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Abstract

A system subject to a point process of shocks is considered. Shocks occur in accordance with a non-homogeneous Poisson process.

Different criterions of system failures are discussed in a homogeneous case. Two natural settings are analyzed. Heterogeneity is modeled

by an unobserved univariate random variable (frailty). It is shown that reliability (safety) analysis for a heterogeneous case can differ

dramatically from that for a homogeneous setting. A shock burn-in procedure for a heterogeneous population is described. The

corresponding bounds for the failure rates are obtained.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a general orderly (without multiple occur-
rences) point process fTng;T0 ¼ 0;Tnþ14Tn; n ¼
0; 1; 2; . . ., where Tn is time to the nth arrival of an event
with the corresponding cumulative distribution function
(Cdf) F(n)(t). An event at t ¼ 0 is only formal, denoting
the starting point of a process. Let G be a geometric
variable with parameter y (independent of {Tn}nZ0)
and W(t,y) denote the corresponding geometric sum of
lifetimes

W ðt; yÞ ¼ y
X1
k¼1

ȳ
k�1

F ðkÞðtÞ, (1)

where ȳ ¼ 1� y.
A natural reliability (or safety) interpretation of model

(1) is via the stochastic point process of shocks. Let T denote
a random time to failure of a system subject to a point
process of shocks. We interpret the word shock in a very
broad sense as some instantaneous, potentially harmful
event. Assume for simplicity that a shock is the only cause
atter r 2006 Elsevier Ltd. All rights reserved.
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of a system failure. It means that the system is ‘absolutely
reliable’ in the absence of shocks. The corresponding
generalization on the case of non-reliable system as such
can be easily performed under a natural assumption of
independence between {Tn}nZ0, G and the system lifetime
random variable T. Dealing with dependency presents
substantial mathematical problems and should be consid-
ered as a special topic.
Assume also that each shock (except the shock at t ¼ 0,

which is harmless and indicates, as was mentioned, the
starting point of a process) independently of the previous
history leads to a system failure with probability y and is
survived with probability ȳ. This procedure defines a
terminating point process, and a system survival prob-
ability (reliability) in (0,t) is

Sðt; yÞ � 1�W ðt; yÞ.

Thus, all random shocks to occur in (0,t) will be survived
with probability S(t,y). Obtaining probability S(t,y) is an
important problem in various reliability and safety assess-
ment applications.
Our main interest in this study will be in the specific case

of the Poisson process of shocks, where some explicit
results can be obtained. On the other hand, some general
facts for the renewal process of shocks of the next section
are helpful for subsequent reasoning.
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2. Renewal process of shocks

Various shock models in reliability and safety analysis
interpretation were considered by Barlow and Proschan [1],
Thompson [2], Aven and Jensen [3], and Finkelstein [4] to
name a few. All of them consider special cases of a point
process. In the case of a renewal process, the inter-arrival
times are i.i.d. random variables with an absolutely
continuous common Cdf

F ðtÞ ¼ 1� exp �

Z t

0

lðuÞdu

� �
, (2)

where l(t) is the corresponding failure rate. Therefore, the
survival probability can be written as

Sðt; yÞ � 1�W ðt; yÞ ¼ 1� F ðtÞð Þ þ
X1
k¼1

ȳ
k
F ðkÞc ðtÞ, (3)

where F ðkÞc ðtÞ is a k-fold convolution of F(t) with itself and
F ð0Þc ðtÞ � F ðtÞ. This notation captures the fact that as in (1),
F ðkÞc ðtÞ is the Cdf of the time to the kth event, but
specifically obtained via convolutions.

Special complicated numerical methods should be used
for obtaining S(t,y) in the form of the infinite series (3).
Hence, it is very important for practical assessment of
safety or reliability to obtain simple approximations and
bounds. It is well known (see e.g. Kalashnikov [5]) that, as
y-0, the following convergence in distribution takes place
for the terminating renewal process

Sðt; yÞ ! exp �
yt

m

� �
8t 2 ð0;1Þ, (4)

where the mean m of the Cdf F(t) is assumed to exist.
Specifically, when all inter-arrival times are exponen-

tially distributed random variables with constant failure
rate l, (4) turns into identity

Sðt; yÞ ¼ expf�yltg. (5)

Thus, relation (4) gives a very simple asymptotic exponen-
tial approximation. In practical situations in reliability,
safety and risk analysis, however, parameter y is not
usually sufficiently small and therefore, relation (4) can be
used only like a very rough estimate.

