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Abstract

In this theoretical paper we generalize the notion of minimal repair to the heterogeneous case, when the lifetime distribution function

can be modeled by continuous or a discrete mixture of distributions. The statistical (black box) minimal repair and the minimal repair

based on information just before the failure of an object are considered. The corresponding failure (intensity) rate processes are defined

and analyzed. Demographic lifesaving model is also considered: each life is saved (cured) with some probability (or equivalently a

proportion of individuals who would have died are now resuscitated and given another chance). Those who are saved experience the

statistical minimal repair. Both of these models are based on the Poisson or non-homogeneous Poisson processes of underlying events,

which allow for considering heterogeneity. We also consider the new model of imperfect repair in the homogeneous case and present

generalizations to the heterogeneous setting.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the papers on reliability and survival analysis
deal with the homogeneous case although one can hardly
find homogeneous populations in practice. Heterogeneity
can introduce new and sometimes unexpected features in
reliability analysis when compared with a homogeneous
case. It is well known that the (observed) failure rate in a
heterogeneous population does not follow the pattern of
the subpopulations failure rates. For instance, the mortal-
ity rate of a homogeneous human population is approxi-
mately an exponentially increasing function (Gompertz
law), but recently the deceleration of this increase for old
ages was observed. A natural explanation of this fact lies in
the population heterogeneity.

In conventional reliability analysis of repairable systems,
it was also always assumed that objects to be repaired ‘are
chosen’ from a homogeneous population. It turns out, that
generalization to the heterogeneous case is straightforward
only for the perfect repair. In this case, the process of
atter r 2006 Elsevier Ltd. All rights reserved.
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functioning of an instantaneously repaired item can be, as
usually, modeled by the renewal process with a corre-
sponding mixture as a distribution of inter-arrival times.
Even the simplest type of imperfect repair-a minimal

repair, complicates modeling to a great extent, which is
shown in Sections 2 and 3. In Section 4, we introduce a new
imperfect repair model based on the proportional impact
of the repair action on the corresponding failure rate and
generalize this approach to the heterogeneous setting. In
Section 5 the heterogeneous lifesaving model is considered.
This model is also based on the notion of minimal repair
and can be considered as the corresponding application.
This is a theoretical note, but we believe that the results

modeling an impact of heterogeneity on reliability char-
acteristics of real objects can be important in various
applications. They show specifically that this impact should
be taken into account in reliability analysis of repairable
systems.
2. Homogeneous case

Consider an object with an absolutely continuous time to
failure cumulative density function (Cdf) F(t) and a failure
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rate l(t), which starts operating at t ¼ 0. Assume that the
repair action is performed instantaneously upon failure.
The repair is usually qualified as perfect, if the Cdf of the
repaired object is F(t) (as good as new) and as the minimal

repair at time x, if its Cdf is:

F ðtjxÞ � 1�
1� F ðtþ xÞ

1� F ðxÞ
: (1)

It is clear that the minimal repair does not change the
failure rate of our object. This type of minimal repair, when
the only information at hand is the age x of the failed unit
is called also the statistical (or black box) minimal repair.
On the other hand, sometimes we can observe on failure
some additional information, defining the state of an object
(e.g. the structure of a system). This can result in a more
general type of repair, which is usually called the
information-based (or physical) minimal repair. The infor-

mation-based minimal repair brings our object back to the
state (to be defined by the relevant information) it had just
before the failure [1,3,6].

A convenient mathematical description of repair pro-
cesses uses a concept of the stochastic (or failure) intensity
[4]. Let, firstly, Tn, n ¼ 12,y be some general orderly point
process defined on the basic probability space, which can
be interpreted as instances of repairs (or, equivalently,
instantaneously repaired failures). Repairs can be perfect,
minimal or imperfect [7]. Denote by Nt, tX0 the
corresponding counting process. The following decomposi-
tion exists under some mild assumptions:

Nt ¼

Z t

0

lu duþMt, (2)

where lt is the corresponding stochastic intensity and Mt is
a martingale with a zero mean [4]. The classical example of
lt is defined by the renewal process (perfect repair) with the
monotone increasing failure rate l(t) of the underlying Cdf
F(t):

lt ¼
X1
n¼0

lðt� TnÞIðTnptoTnþ1Þ; T0 ¼ 0. (3)

