
Monte Carlo Methods and Appl., Vol. 13, No. 2 (2007), pp. 219–225
DOI 10.1515 / MCMA.2007.007
c© de Gruyter

Integral Evaluation Using the ∆2-distribution. Simulation

and Illustration

Trifon I. Missov

Abstract. The∆2-distribution is a multivariate distribution, which playsan important role in

variance reduction of Monte Carlo integral evaluation. Selecting the nodes of random cubature

formulae according to∆2 ensures an unbiased and efficient estimate of the studied integral

regardless of the region it is solved over. The∆2 distribution is also relevant in problems such

as separating errors in regression analysis and constructing D-optimal designs in multidimen-

sional regions. Inefficient simulation of∆2 prevented the application of the underlying theory

in real problems. Ermakov and Missov, [3], proposed an algorithm which combines all re-

jection, inversion, and mixture techniques. Its complexity allows simulating∆2 vectors of big

lengths. Moreover, it works in the most general settings of the problem of integral evaluation.

This article presents a modification of the simulation algorithm as well as its illustration for a

popular integral in Reliability Theory.
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1. The∆2-distribution. A Simulation Insight

Consider a set of elementsX = {x}, on which aσ-algebraA and aσ-finite measure

µ are introduced. Note thatµ can be discrete. We designateµn =
n
⊗

k=1
µ and as-

sume that there existn linearly independent on the support of the measureµ functions

ϕ1(x), ϕ2(x), . . . , ϕn(x) ∈ L2(µ). The function

∆2(Q) =
1
n!

(

det||ϕi(xj)| |ni,j=1

)2
, Q = (x1, . . . , xn) (1.1)

is called the density of the∆2-distribution with respect to the measureµn. The prop-

erties of∆2(Q) are discussed in depth by Ermakov, [2]. One of the important applica-

tions of∆2(Q) is associated with random cubature formula of the type:
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κn[f ] =

n
∑

i=1

Aif(xi) ≈
∫

X

ϕ1(x)f(x)µ(dx) = I[f ],

in whichxi, Ai(x1, . . . , xn) are random variables inX, andϕ1, f are given functions

such that the productϕ1f is µ-integrable.

If we choose the nodesx1, . . . , xn according to the∆2-distribution and denote∆(f ; Q) =

det||f(xj), ϕ2(xj), . . . , ϕn(xj)| |nj=1, ∆(Q) = ∆(ϕ1, Q), then

κn[f ] =
∆(f ; Q)

∆(Q)
(1.2)

will be an unbiased estimate ofI[f ] with a variance

Varκn[f ] ≤
∫

[

f(x) −
n
∑

i=1

(f, ϕi)ϕi(x)

]2

µ(dx).

The equality sign holds for regular systems{ϕi}n
i=1. Note that this result is valid for

µ-linearly independent functionsϕ1(x), . . . , ϕn(x) (Ermakov, [2]). The orthogonality

assumption is induced primarily to simplify calculations as a Gramm–Schmidt orthog-

onalization of{ϕi}n
i=1 will not affect the determinant in (1.1).

The simulation method proposed in [3] and [8] works in the most general settings of

the problem whenX is a region inRs, the functionsϕi(x) , i = 1, n are bounded inX,

andµ is the Lebesgue measure (or equivalent to it). It studies∆2(Q) as a product ofn

conditional densities. Each one of them represents a composition of other distribution

densities. Moreover, it turns out compositions’ coefficients can be derived iteratively

one from another. In addition, the distributions themselves in each of the compositions

can be simulated using either the rejection or the inversionmethod. The results are

summarized in the following theorem (Ermakov and Missov, [3]):

Theorem 1.1. The k-th conditional density p (ik|i1 . . . ik−1), k = 2,m can be repre-

sented in the following way:

∑

1≤i1<...,ik≤n

k
∑

j=1

(

c
(k)
{i1,i2,...,ik}\{ij}

)2

(n − k + 1)
∑

1≤j1<...,jk−1≤n

(

c
(k)
j1j2...jk−1

)2
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(

k
∑

m=1
(−1)m+1c

(k)
{i1,i2,...,ik}\{im}ϕim(xk)

)2

k
∑

j=1

(

c
(k)
{i1,i2,...,ik}\{ij}

)2
, (1.3)

where c(1) = 1 and

c
(k)
{i1,i2,...,ik}\{ij}

=
k
∑

s=1,s6=j

(−1)s+1c
(k−1)
{i1,...,ik}\{ij ,is}

ϕis(xk−1) (1.4)

Note that (1.3) is a mixture of distributions. The first ratiounder the sum assigns its co-

efficients, whereas the second one represents the distributions themselves. Coefficients

(1.4) are calculated iteratively one from another.

The complexity of this simulation algorithm is (Ermakov andMissov, [3]):

C = O(n2n−1)

(

max
xk∈X,i=1,n

|ϕi(xk)|
)2

(1.5)

2. An Application of ∆2 Multiple Integral Calculation

Let us implement the above simulation proposal and, using interpolation-cubature for-

mulae, evaluate the following five-dimensional (s = 5) integral:

∫

D5

e−xyzst

1 + x2 + y2 + z2 + s2 + t2 dxdydzdsdt, (2.1)

whereD5 is the 5-dimensional hypercube.

