resulting energy function of the true scene punishes configurations with dark layers
placed at a distance not equal to T, while, simultaneously, the matching of the centroids’ positions in adjacent columns
is enhanced.

In summary, the model is a Gaussian Hidden Markov Field where Gaussian pixel intensities are conditionally
independent, given a label configuration drawn from a filter-based MRF model. Unlike most of the applications of
hidden Markov modelling in image analysis, where the parameters of the MRF model are nuisance or a priori known,
in our case the parameter T is the unknown of main interest, whereas the parameters of the Gaussian distribution are
nuisance unknowns, although they can be exploited to predict ring locations in the image, for validation purposes.

The rest of the paper is organized as follows. The hidden Markov model with a filter-based MRF specification is
illustrated in Section 2, while Section 3 is devoted to the specification of the parametric Gabor filter we suggest for
TCA image analysis. Section 4 describes the estimation of the model parameters via an EM algorithm that exploits the
mean field approximation of the hidden field distribution. A causal variant of our hidden Markov model is illustrated
in Section 5. Results from the analysis on TCA images such as that displayed in Fig. 1 are discussed in Section 6. We
discuss our findings in Section 7.

2. A hidden FRAME model

Let S = {1, . . . , NM} be the set of pixels forming a rectangular lattice of size N × M . In the course of this paper,
a pixel will interchangeably be denoted by i ∈ S, or (x, y), x = 1 . . . N, y = 1 . . . M , when the two dimensions of the
lattice need to be emphasized (x and y being the generic row and column of the TCA intensity matrix, such as that one
displayed in Fig. 1). We define an array �=(�i , i ∈ S)=(�xy, x=1 . . . N, y=1 . . . M) of binary labels and assume that
�i is sampled from a Bernoulli random variable �i , which is the ith coordinate of a random field � = (�1, . . . ,�NM),
with distribution P(�). The observed image is represented by an array z = (zi, i ∈ S)= (zxy, x = 1 . . . N, y = 1 . . . M)

, where zi is the (gray scale) intensity observed at pixel i. Further, let f (zi |�i ) be the conditional probability density of
intensity zi , given the label �i . We model image z according to the mixture

f (z) =
∑

�∈{0,1}NM

P (�)
∏
i∈S

f (zi |�i ), (1)
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i.e., we assume that intensities are conditionally independent given the label configuration. When P(�) is a MRF,
Eq. (1) is a hidden Markov random field. The choice of both the intensity and the label distributions depends on the
application. For TCA images, we have chosen a Gaussian emission function

f (zi |�i ) = N(��, �
2
�), (2)

where parameters � = {�0, �1, �
2
0, �

2
1} are unknown, and a filter-based MRF specification, as follows.

We exploit a parametric filter FT with a fixed rectangular support of width w=wx ×wy and known up to a parameter
T (to be estimated), i.e. filter FT is specified by a wx × wy rectangular matrix of weights FT (x, y). The filter response
to � at each pixel i is given by

[FT ∗ �](i) =
∑

(x,y)∈S

F
(i)
T (x, y)�xy ,

where F
(i)
T (x, y) is FT centered at pixel i, i.e.

F
(i)
T (x, y) =

{
FT (x, y) if |x − xi |�wx/2, |y − yi |�wy/2,

0 otherwise

and (xi, yi) are the coordinates of pixel i. Under this setting, we model the label configuration as follows:

P(�) ∝ exp Q(�) = exp

(∑
i∈S

�((FT ∗ �](i))
)

= exp

(∑
i∈S

|FT ∗ �|(i)
)

. (3)

Model (3) is often referred to as a FRAME model, after (Zhu et al., 1998). In Eq. (3), the potential function �(·) = | · |
propagates extreme filter responses and enhances signals which are similar to the pattern exhibited by the filter.
Moreover, since the function Q(�) is the summation of the pixelwise filter responses to � and the filter width w is
bounded, the Gibbs label distribution (3) is guaranteed (Hammersley–Clifford theorem; Besag, 1974) to be a MRF
with respect to the neighbourhood structure

N(i) = {(x, y) ∈ S : |x − xi |�wx/2, |y − yi |�wy/2}, i ∈ S, (4)

or, in other terms, letting �(i) as the label configuration after discarding the label at pixel i,

P(�i |�(i)) = P(�i |�′
(i)) = p(�i |�N(i)), i ∈ S,

for any two configurations � and �′ sharing the same coordinates at the neighbourhood N(i).