Another standard example is the ‘deterministic stochas-
tic intensity’ lt ¼ l(t), which defines the non-homogeneous
Poisson process (NHPP) of repairs with intensity l(t). It is
well known that, in accordance with definition (1), this
example can be also interpreted as the process of statistical

minimal repairs. Generalizing this notion, Aven and Jensen
[3] suggested to define a point process as the process of F-

minimal repairs, if one cannot define the failure time points
from observation of lt. Obviously, according to this
definition, the Poisson process is the process of F-minimal

repairs, whereas the renewal process is not.
Thus, the F-minimal repair is the specific case of the

information-based minimal repair. Minimal repair process
for heterogeneous populations to be considered in this
paper is an example, when the failure time points can be

defined from observation of lt.
The following minimal repair model has important
demographic and biological applications. Let l(t) be an
‘ordinary’ failure rate for a homogeneous population.
Assume the following lifesaving procedure: each life,
characterized by initial failure rate l(t) is saved (repaired)
with probability 1�y(t) (or equivalently a proportion of
individuals who would have died are now resuscitated and
given another chance). Those who are saved, experience the
(statistical) minimal repair. The number of resuscitations
(repairs) is unlimited. In fact, this is a partially minimal
repair model, as a proportion of individuals are not saved
(not repaired). Under these assumptions, it was proved
analytically in [13] that the described lifesaving procedure
results in the new failure rate

lrðtÞ ¼ yðtÞlðtÞ: (4)

The similar result was obtained for different reliability
related settings in [5,7]. The following shock model [7] gives
another useful interpretation and, in fact, presents a more
general non-technical proof. Consider an object subject to
a general orderly stochastic point process of shocks.
Assume that a shock, affecting an object at time
tA(0, N), independently of the previous shocks, causes a
failure (death) with probability y(t) and does not cause any
changes in the object with a complementary probability
1�y(t). Assume for simplicity that this is the only cause of
failure of an object. Let lc(t, Ht) denote the corresponding
complete intensity function, where Ht is a history of the
process up to and including t. The useful interpretation is
that lc(t, Ht) dt+o(dt) defines the probability of a shock in
(t,t+dt] given the history Ht (the configuration of shocks in
(0,t]. The complete intensity function is an alternative
(to lt) way of defining the point process. The conditional
hazard can be defined in this case by the following
probability:

PfT 2 ðt; tþ dt�jHt;T4tg ¼ yðtÞlcðt;HtÞdt. (5)

Assume now that shocks occur in accordance with the
non-homogeneous Poisson process PttX0 with intensity
l(t). It is clear that in this case

lcðt;HtÞ � lðtÞ.

Then relation (5) reads

PfT 2 ðt; tþ dt�jHt;T4tg ¼ yðtÞlðtÞdt (6)

and, finally, the corresponding survival probability is given
by

F̄ ðtÞ ¼ exp �

Z t

0

yðuÞlðuÞdu

� �

¼ exp �

Z t

0

lrðuÞdu

� �
. ð7Þ

Eq. (7) obviously follows from the fact that the
conditional hazard lc(t, Ht) does not depend on history Ht.
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3. Heterogeneous minimal repair model

Let TX0 be a lifetime random variable (r.v.) with the
Cdf F(t). As usually, denote the survival function by F̄ ðtÞ.
Assume that F(t) is indexed by a r.v. Z: PðTptjZ ¼ zÞ �

PðTptjzÞ ¼ F ðt; zÞ and that the probability density func-
tion (pdf) f(t,z) exists. Then the corresponding failure rate
l(t,z) is defined by f ðt; zÞ=F̄ ðt; zÞ. Let Z be interpreted as a
non-negative r.v. with support in [a,b], aX0, bpN and the
pdf p(z).