It plays an important role in Reliability Theory and its calculation is problematic as

neither pure numerical methods nor Monte Carlo estimation work efficiently fors ≥ 2.

Let us first briefly focus our attention on the simulation algorithm itself.

Algorithm 2.1. Simulation of the∆2-Distribution
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1. Consider the first (conditional) density

p1(x1) =
1
n

n
∑

i=1

ϕ2
i (x1) (2.2)

Using a random numberα1 ∈ [0, 1], we generate the discrete distribution





1 2 . . . n

1/n 1/n . . . 1/n



 ,

which determines composition’s coefficients in (2.2). Having obtained a numberj, we

simulate by rejectionϕ2
j(x1). Thus, we getx1. Note thatc(1) = 1.

2. First, we calculate the coefficientsc
(2)
j , j = 1, n using (1.4):

c
(2)
j = 1.ϕj(x1) = ϕj(x1)

Then we study the second conditional density:

p2(x2|x1) =
∑

1≤i1<i2≤n

(c
(2)
i1

)2 + (c
(2)
i2

)2

(n − 1)
n
∑

l=1
(c

(2)
l )2

c
(2)
i1

ϕi2(x2) + c
(2)
i2

ϕi1(x2)

(c
(2)
i1

)2 + (c
(2)
i2

)2

Usingα2 ∈ [0, 1] we simulate the respective discrete distribution















(i1, i2)

(c
(2)
i1

)2+(c
(2)
i2

)2

(n−1)
n

P

l=1
(c

(2)
l

)2















1≤i1<i2≤n

and, having obtained a pair of indices(i1, i2), we simulate by rejection this distribution

in the composition, which corresponds to these indices. Thebounding constant equals

(|c(2)
i1
| + |c(2)

i2
|)2

(

max
x∈X, i=1,n

|ϕi(x)|
)2

Thus, we getx2.



Integral Evaluation Using the∆2-distribution 223

3. Fork = 3, n:

1. We calculatec(k)
i1,...,ik−1

according to (1.4).

2. We simulate the discrete distribution which determines the composition’s coeffi-

cients.

3. Having uniquely determinedi1, . . . , ik, we simulate by rejection that distribution in

the composition, which corresponds to these indices. Thus,we getxk.

Taking advantage of Algorithm 1 we can simulate a∆2-distributed vector and construct

an interpolation cubature formula (1.2) for the integral (2.1). The estimate for (2.1) is

12.851. The only question we have to answer is what value ofn to choose in practice.

Note thatn is the length of the∆2-distributed vector we simulate, as well as the number

of functions in the orthonormal setϕi(x), i = 1, n. If we want to attain accuracy up

to the third decimal place, takingn = 10 is sufficient.

In such a case we choose an orthonormal polynomial system:

ϕ1(x) =

√
2

8
; ϕ2(x) =

√
6

8
x; ϕ3(x) =

√
6

8
y; ϕ4(x) =

√
6

8
z;

ϕ5(x) =

√
6

8
s; ϕ6(x) =

√
6

8
t; ϕ7(x) =

√
10

16
(3x2 − 1);

ϕ8(x) =

√
10

16
(3y2 − 1); ϕ9(x) =

√
10

16
(3z2 − 1);

ϕ10(x) =

√
10

16
(3s2 − 1)

Table 1 compares the estimation results for pure rejection and Algorithm 1 forn =

2, . . . , 10, as well as the program execution times in each case. Note that forn > 5

rejection is practically inapplicable. As a result, the rejection execution times forn > 5

are estimated. Note also that by using Algorithm 1, we get an up-to-the-third-decimal

precise result for less than a minute.
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n Rej Result Rej Time Cond Result Cond Time C/R Ratio (s)

2 12.549122 1.191 12.570709 0.476 0.400

3 12.698118 51.23 12.712320 0.913 0.017

4 12.726244 358.2 12.739003 1.225 0.003

5 12.787773 1873.2 12.796741 1.527 8.1 · 10−4

6 115340 12.830315 3.954 3.4 · 10−5

7 1312912 12.840299 12.87 9.8 · 10−6

8 3.2 · 106 12.848023 29.59 9.2 · 10−6

9 9.7 · 106 12.850376 41.07 4.2 · 10−6

10 4.1 · 107 12.851290 55.09 1.3 · 10−6

Table 1. Pure Rejection and Algorithm 1 Simulation Results

Conclusion

Random interpolation-cubature formulas are a powerful instrument for multiple inte-

gral estimation. By selecting their nodes according to the∆2 distribution, we obtain

an estimate with minimal variance. Moreover, having an efficient algorithm for the

∆2 simulation, we can practically solve multiple integrals regardless of their order.

Of course, the suggested method dwells upon simulation in the very general problem

settings. Imposing different restrictions onX, µ, andϕi(x), i = 1, n, we can sim-

plify the conditional densities. This can lead to Algorithm1 modifications like, for

instance, simulate the distribution densities in the compositions by inversion instead

of rejection. Nevertheless, even in the general settings the method works efficiently,

which is demonstrated on an example of a five-dimensional integral estimation.
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