3. A parametric Gabor filter

Motivated by applications in fingerprint image enhancement (Yang et al., 2003 and references therein), filter FT in
(3) is specified as a parametric Gabor filter. As discussed previously, we focus on the estimation of the average ring
width, i.e., the average distance between the centroids of two consecutive dark layers in a TCA image. Gabor filtering
has been successfully exploited in reducing noise and increasing the contrast between ridges and valleys in gray-scale
fingerprint images, because the parameters of a Gabor filter can be easily tuned to detect the distance between successive
ridges.

A typical Gabor filter in fingerprint image analysis is the following two-dimensional function:

G(x, y) = exp

(
−(rx′2 + y′2)

2�2

)
cos

(
2�

T
x′ + 	

)
, (5)

with x′ = x cos 
 + y sin 
, y′ = −x sin 
 + y cos 
. In the equation above, T is the period of the sinusoidal plane wave
and herewith the preferred wavelength of the filter, 
 is the wave orientation, 	 is the phase offset (for example, 	 = 0
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Fig. 3. Three-dimensional surface and image of a Gaborcosine function with T = 16 and 
 = 0 in the range of x, y ∈ [−13, 13] (a) and (b) in the
range of x ∈ [−13, 13], y ∈ [−13, −1] and (x, y) = (0, 0).

Fig. 4. Typical images of 128 × 128 pixels obtained by simulating a Markov random field model (a) and (b) a coupled Markov chain model,
respectively filtered by the filters displayed in Fig. 3.

reduces filter (5) to an even-symmetric function) and r is the aspect ratio, which specifies the ellipticity of the filter. The
ratio �/T is related to what is known as the ’bandwidth’, �, of the Gabor function, through the following relationships:

�

T
= 1

�

√
ln 2

2

2� + 1

2� − 1
,

� = log2
�/T + √

ln 2/2

�/T − √
ln 2/2

,

from which it appears that the value of � cannot be fixed independently, being a function of the bandwidth. Given T,
the smaller the bandwidth is, the larger is the value of � that modulates the support of the Gaussian kernel of the Gabor
filter. When � is large, the filter is more robust to noise, but it does not capture thin layers. In contrast, when � is small,
the filter captures image details, without removing noise. For TCA image analysis, we set �=T , in a way that the filter
adapts layer detection to the average ring width, and 	 = 0, to reduce filter (5) to an even-symmetric function. Under
this setting, filter (5) reduces to the following parametric Gaborcosine filter:

FT (x, y) = exp

(
−(rx′2 + y′2)

2T 2

)
cos

(
2�

T
x′
)

=
[

exp

(
−(rx′2)

2T 2

)
cos

(
2�

T
x′
)]

· exp

(
− y′2

2T 2

)
, (6)

which is essentially a one-dimensional Gabor filter (a band pass filter), multiplied by a Gaussian kernel (a low pass
filter). The band pass and low pass properties along the two orthogonal orientations are beneficial to enhancing TCA
images, since these images usually show a periodic alternation between dark and bright layers orthogonal to the ring
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orientation and simultaneously exhibit an approximate continuity along the ring orientation. To illustrate, Fig. 3(a)
shows the filter (6) with a width w = 13 × 13, evaluated at T = 16, 
 = 0 and r = 4.

The image in Fig. 4(a) is a typical configuration of the MRF (3), whose energy function convolves the label distribution
to filter (6). This image was generated by single pixel Gibbs sampling (see, for example Li, 2001), initializing the label
configuration �(0) at time t = 0 and then updating each pixel by repeatedly sampling a candidate �(t+1)

i from the full

conditional P(�(t+1)
i |�(t)

S\i ). The transition probabilities P(�(t)|�(t−1)) are guaranteed to converge to the stationary
distribution P(�). When choosing a random initial image and a random updating order of the pixels, the Gibbs sampler
consists of the following steps.