3. Poisson process of shocks

The situation is much simpler from a computational
point of view, if the process of shocks is the Poisson one. At
many instances this case is more realistic in practical
modeling than the renewal one, as the non-homogeneous
Poisson process of shocks can model a natural dependence
of intensity of shocks on time. Note, that the intensity of
shocks for the renewal process (renewal density function) is
a complex function, which tends to a constant, as t-N.
Therefore, the Poisson model of external influences is
usually more adequate in practice than a renewal one.
For the Poisson process of shocks relation (3) turns to

Sðt; yÞ ¼ ð1� F ðtÞÞ þ
X1
k¼1

ȳ
k
F
ðkÞ
P ðtÞ, (6)

where F
ðkÞ
P ðtÞ denotes in this case the Cdf of time to the k-th

shock arrival in the Poisson process of shocks with
intensity l(t), which is a well-known distribution
It turns out that S(t,y) can be obtained exactly in a very

simple, speaking for itself form even for the time-dependent
probability of termination y(t), where t is the chronological
time since the start of the shock process. Let l(t, Ht) denote
the complete intensity function for some general orderly
point process (Cox and Isham [6]), where Ht is a history of
the process up to t (the concrete configuration of arrival
points in [0,t)). The value l(t, Ht)dt can be interpreted as
the probability of an event occurrence in [t,t+dt)for the
given history Ht in [0,t). An important feature of this
function is that unlike ordinary intensity l(t), the complete
intensity ‘completely’ defines a point process [6]. It is clear
that the conditional rate of termination lc(t, Ht) for the
general point process of shocks can be defined via the
following equation:

lcðt;HtÞdt ¼ PrfT 2 ½t; tþ dtÞjHt;TðHtÞ � tg

¼ yðtÞlðt;HtÞdt. ð7Þ

Condition T(Ht)Zt means that all shocks in [0,t) were
survived (for the specific configuration of shocks
given by the history Ht). Conditional rate of termination
is based on the internal ‘individual’ information (Kalb-
fleisch and Prentice [7]) and bears no usual exponential
relationship with the corresponding survival function in a
general case. At the same time, as lðt;HtÞ ¼ lðtÞ for the
specific case of the Poisson process of shocks relation (7)
turns into

lcðt;HtÞ ¼ yðtÞlðtÞ (8)

and, finally the survival probability is

Sðt; yÞ ¼ exp �

Z t

0

yðuÞlðuÞdu

� �
. (9)

The foregoing can be considered as a non-technical
proof of (9). The formal proof for the different setting can
be found, for instance, in Block et al. [8]. This result is very
simple and we shall apply it in Section 4 to a heterogeneous
case.

4. Weaker criterion of failure

In the previous section the system could be killed by a
shock and it was assumed to be ‘as good as old’, if a shock
was survived (the analog of a minimal repair). Assume that
we are looking now at the process of non-killing shocks,
but a failure of a system can still occur when the shocks are
‘too close’ and the system did not recover from the
consequences of a previous shock. Therefore, the time for
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recovering should be taken into account. It is natural to
assume that it is a random variable t with a Cdf R(t)
(different values of damage need different time of recover-
ing and this fact is described by R(t)). Thus, if the shock
occurs while the system still did not recover from the
previous one, then a failure occurs. It is the simplest
criterion of failure of this kind. Other criterions can be also
considered. As previously, we want to derive the prob-
ability of a failure-free performance in [0,t):S(t). Consider
the Poisson process of shocks with rate l(t). Similar to
Finkelstein and Zarudnij [9], the following integral
equation for S(t) can be derived:

SðtÞ ¼exp �

Z t

0

lðuÞdu

� �
1þ

Z t

0

lðuÞdu

� �

þ

Z t

0

lðxÞ exp �
Z x

0

lðuÞdu

� �

�

Z t�x

0

lðyÞ exp �
Z y

0

lðuÞdu

� �
RðyÞŜðt� x� yÞdy

� �
dx,

ð10Þ

where the first term in the right-hand side is the probability
that there was not more than one shock in [0,t) and the
integrand defines the joint probability of the following
events:
�
 the first shock occurred in [x,x+dx);

�
 the second shock occurred in [x+y,x+y+dy);

�
 the time between two shocks y is sufficient for

recovering (probability-R(y));

�
 the system is functioning without failures in [x+y,t).