Another meaningful interpretation defines an unob-
served Z as a frailty in the heterogeneous population [12].
Therefore, the mixture models can be alternatively called
the frailty models. The above setting leads naturally to
considering mixtures of distributions, which are useful for
describing heterogeneity:

FmðtÞ ¼

Z b

a

F ðt; zÞpðzÞdz (8)

whereas the mixture failure rate in accordance with the
definition (e.g. [8]) is

lmðtÞ ¼

R b

a
f ðt; zÞpðzÞdzR b

a
F̄ ðt; zÞpðzÞdz

¼

Z b

a

lðt; zÞpðzjtÞdz, (9)

where the conditional pdf (on condition that T4t) is

pðzjtÞ � pðzjT4tÞ ¼ pðzÞ
F̄ ðt; zÞR b

a
F̄ ðt; zÞpðzÞdz

. (10)

Consider an object with the Cdf (8) describing a lifetime in a
heterogeneous population. Let T1 ¼ t1 be the realization of
time to the first failure (repair). Then the statistical minimal
repair is obviously defined by relation (1), where F(t) is
substituted by Fm(t) and x by t1, whereas the process of
minimal repairs of this kind is NHPP with intensity lm(t).

It is much more interesting to define the information-

based minimal repair for the heterogeneous setting [9]. In
accordance with the general definition of the information-

based minimal repair, an object is restored to the state it
had just prior the failure. It is reasonable to assume in this
case that the state is defined by the frailty Z, which in its
tern defines the failure rate of a subpopulation l(t,z). It is
clear that, as we observe only the failures Ti, i ¼ 1,2,y ,
the stochastic intensity in [0,t1) is also lmðtÞ � l1mðtÞ,
defined by Eq. (10). As unobserved Z ¼ z ‘was chosen’ at
t ¼ 0 for the future performance of our object, the
information-based minimal repair restores it to the state
defined by Z ¼ z. This means that the stochastic intensity
in [t1,t2) is

l2mðtÞ ¼
Z b

a

lðt; zÞpðzjt� t1Þdz, (11)

where the pdf pðzjt� t1Þ is given by the adjusted relation
(10):

pðzjt� t1Þ ¼ pðzÞ
F̄ ðt� t1; zÞR b

a
F̄ ðt� t1; zÞpðzÞdz

. (12)
In accordance with relations (10)–(12) the corresponding
stochastic intensity in [0,N) is (compare with Eq. (3))

lt ¼
X1
n¼1

ln
mðtÞIðTn�1 � toTnÞ; T0 ¼ 0, (13)

where

ln
mðtÞ ¼

Z b

a

lðt; zÞpðzjt� Tn�1Þdz. (14)

An interesting feature of (14) is that at failure points it
equals the unconditional mean of l(t,Z):

ln
mðtnÞ ¼

Z b

a

lðtn; zÞpðzÞ dz; nX1. (15)

Therefore, the function

lPðtÞ ¼
Z b

a

lðt; zÞpðzÞdz (16)

is important for describing the model under investigation.
The subscript ‘‘P’’ stands for ‘‘Poisson’’, as Eq. (16) defines
the mean intensity function of the conditional Poisson
process. The corresponding stochastic intensity in this case
is defined trivially by

lt ¼ lðt;ZÞ ; tX0. (17)

Model (16)–(17) can be interpreted by considering the
observed r.v. Z. In this case for each realization of Z, each
failure is minimally (statistically) repaired and the intensity
function of the resulting point process is an ‘ordinary’
mixture lP(t).
This model defines a doubly stochastic Poisson process

(see also Section 5), which was studied in connection with
the minimal repair in some early papers devoted to optimal
replacement strategies (see, e.g., [2] and references therein).
It is interesting to compare lm(t),lP(t) and lt. The

following example will help us to do so.

Example 1. Let F(t,z) be for simplicity an exponential
distribution with parameter l(t,z) ¼ zl and p(z) be
an exponential pdf in [0,N) with parameter W. Using
relation (9)

lmðtÞ ¼
l

ltþ W
,

where lP(t) ¼ l/W and

lt ¼
X1
n¼1

l
lðt� Tn�1Þ þ W

IðTn�1ptoTnÞ; T0 ¼ 0.

Thus,

lmðtÞpltplPðtÞ ; t40 (18)

and lt ¼ lP(t) only at random failure points Tn, nX1
whereas lt ¼ lm(t) in [0,T1). The point process Tn, nX1,
defined by model (13)–(14), can be nicely interpreted as a
generalized renewal process Kijima (1989), [7]. Indeed, at
failure times, as it was mentioned before, lt is restored to
the predetermined level given by the function lP(t).
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The following result [9] states that inequality (18) is valid
for a more general case:

Proposition 1. Let lt, tX0, be the stochastic intensity
defined by the model (15)–(17). Let the values of l(t,z) be
ordered with respect to z

lðt; z1Þolðt; z2Þ; z1oz2; 8z1; z2 2 ½a; b�; tX0. (19)

Then relation (18) holds.

