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Integral Evaluation Using the A2-distribution. Simulation
and lllustration

Trifon I. Missov

Abstract. The A%-distribution is a multivariate distribution, which plags important role in
variance reduction of Monte Carlo integral evaluation eStihg the nodes of random cubature
formulae according t&\? ensures an unbiased and efficient estimate of the studiegrait
regardless of the region it is solved over. Thtedistribution is also relevant in problems such
as separating errors in regression analysis and consigubtoptimal designs in multidimen-
sional regions. Inefficient simulation &f prevented the application of the underlying theory
in real problems. Ermakov and Missov, [3], proposed an #@lgorwhich combines all re-
jection, inversion, and mixture techniques. Its compleaitows simulatingd? vectors of big
lengths. Moreover, it works in the most general settingsiefgroblem of integral evaluation.
This article presents a modification of the simulation alfyon as well as its illustration for a
popular integral in Reliability Theory.
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1. TheA?-distribution. A Simulation Insight

Consider a set of elemen = {z}, on which as-algebraA and as-finite measure
n
w are introduced. Note that can be discrete. We designaié = @ p and as-

k=1
sume that there existlinearly independent on the support of the meaguhenctions
o1(x), p2(x), . .., pn(x) € L?(1). The function

R(Q) = - (et [10), @ = (o) (L)

is called the density of thA2-distribution with respect to the measyr&. The prop-
erties ofA%(Q) are discussed in depth by Ermakov, [2]. One of the importpplica-
tions of A%(Q) is associated with random cubature formula of the type:
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alf) = Yo Aif @)~ [ r(@)f @) = 111),
=1 X
inwhichz;, A;(x1,...,x,) are random variables i, and ¢1, f are given functions
such that the producty f is p-integrable.
If we choose the nodes, . . . , z,, according to thé2-distribution and denot&( f; Q) =

det||f(x;), pa()), ., n(zj)| [j1, DQ) = Blp1, Q), then

(1.2)

will be an unbiased estimate &ff] with a variance

n 2

WMMS/PWZ@%M@ p(de).

=1
The equality sign holds for regular systetfns; }” ;. Note that this result is valid for
p-linearly independent functions; (z), . . ., ¢, (x) (Ermakov, [2]). The orthogonality
assumption is induced primarily to simplify calculatiosssaGramm-Schmidt orthog-
onalization of{¢;} ; will not affect the determinant in (1.1).
The simulation method proposed in [3] and [8] works in the hyeneral settings of
the problem wherX is a region ink?, the functionsp;(x) ,i = 1, n are bounded ik,
andy is the Lebesgue measure (or equivalent to it). It studfég)) as a product of.
conditional densities. Each one of them represents a cdtiggosf other distribution
densities. Moreover, it turns out compositions’ coeffitéeran be derived iteratively
one from another. In addition, the distributions themsemeeach of the compositions
can be simulated using either the rejection or the invergiethod. The results are
summarized in the following theorem (Ermakov and Missoj), [3

Theorem 1.1. The k-th conditional density p (ix|i1. .. ix—1), k = 2, m can be repre-
sented in the following way:

k 2
. poy CHIm

2
1<ii<.,ix<n (n — k + 1) > (c(k> )

. . J1j2---Jk—1
1<i<.jk—1<n
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L ymi1 b ’
( > (=1 Clivyizy.yin P\{im } Pim (xk)>

m=1
, (1.3)
S )
o] {i1,i2,-ik J\ {45}
where ¢V = 1 and
(k) b (k—1)
_ s+1 -
Cligiyein N5} = > (=) e, i\ (i P (T1-1) (1.4)
s=1,s#j

Note that (1.3) is a mixture of distributions. The first ratimder the sum assigns its co-
efficients, whereas the second one represents the digiribiihemselves. Coefficients
(1.4) are calculated iteratively one from another.

The complexity of this simulation algorithm is (Ermakov avissov, [3]):

2
C=0(n2"?) ( maX_Iw(m)) (1.5)
zreX,i=1n

2. An Application of A2 Multiple Integral Calculation

Let us implement the above simulation proposal and, usitggpolation-cubature for-
mulae, evaluate the following five-dimensional£ 5) integral:

e—xyzst

dxdydzdsdt 2.1
/1+x2+y2+z2+32+t2 e @1
Ds

whereDs is the 5-dimensional hypercube.