By ŜðtÞ in (10) we denote the probability of system’s
functioning without failures in [0,t) given that the first
shock had occurred at t ¼ 0. Thus, it differs from S(t) by
the initial state of a shock process. Note, that in contrast to
previous sections, it is important now that in the initial
setting there is no shock at t ¼ 0. Similar to (10)

ŜðtÞ ¼ exp �

Z t

0

lðuÞdu

� �
þ

Z t

0

lðxÞ exp �
Z x

0

lðuÞdu

� �

� RðxÞŜðt� xÞdx. ð11Þ

Eqs. (10) and (11) can be solved numerically. On the
other hand, for the constant failure rate l these equations
can be easily solved via the Laplace transform. Obtaining
the Laplace transform of ŜðtÞ for this specific case from
(11), and using this result while dealing with Eq. (10), we
finally arrive at

~SðsÞ ¼
s 1� l ~Rðsþ lÞ
� 	

� l2 ~Rðsþ lÞ þ 2l

ðsþ lÞ2 1� l ~Rðsþ lÞ
� 	 , (12)

where ~SðsÞ and ~RðsÞ denote Laplace transforms of S(t) and
R(t), respectively.
Consider important for practice specific cases:

Example 1. Exponentially distributed t: RðtÞ¼1� expf�mtg.
Then,

~Rðsþ lÞ ¼
m

ðsþ lÞðsþ lþ mÞ

and

~SðsÞ ¼
sþ 2lþ m

s2 þ sð2lþ mÞ þ l2
. (13)

Performing the inverse Laplace transform

SðtÞ ¼ A1 expfs1tg þ A2 expfs2tg, (14)

where s1, s2 are the roots of the denominator in (13)

s1;2 ¼
�ð2lþ mÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ mÞ2 � 4l2

q
2

and

A1 ¼
s1 þ 2lþ m

s1 � s2
; A2 ¼ �

s2 þ 2lþ m
s1 � s2

.

Eq. (14) gives an exact solution for S(t). In applications it is
convenient to use simple approximate formulas. Consider
the following reasonable assumption:
1

l
44t̄ �

Z 1
0

ð1� RðxÞÞdx. (15)

Relation (15) means that the mean inter-arrival time in the
shock process is much larger than the mean time of
recovery, and this is often the case in practice. In the study
of repairable systems the similar case is usually called the
fast repair. Therefore, using this assumption

SðtÞ � expf�l2t̄tg

as the second term in the right-hand side of (14) decreases
very sharply with t ð	 expf�t̄tgÞ.

5. General heterogeneous setting

One can hardly find homogeneous populations in real
life, although most of reliability studies deal with a
homogeneous case. Neglecting existing heterogeneity can
lead to substantial errors in stochastic analysis in
reliability, survival and risk analysis and other disciplines.
The simplest and the most natural way to implement

heterogeneity in a model, is via a subjective approach,
which deals with a random (unobserved) parameter and we
shall follow this concept in the current paper. This
parameter is often called frailty [10–12]. As an example
of this approach we shall generalize a shock model of
Section 3 to the heterogeneous case. Let probability yðtÞ ¼
y be constant in time for simplicity and assume that it is a
random variable (independent of a shock process) with
support in [0,1]. By this, in fact, we mean that y is indexed
by some random parameter. The case of a corresponding
stochastic process yt; t � 0 can be also considered. Then the
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setting can be interpreted in a following way: there is a
population of objects (systems), which differ with respect
to unobserved susceptibility to shocks. Therefore, we can
divide our population into different homogeneous in
susceptibility to shocks subpopulations and describe this
operation by an unobserved random variable.

It follows from Yashin and Manton [11] and Finkelstein
and Esaulova [12] that, as relations (8) and (9) are valid
conditionally on realizations of y, the following formulas
take place, when y is a random variable:

SmðtÞ ¼ E exp �y
Z t

0

lðuÞdu

� �� �
, (16)

lmðtÞ ¼ lðtÞE½yjT � t
, (17)

where conditional expectations are obtained with respect to
y. Specifically, expectation in relation (17) defines the
expected value of y on condition that a system did not fail
in [0,t] Eqs. (16) and (17) define, the mixture (observed)
survival function Sm(t)and the mixture (observed) failure
rate lm(t), respectively. The ‘shape’ of lm(t) in (17) can be
already dramatically different from the shape of the
intensity of the Poisson process l(t), whereas it is the same
for the case of a constant in time yðtÞ � y in (8).