Therefore, the stochastic intensity of the information-

based minimal repairs lt is contained between functions
lP(t) and lm(t) and equals lP(t) only at failure points,
whereas lt ¼ lm(t) in [0,t1].

The results of this section show that the simplest minimal
repair homogeneous model with deterministic stochastic
intensity lt ¼ l(t) in the presence of heterogeneity turns
into a model with stochastic intensity described by
Proposition 1.

4. A new model of imperfect repair

Firstly, we define this new model for the conventional
homogeneous case. Assume, as previously that the failure
rate l(t) of the governing distribution is monotonically
increasing (IFR). Let the first failure occurs at t ¼ t1.
Define the imperfect repair as repair, decreasing the pre-
failure value of l(t) in the following way:

lðt; t1; k1Þ ¼
lðtÞ; 0ptot1;

k1lðtÞ; tXt1;

(
(20)

where k1 is an improvement factor:

lð0Þ
lðt1Þ � lð0Þ

pk1p1.

The case k1 ¼ 1 corresponds to a minimal repair. The
subsequent cycles are defined in a similar way, which
results in the following stochastic intensity (compare
with (3)):

lt ¼
X1
n¼0

Yn

i¼0

kilðt� TnÞIðTnptoTnþ1Þ,

which means that on the n+1th cycle the failure rate is
k1k2?knl(t). The improvement factors for the following
cycles are subject to the similar condition as for the second
one:

lðtiÞ

lðtiþ1Þ � lðtiÞ
pkiþ1p1; i � 1; t0 � 0.

This type of imperfect repair was not studied in the
literature so far, but our goal in this paper is not to
investigate its properties, which, in fact, could be interest-
ing, but to describe the impact of heterogeneity in this
model.

Relation (20) defines a proportional hazards (PH) model

of imperfect repair. We shall show now that this
proportionality is violated in the heterogeneous case. In a
general heterogeneous setting (8)–(10), assume a specific
multiplicative case of a frailty model:

lðt; zÞ ¼ zlðtÞ (21)

where l(t) is a baseline failure rate. Combining the PH
repair model at the time of the first failure (20) with the
multiplicative frailty model (21):

lðt; t1; z; k1Þ ¼
zlðtÞ; 0ptot1;

k1zlðtÞ tXt1:

(
(22)

Thus, in each realization of a frailty Z we have the similar
‘proportional repair action’ as in the homogeneous case
(20). What happens with the corresponding mixture
(observed) failure rate? As in (9), the mixture failure rate
for the specific model (21) is denoted by lm(t). Denote the
mixture failure rate for the model

lðt; z; k1Þ ¼ k1zlðtÞ; tX0

by lmk1
ðtÞ. Then the mixture failure rate for the model (22)

is obviously

lmðt; t1; k1Þ ¼
lmðtÞ; 0ptot1;
~lmk1
ðtÞ; tXt1;

(

where ~lmk1
ðtÞ is a resulting mixture failure rate in [t1,N).

Using the same reasoning as in [8], it can be proved that

lmk1
ðtÞ4~lmk1

ðtÞ; 8t 2 ½t1;1Þ

and that proportionality is preserved only at t ¼ t1:

~lmk1
ðt1Þ ¼ k1lmðt1Þ. (23)

Obviously the same considerations are valid for the whole
process of repair with repairs at t1,t2,y.
Thus it is shown that the homogeneous proportional

model of repair (20) does not hold in the heterogeneous
case, although it holds for each realization of the frailty
parameter Z.
The next section will be devoted to describing two

models of heterogeneity in the lifesaving framework [11].
The first one will consider probability y(t) as a random
variable, whereas the second one is based on the doubly
stochastic Poisson process.