Gibbs sampling algorithm for the Gabor-based MRF model

1. input initial white noise image �(0) and filter F
2. precompute the filter response F ∗ �(0)

3. repeat sufficiently often
4. repeat N · M times (N · M= size of the image)
5. randomly select site (x, y)

6. for all (x′, y′) �= (x, y)

7. set �(t+1)

(x′,y′) = �(t)

(x′,y′)
8. for each gray value g of label �(t+1)

(x,y)

9. for all (x′, y′) ∈ {N(x, y), (x, y)}
10. calculate the new filter responses

(F ∗ �(t+1))(x′, y′) = (F ∗ �(t))(x′, y′) + F(x − x′, y − y′)(�(t+1)
(x,y) − �(t)

(x,y))

11. for each value g = 0, 1 of label �(t+1)
(x,y)

12. set �(t+1)
(x,y) = g with (conditional) probability

P(�(t+1)
(x,y) = g|�(t)

N(x,y)) = e
(
∑

(x′,y′)∈N(x,y)|(F∗�(t+1))(x′,y′)|)
∑G

g=0e
(
∑

(x′,y′)∈N(x,y)|(F∗�(t+1))(x′,y′)|)

13. update the filter response F ∗ �(t+1)

If the computer precision is not enough to calculate the conditional probability P(�(t+1)
(x,y) =g|�(t)

N(x,y)) in step 12, one
can easily insert a nourishing one. In addition, toroidal boundary conditions suit TCA images well and can be used to
avoid edges effects (Besag and Moran, 1975).

To detect convergence, the Gelman–Rubin multivariate convergence statistic R (Brooks and Gelman, 1998) is used
on every (20 × 20)th pixel of the image. The Gibbs sampler stops iterating when R < 1.2. The algorithm above needs
O(w · NM · s) operations where w is the size of the filter support and s is the number of sweeps of the Gibbs sampler.

4. Parameter estimation and image segmentation

In order to estimate � and T, the maximum likelihood estimates (MLE) �̂ and T̂ can in principle be found by
maximizing the likelihood function

L(�, T ) =
∑

�∈{0,1}NM

P (�|T )
∏
i∈S

f (zi |�i , �). (7)

However, direct likelihood maximization is intractable because of the size of label space, 2NM . To maximize (7), we
consider an EM algorithm, based on the complete log-likelihood

l(�, T ) = log P(�|T ) +
∑
i∈S

log f (zi |�i , �).
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The algorithm starts with the preliminary estimates �(0) and T (0) of the parameters � and T, and then proceeds iteratively
by alternating an expectation (E) and a maximization (M) step. In the E-step of the tth iteration, the following
conditional expectation of the complete log-likelihood

E[l(�, T )|z, �(t−1), T (t−1)]
=
∫
�∈{0,1}NM

l(�, T )P (�|z, �(t−1), T (t−1)) d�

is calculated, where �(t−1) and T (t−1) are the estimates from the previous iteration. The M-step of the EM algorithm
maximizes this expectation to update � and T:

(�(t)T (t)) = arg max
�,T

E[l(�, T )|z, �(t−1), T (t−1)].

Since each iteration is guaranteed to increase the (incomplete) log-likelihood (7) under mild assumptions, the EM
algorithm will converge to a local maximum (Wu, 1983).

For each pixel i, let �N(i) be the label configuration at the neighbourhood of i, according to the neighbourhood
structure (4). For our Gaussian model and g =0, 1, the EM algorithm reduces to the following three updating formulas:

�(t)
g =

∑
i∈S ziP (�i = g|zi, �N(i), �

(t−1), T (t−1))∑
i∈SP(�i = g|zi, �N(i), �

(t−1), T (t−1))
, (8)

(�(t)
g )2 =

∑
i∈S(zi − �(t)

g )2P(�i = g|zi, �N(i), �
(t−1), T (t−1))∑

i∈SP(�i = g|zi, �N(i), �
(t−1), T (t−1))

(9)

and

T (t) = arg max
{T }

∑
i∈S

1∑
g=0

P(�i = g|zi, �N(i), �
(t−1), T (t−1)) log P(�i = g|�N(i), T ). (10)

The conditional probabilities P
(
�i = g|z, �N(i), �, T

)
are not available in closed form, but they can be approximated

relying on the mean field approximation approach (MFA; Celeux et al., 2003), by setting

P(�) ≈
∏
i∈S

P(�i |�̃N(i)), (11)

where the configuration �̃ is set to the expected values of the label image, as follows:

�̃j = E[�j ] for all j ∈ N(i).