Assume now that the rate of the Poisson process is itself
random (a predictable bounded stochastic process). The
resulting process is called then the doubly stochastic
Poisson process [6]. This process presents another im-
portant source for modeling heterogeneity. Specifically, let
the random rate be of the form lðt;CÞ [6], where C is a
random variable with support in [0,N). For a fixed C ¼ c,
similar to relations (8) and (9)

SðtjcÞ ¼ exp �

Z t

0

yðuÞlðu;cÞdu

� �
, (18)

lcðtÞ ¼ yðtÞlðt;cÞ (19)

and, similar to (16) and (17)

SmðtÞ ¼ E exp �

Z t

0

yðuÞlðu;CÞdu

� �� �
, (20)

lmðtÞ ¼ yðtÞE½mðt;CÞjT � t
. (21)

It is clear that we can formally combine these two models
into one and obtain the corresponding expectations with
respect to two random variables.

There can be different models for lðt;CÞ, the multi-
plicative one being the simplest

lðt;CÞ ¼ ClðtÞ, (22)

where l(t), as usually in the proportional hazards-type
models, plays a role of a baseline (reference) rate. Then
Eq. (21) turns into

lmðtÞ ¼ yðtÞE½ClðtÞjT � t
. (23)

Assume that the baseline rate l(t) in Eqs. (22) and (23) is
increasing, which models the increasing in time intensity of
the doubly stochastic Poisson process P̂t; t � 0. The
observed failure rate lmðtÞ, however, can have a different
shape due to the fact that conditional expectations in these
formulas are decreasing in time [12]. The following example
shows that the resulting mixture failure rate lmðtÞ can even
tend to 0 as t-N.

Example 2. Consider a linearly increasing with age in each
realization the rate of the Poisson process of shocks:
lðt;CÞ ¼ Ct and assume that C is gamma distributed with
parameters b and W. Then, in accordance with [12], the
failure rate lmðtÞ defined by Eq. (23) is

lmðtÞ ¼
bt

Wþ t2
.

This function is equal to zero at t ¼ 0 and tends to zero as
t-N with a single maximum at t ¼

ffiffiffi
y
p

. Hence, the
mixture of IFR distributions has a decreasing (tending to
zero!) failure rate for sufficiently large t and this is rather
surprising. Furthermore, the same result asymptotically
holds for lðtÞ ¼ ta; a40.

6. Shocks as burn-in

We can look at the problem of the failure rate modeling
in heterogeneous populations from a different point of
view. Now we have an object (a system) with a non-ideal
reliability subject to a process of possibly killing shocks.
Consider a heterogeneous population of these objects. A
manufacturer wants to perform a burn-in procedure,
eliminating the weakest items by suitably defined magni-
tude of a shock. We are interested in comparison of
population failure rates before and after the shock. It is
natural to suggest that the mixture failure rate after a shock
should be smaller than the one before it, otherwise the
burn-in of this kind does not make sense. In what follows
we define natural conditions which guarantee ordering of
failure rates of the described type.
Let TZ0 be the time to failure of a system with the Cdf

F(t). Let heterogeneity be modeled by the unobserved
random variable Z with support in [0,N)(it is more
convenient to use this notation for frailty in what follows).
Assume that F(t) is indexed by Z:

PðT � tjZ ¼ zÞ � PðT � tjzÞ ¼ F ðt; zÞ.

As the failure rate is a conditional characteristic, similar to
previous sections, the mixture failure rate lmðtÞ should be
defined conditionally (see, e.g., [12–14] to name a few):

lmðtÞ ¼
p
R1
0 f ðt; zÞpðzÞdzR1

0 F̄ ðt; zÞpðzÞdz
¼

Z 1
0

lðt; zÞpðzjtÞdz, (24)

where the conditional Pdf (on condition that TZt) is

pðzjtÞ ¼ pðzÞ
F̄ ðt; zÞR1

0
F̄ ðt; zÞpðzÞdz

. (25)

Assume that at time t ¼ t1 an instantaneous shock
had occurred, which affects the whole population: with
the corresponding complementary probabilities, as in



ARTICLE IN PRESS
M. Finkelstein / Reliability Engineering and System Safety 92 (2007) 569–574 573
Section 1, it either kills an item, or ‘leaves it unchanged’.
Without loosing generality, let t1 ¼ 0, otherwise a new
initial mixing variable can be easily defined and the
corresponding procedure adjusted to this case. It is natural
to suppose that the more frail individuals or subpopula-
tions (with larger failure rates) are, the more susceptible
they are to failures from a shock.