5. Heterogeneous lifesaving model

In this section, we are coming back to the lifesaving
model of Section 2. Let y(t) in Eqs. (5) and (6) be constant
in time for simplicity: y(t) ¼ y and assume that it is a
random variable (independent of the non-homogeneous
process Pt, tX0) with support in [0,1]. This is another way
of implementing the population heterogeneity into the
model. Indeed, for instance, probability of survival after
some diseases can vary a lot in the population of the same
age. The same argument holds for repairable items from
different subpopulations (for instance, of different makes).
It follows from [14] that, as relation (7) is valid

conditionally on realizations of y, the following formulas
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holds, when y is a random variable:

F ðtÞ ¼ 1� E exp �y
Z t

0

lðuÞdu

� �� �
, (24)

lrðtÞ ¼ lðtÞE½yjTXt�. (25)

Eqs. (24) and (25) define, in fact, the mixture (observed)
Cdf and the mixture (observed) failure rate, respectively.
The shape of lr(t) in (25) (e.g., for the arbitrary continuous
increasing function) can be already different from the
shape of a baseline l(t): it can even decrease for sufficiently
large t [10]. Thus the impact of heterogeneity of the
described type is in changing the shape of the observed
failure rate compared with the baseline one.

Another and maybe much more important source of
heterogeneity in harmful events can be modeled by the
doubly stochastic Poisson process P̂t; tX0 (instead of the
Poisson process of harmful events). Denote a random rate
of this process by l(t,C), where C is a random variable
with support in [0,N). For the fixed C ¼ c, similar to
relations (6) and (7), we have

F ðtjcÞ ¼ 1� exp �

Z t

0

yðuÞlðu;cÞdu

� �
, (26)

lrðtÞ ¼ yðtÞlðt;cÞ (27)

and similar to (24) and (25), we have

F ðtÞ ¼ 1� E exp �

Z t

0

yðuÞlðu;cÞdu

� �� �
, (28)

lrðtÞ ¼ yðtÞE½lðt;CÞjT4t�. (29)

There can be different models for l(t,C). The multi-
plicative one is the simplest one:

lðt;CÞ ¼ ClðtÞ (30)

where l(t), as usually in the proportional hazards-type
models, plays the role of a baseline (reference) hazard rate.
Then Eq. (29) turns into

lrðtÞ ¼ yðtÞlðtÞE½CjT4t�. (31)

We assume that the baseline function l(t) in Eqs. (30)
and (31) is increasing. As previously, the observed failure
rate, however, can have a different shape due to the fact
that conditional expectations in these formulas are
decreasing in time [8]. The following example shows that
lr(t) can even tend to 0 as t-N.

Example 2. Consider harmful events with linearly increas-
ing rate

lðt;CÞ ¼ Ct

and assume that C is gamma distributed with parameters b
and W. Then [8]

lðtÞ ¼
bt

Wþ t2
.

This function is equal to zero at t ¼ 0 and tends to zero as
t-N with a single maximum at t ¼

ffiffiffi
y
p

. Hence, the
mixture of IFR distributions has a decreasing (tending to
zero!) failure rate for sufficiently large t and this is rather
surprising. Furthermore, the same result asymptotically
holds for l(t) ¼ ta, a40.
It is worth noting that the doubly stochastic Poisson

process effectively models the diversity among subpopula-
tions (and on the ‘individual level’ as well) in the rate of
harmful events. Lifestyle, external factors, hereditary
factors etc. are the sources of heterogeneity in biological
applications.
6. Conclusions

Repeated statistical minimal repair in homogeneous
populations gives rise to the non-homogeneous Poisson
process of failures (repairs), which is a nice and simple
model to deal with. Mixture of distributions is a useful tool
for modeling heterogeneity. It is well known that the shape
of the failure rate in heterogeneous populations can differ
dramatically from the baseline failure rate. On the other
hand, it is not trivial to define the analog of minimal repair
for heterogeneous populations. A version of the informa-

tion-based minimal repair for this case is suggested and
analyzed in Section 2.
A new model of imperfect repair, suggested in this paper

needs further development. We just showed that the
‘transition’ from the homogeneous to the heterogeneous
case is also non-trivial in this case.
The lifesaving procedure of this paper can be also

interpreted in terms of minimal repairs. Different ways of
modeling heterogeneity in this model are considered.
We show that heterogeneity is an important factor in

reliability analysis, as there are no absolutely homogeneous
populations in practice. The diversity among populations
can have a dramatic impact on reliability characteristics
such as the observed failure rate and should be taken into
account in practice.
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