It plays an important role in Reliability Theory and its aalition is problematic as

neither pure numerical methods nor Monte Carlo estimatiorkwfficiently fors > 2.

Let us first briefly focus our attention on the simulation aitjon itself.

Algorithm 2.1. Simulation of theh?-Distribution
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1. Consider the first (conditional) density

pi(za) = % > o) (2.2)
i=1

Using a random number; € [0, 1], we generate the discrete distribution

1 2 ... n
1/n 1/n ... 1/n

which determines composition’s coefficients in (2.2). Havbbtained a number, we
simulate by rejectiop?(1). Thus, we getr;. Note thate!?) = 1.

2. First, we calculate the coefficiem;f?), j =1,nusing (1.4):

2
CE» ) = Lpj(21) = pi(a1)

Then we study the second conditional density:

2

2>)2 Cz‘lz

2

2 2

PRI el Gl A OB NG

bty = 2 ") @2 D02
1<ir<ip<n (n — 1) Y- (¢7)? (ci,)? + ()

=1

~

Usinga; € [0, 1] we simulate the respective discrete distribution

(41,12)
2 2
(051))2—5—(052))2

=1 1<i1<ip<n

and, having obtained a pair of indic@s, i), we simulate by rejection this distribution
in the composition, which corresponds to these indices.btiumding constant equals

2
(1] + 1c2)))2 ( max__ |soi<x>|>

zeX,i=1n

Thus, we getrs.
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3. Fork =3,n:

1. We calcuIatee:x‘?mﬂ.ki1 according to (1.4).

2. We simulate the discrete distribution which determiries composition’s coeffi-
cients.

3. Having uniquely determined, . . . , i, we simulate by rejection that distribution in

the composition, which corresponds to these indices. Thegetx;.

Taking advantage of Algorithm 1 we can simula#?adistributed vector and construct
an interpolation cubature formula (1.2) for the integrallj2 The estimate for (2.1) is
12.851. The only question we have to answer is what valuetofchoose in practice.
Note thatn is the length of thé\-distributed vector we simulate, as well as the number
of functions in the orthonormal set;(z), i = 1,n. If we want to attain accuracy up
to the third decimal place, taking = 10 is sufficient.

In such a case we choose an orthonormal polynomial system:

ei(e) = Y21 ) = Lo gofe) = Lo a(e) = B
o) = L5 pule) = L rle) = Yo(ae? 1,
o) = @20 gl = (@2 1)
o) = Y0352 - 1)

Table 1 compares the estimation results for pure rejectimhAdgorithm 1 forn =
2,...,10, as well as the program execution times in each case. Natddrn > 5
rejection is practically inapplicable. As a result, theetjon execution times for > 5
are estimated. Note also that by using Algorithm 1, we getmtotthe-third-decimal
precise result for less than a minute.
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n | RejResult| Rej Time | Cond Result Cond Time| C/R Ratio (s)
2 | 12549122 1.191 12.570709 0.476 0.400
3 | 12.698118| 51.23 12.712320 0.913 0.017
4 | 12.726244| 358.2 12.739003 1.225 0.003
5 | 12.787773| 1873.2 12.796741 1.527 81-10*
6 115340 | 12.830315 3.954 34.10°°
7 1312912 | 12.840299 12.87 9.8-10°°
8 3.2-10° | 12.848023 29.59 9.2.-10°6
9 9.7-10¢° | 12.850376 | 41.07 42.10°°
10 41-10" | 12.851290 55.09 1.3.-10°°

Table 1. Pure Rejection and Algorithm 1 Simulation Results

Conclusion

Random interpolation-cubature formulas are a powerfutumsent for multiple inte-

gral estimation. By selecting their nodes according toAhelistribution, we obtain

an estimate with minimal variance. Moreover, having an igfficalgorithm for the

A? simulation, we can practically solve multiple integralgaedless of their order.
Of course, the suggested method dwells upon simulatioreiveiny general problem
settings. Imposing different restrictions df, i, andy;(z), i = 1,n, we can sim-

plify the conditional densities. This can lead to AlgoritHhmmodifications like, for

instance, simulate the distribution densities in the casitipms by inversion instead
of rejection. Nevertheless, even in the general settingsrbthod works efficiently,
which is demonstrated on an example of a five-dimensionegat estimation.
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