The product

∏
i∈S

P(�i |E[�N(i)])
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is then a valid probability distribution and minimizes the Kullback–Leibler divergence to the true prior distribution
P(�) among all products of this kind (Celeux et al., 2003). The E-step of the EM algorithm hereby changes to

E[l(�, T )|z, �(t−1), T (t−1)]

≈
∑
i∈S

1∑
g=0

log(P (�i = g|�̃N(i), �, T )f (zi |�i , �, T ))

× P
(
�i = g|zi, �̃N(i), �

(t−1), T (t−1)
)

=
∑
i∈S

∑1

g=0
(log P(�i = g|�̃N(i), T ) + log f (zi |�i = g, �))

× P(�i = g|�̃N(i), T
(t−1))f (zi |�i = g, �(t−1))∑1

g=0P(�i = g|�̃N(i), T (t−1))f (zi |�i = g, �(t−1))
.

The parameter estimates can therefore be updated by Eqs. (8)–(10) and replacing �N(i) therein by �̃N(i), which are
computed iteratively. Our EM algorithm then takes the following form:

EM algorithm via mean field approximation

1. input TCA image z
Initialization

2. initialize label configuration �(0) by thresholding
3. initialize parameters

Updating
4. for t = 1 : tmax

update label image �(t) by
5. 〈�〉 = �(t−1)

6. for each site i (randomly permuted)
7. for g = 0, 1
8. calculate the conditional probability

f (zi |�i = g, �(t−1), �(t−1)) ∝ e−(Zi−�(t−1)
g )2/2(�(t−1)

g )2

9. approximate the prior energy and probability
U(�i = g|�N(i), T

(t−1)) ≈ ∑
j∈N(i)

|(FT (t−1) ∗ �)(j)|

P(�i = g|�N(i), T
(t−1)) ≈ eU(�i=g|�N(i),T

(t−1))∑1
g=0eU(�i=g|�N(i),T

(t−1))

10. calculate the posterior probability

P(�i = g|zi, �N(i), �
(t−1), T (t−1)) = f (zi |�i = g, �(t−1))P (�i = g|�N(i), T

(t−1))∑1
g=0f (zi |�i = g, �(t−1))P (�i = g|�N(i), T (t−1))

11. calculate the expected label

〈�i〉 =
∑1

g=0g · P(�i = g|zi, �N(i), �
(t−1), T (t−1))∑1

g=0P(�i = g|zi, �N(i), �
(t−1), T (t−1))

12. set �(t) = 〈�〉
update parameters

13. for g = 0 : 1
14. update �g according to Eq. (8)

15. update (�(t)
g )2 according to Eq. (9)

16. update T according to Eq. (10)
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The initialization of � and the sequential updating of the labels were chosen according to the recommendations in
(Celeux et al., 2003). The number of iterations tmax was chosen according to the last gain obtained in the value taken
by the mean-field-approximated expected log-likelihood

∑
i∈S

1∑
g=0

log P(�i = g|�̃N(i), �, T )

× P(�i = g|zi, �̃N(i), �
(t−1), T (t−1)) f (zi |�i , �, T ).

Although the main goal of the model is the estimation of ring width T, rather than a restoration of the rings, the estimates
of � and T can be exploited to segment the image, by thresholding the predictive probabilities of the hidden labels,
according to the following criterion:

�̂i =
{

1 P(�i = g|zi, �N(i), �̂, T̂ )�0.5,

0 otherwise.
(12)

The binary image �̂ restores the rings, as predicted by the model. Although hidden MRFs are acknowledged as efficient
tools for simultaneous noise removal and segmentation (Li, 2001), we believe that �̂ should be mainly used for validation
purposes, because it depends on the Gaussian degradation model (2), which is too simple to capture the complex structure
of noise and blur in a TCA image.

5. A hidden FRAME chain

A causal variant of the hidden MRF described in the previous sections can be specified by modelling the label
distribution by means of coupled Markov chains. Coupled chains are used to extend one-dimensional Markov chain
modelling to a two-dimensional framework, by correlating neighbouring chains. This alternative approach is motivated
by the typical procedure implemented by expert observers to detect tooth rings by visual inspection. Manual ring
detection is often carried out by examining the image along the main orientation of the rings and moving from the
left-hand to the right-hand side of the image. The decision on whether a row is a dark or a bright layer is often made
on the basis of the information accumulated by the observer during the left-to-right visual scan of that row. A causal
Markov model better emulates human behavior in ring detection than a nondirectional model, such as a MRF, and
can help in explaining differences in the estimated number of rings between an observer and the hidden MRF model
described above.