Let p1ðzÞ denote a frailty distribution of a random
variable Z1 after a shock and let lmsðtÞ be the correspond-
ing observed (mixture) failure rate after it. Assume

p1ðzÞ ¼
gðzÞpðzÞR1

0
gðzÞpðzÞdz

, (26)

where g(z) is a decreasing function and therefore, p1ðzÞ=pðzÞ
is decreasing. It means that a shock performs a kind of a
burn-in operation [15], and that Z and Z1 are ordered in
the sense of the likelihood ratio [16]:

Z�LRZ1. (27)

Now we are able to formulate the following result, which
will be proved in the Appendix:

Theorem. Let relation (26), defining a mixing density after

a shock at t ¼ 0, where g(z) is a decreasing function, hold.

Assume that a family of failure rates in a population is

ordered in z

lðt; z1Þolðt; z2Þ; z1oz2; 8z1; z2 2 ½0;1
; t � 0. (28)

Then

lmsðtÞolmðtÞ; 8t 2 ½0;1Þ. (29)

In accordance with inequality (29), the curve lmsðtÞ lies
beneath the curve lmðtÞ for t � 0. Therefore, the failure rate
after the shock is always smaller than the one without the
burn-in of this kind, which, of course, is a natural result for
this operation. At t ¼ 0, for instance

lmð0Þ � lmsð0Þ ¼

Z 1
0

lð0; zÞðpðzÞ � p1ðzÞÞdz.

Ordering (29) is what we have intuitively expected, but,
in fact, it is valid only due to rather stringent conditions of
this theorem. It can be shown, for instance, that the
replacement of condition (27) by a weaker one, e.g., of
stochastic dominance: Z�stZ1 will not guarantee ordering
this ordering for all t. In the latter case it will hold only for
sufficiently small t.

Ordering (28) is an important assumption, as it, in fact,
defines heterogeneity in terms of failure rates of different
subpopulations. The simplest and widely used example of
the natural ordering of this kind is the proportional
hazards model, when lðt; zÞ ¼ zlðtÞ.

This result can be generalized to the sequence of shocks
of the described type at time instants tif g; i ¼ 1; 2; . . . and
after every shock the failure rate will be ‘lower’ than after
the previous one.
7. Concluding remarks

External point influences (shocks) present a common
cause of system failures in different applications. The
ability to survive a single shock and the intensity of these
shocks in time eventually define system reliability. There
can be different criterions of failure for systems subject to
shocks. Only two simplest criterions were considered, but
the suggested approach allows for various generalizations.
Heterogeneity is a natural feature in many populations.

Results of reliability (safety) analysis for heterogeneous
populations can be substantially different from those in a
homogeneous case and this should be taken into account.
The subjective approach based on considering of an
unobserved random variable (frailty) gives an appropriate
tool for stochastic modeling of heterogeneity and presents
a more flexible way of stochastic description of lifetimes.

Appendix. Proof of the theorem

Inequality (28) is a natural ordering in the family of
failure rates lðt; zÞ; z 2 ½0;1Þ and trivially holds for the
specific multiplicative model lðt; zÞ ¼ zlðtÞ.
It can be finally derived that

sign½lmsðtÞ � lmðtÞ
 ¼ sign

Z 1
0

u4s

Z 1
0

F̄ ðt; uÞF̄ ðt; sÞðlðt; uÞ

� lðt; sÞÞðp1ðuÞpðsÞ

� p1ðsÞpðuÞÞduds,

which is negative due to assumptions of the theorem. It can
be seen, noting that sign½lmsðtÞ � lmðtÞ
 is equal to the sign
ofZ 1

0

lðt; zÞF̄ ðt; zÞp1ðzÞdz

Z 1
0

F̄ ðt; zÞpðzÞdz

�

Z 1
0

lðt; zÞF̄ ðt; zÞpðzÞdz

Z 1
0

F̄ ðt; zÞp1ðzÞdz

¼

Z 1
0

Z 1
0

F̄ ðt; uÞF̄ ðt; sÞ½lðt; uÞp1ðuÞpðsÞ

� lðt; sÞp1ðuÞpðsÞ
duds

¼

Z 1
0

u4s

Z 1
0

F̄ ðt; uÞF̄ ðt; sÞ½p1ðuÞpðsÞðlðt; uÞ

� lðt; sÞÞ þ p1ðsÞpðuÞðlðt; sÞ � lðt; uÞÞ
du ds

¼

Z 1
0

u4s

Z 1
0

F̄ ðt; uÞF̄ ðt; sÞðlðt; uÞ � lðt; sÞÞðp1ðuÞpðsÞ

� p1ðsÞpðuÞÞduds,

where we, at first, had transformed the product of integrals
into a double integral and then have changed the domain
of integration.
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