To place a coupled Markov chain model on the label configuration �, we “cut” the Gabor two-dimensional filter (6)
into half (Fig. 3 (b)) and define the filter response at pixel (x, y) as follows:

[F ′
T ∗ �](x, y) =

p∑
x′=−p

−1∑
y′=−q

FT (x′, y′)�x+x′,y+y′ + FT (0, 0)�x,y , (13)

where p and q are integers delimiting the support of the “half” filter F ′
T . The convolution above is ‘centered’ at site

(x, y), but its support lies to the left of (x, y). The resulting label distribution is given by

P(�) ∝ exp

(∑
i∈S

|F ′
T ∗ �|(i)

)
. (14)

If the random field � is distributed according to model (14), then � is a particular coupled Markov chain model, referred
to as the symmetric half plane (SHP; Jeng and Woods, 1987) Markov chain, and fulfills the following Markov property:
for all sites i = (x, y) ∈ S,

P(�x,y |�x′,y′ , (x′, y′) ∈ S, y′ < y) = P(�x,y |�x′,y′ , (x′, y′) ∈ Cx,y),

where Cx,y = {(x′, y′) ∈ S, |x − x′| < p, 0 < y − y′ < q)} and p and q are the two integers delimiting the support of
filter F ′

T . Furthermore, by means of the Hammersley–Clifford theorem (Besag, 1974), a SHP Markov chain can be also
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Fig. 5. The mean field approximation of the cementum band of TCA image 1 generated by the Gabor-filtered hidden Markov random field model
(a) and the Gabor-filtered hidden coupled Markov chain model (b).

represented as a MRF with respect to the neighbourhood structure

N(x, y) =
⎛
⎝ ⋃

(x′,y′),(x,y)∈Cx′,y′
{Cx′,y′ ∪ (x′, y′)}\(x, y)

⎞
⎠ ∪ Cx,y .

This allows us to simulate typical configurations of labels drawn from the SHP Markov chain by the Gibbs sampler
outlined in Section 3 and estimate the parameters by implementing the EM algorithm described in Section 4. A typical
configuration drawn from a FRAME chain is displayed in Fig. 4(b): the right hand border of the FRAME chain image
is more fuzzy than its nondirectional counterpart, because the last column is not relevant to the past of any pixel and
therefore drawn at random.

6. Results

A hidden FRAME model as well as a hidden FRAME chain model were fitted to the 216 bit TCA image in Fig. 1. In
both cases, the ellipticity parameter r and the orientation 
 in the Gabor filters (6) and (13) were empirically fixed at 4
and 0, respectively. Parameters � in the degradation model (2) as well as the filter parameter T were estimated by the
EM algorithm illustrated in Section 4, based on a mean field approximation of the label distribution. The segmented
image �̂ was obtained from the last iteration of the EM algorithm, according to (12).

Fig. 5 shows �̂, as estimated by the Gabor-filtered hidden MRF model and the Gabor-filtered coupled Markov chain.
The latter model is more flexible than the former, and, as a result, more bifurcations occur. To emphasize this flexibility
even more, experiments with the hidden coupled Markov chain model and a thinner filter (a horizontal past relevance
structure of one pixel) were carried out additionally. Fig. 6 displays the resulting segmented image, clearly showing
more flexibility in the reconstruction of tooth rings.

For illustration purposes, the centroids (Fig. 7) of the dark layers, as predicted by the two models, are superimposed
on the original image displayed in Fig. 2. When implemented on the image displayed in Fig. 1, the EM estimation
procedure of both models converged to the average ring width T̂ = 14. Dividing the area of the cementum band by
14, an estimate of 35 rings is obtained (we expected 34 rings, from the known age of the person to whom the tooth
belongs). This number rises to 36 in the case of Fig. 6.

The estimates in the degradation model confirm the wider flexibility of the SHP Markov chain compared to that
exhibited by its nondirectional counterpart. Recalling that our image is a 216 bit intensity matrix, under the hidden MRF
model, the average intensity of the dark and the bright layers was estimated by �̂0 = 28 565, �̂1 = 29 519, respectively.



866 K. Klauenberg, F. Lagona / Computational Statistics & Data Analysis 52 (2007) 855–868

Fig. 6. The mean field approximation of the cementum band of TCA image 1 generated by the Gabor-filtered hidden coupled Markov chain, using
a thin filter consisting of one column plus one pixel.

Fig. 7. The black rings from part of the mean field approximations in Fig. 5 overlayed onto the original TCA image 1.

Table 1
Expected and estimated number of rings in eight TCA images

Estimated by Estimated by

Image Expected Chain Field Image Expected Chain Field

0231 41 46 (41) 46 1157 34 30 (30) 30
0592 60 64 (65) 64 1225 41 45 (35) 46
0682 35 33 (34) 33 1547 38 29 (33) 28
0688 35 35 (36) 34 1692 34 29 (29) 34

Under the SHP Markov chain model, �̂0 = 28 395 and �̂1 = 29 692 were obtained. In both cases, the EM algorithm
converged to the same variance estimate �̂2

0 = �̂2
1 = 4.8 × 107. The large variance and the small difference between the

estimated means confirms that simple classification procedures based on pixelwise intensities fail in the restoration of
the correct number of rings in a TCA image, as discussed in Section 1. In contrast, the FRAME approach succeeds in
addressing ring counting, by adjusting the information provided by pixel intensities for the large-scale features of the
image.

Additional experiments with eight TCA images of mixed quality gave the results reported in Table 1. The table lists
the estimated number of rings for the hidden MRF model (‘field’) and for the hidden SHP chain (‘chain’). Listed in
parentheses are the estimates for the hidden SHP chain, by using the thin one-column filter mentioned above. The
expected number of rings is the known age minus average tooth eruption age.

In general, the estimates of all three models lie very close together. In order to judge which model estimates the
number of tooth rings best, we certainly need to perform experiments on more TCA images. But overall, these results
are competitive to the manually counted number of rings.
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7. Discussion

The large-scale properties of TCA images would suggest the specification of an MRF with higher-order interactions
(Tjelmeland and Besag, 1998) for the latent label distribution. The FRAME approach (Zhu et al., 1998) allows for a
parsimonious specification of a higher-order interactions random field. In particular, we described two Markov models
that are capable to capture image macro-features, by means of one parameter, T. The price to pay for parsimony is the
rigidity of our models that capture only one macro-feature of the TCA image, namely the average distance between
dark layers. The ring bifurcations arising in Fig. 7 show an obvious consequence of this rigidity. The reconstruction
of the TCA image is heavily influenced by (1) the shape of the single filter we estimated, and (2) the assumption of
a constant filter orientation. In the present form, the models discussed here can only take into account strong local
changes of tooth rings.

In order to overcome this global property, a natural solution would be provided by location-dependent filters. However,
estimating the filter parameter T at each pixel i makes the filtered MRF models unidentifiable, without suitable covariates
that, at present, are not available. Trying to estimate a location-dependent orientation is affected by the same drawback.
A second approach to make our models more flexible would rely on using a thinner filter FT and hereby reducing the
size of the neighbourhood. The hidden SHP chain model described in Section 5 follows this line of reasoning and,
accordingly, produces a more flexible segmentation, but does not meet the tooth rings better than the MRF model. In
general, it is suspected that the more flexible the model is, the worse it performs for bad quality TCA images.

The suggested estimation procedure relies on an EM algorithm, based on a mean field approximation of the label
distribution. Other approximations could be taken into account, such as the mode field approximation and the simulated
field approximation (Celeux et al., 2003). These methods have been developed to make the EM algorithm more tractable
when images of large size are modeled via a hidden Markov specification, and less time consuming with respect to
Monte Carlo procedures, such as the Gibbsian EM algorithm (Chalmond, 1989).

We have pursued a likelihood approach for inference in a mixture model, focusing on the estimation of the distance
between dark layers in a TCA image, as ring counting in TCA analysis is more important than ring restoration.Although
the suggested EM algorithm allows to segment the image satisfactorily, a Bayesian approach would be a valid alternative
to restore the shape of the rings. As suggested by a referee, the resulting MCMC estimation scheme could be carried
out even for large images such as TCA pictures, by updating pixels in blocks (Chib and Greenberg, 1995; Swendsen
and Wang, 1987).
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