
 
 
 

Rostocker Zentrum zur Erforschung des Demografischen Wandels 
Rostock Center for the Study of Demographic Change 

Konrad-Zuse-Strasse 1 · D-18057 Rostock · Germany 
Tel.: + 49 (0) 381 2081 – 0 · Fax: +49 (0) 381 2081 – 202 

www.rostockerzentrum.de 
 
 
 
 
 

ROSTOCKER ZENTRUM – DISKUSSIONSPAPIER  
ROSTOCK CENTER – DISCUSSION PAPER 

 
No. 16 

 
 
 
 
 

Health, Survival and Consumption over the Life Cycle: 
Individual versus Social Optimum and the Role of 

Externalities 
 
 
 

Michael Kuhn 
Alexia Prskawetz 
Stefan Wrzaczek 

Gustav Feichtinger 
 
 
 
  
 
 
 
 

September 2007 
 
 

 



 

Health, Survival and Consumption over the Life Cycle: 
Individual versus Social Optimum and the Role of 

Externalities 
 
 

Michael Kuhn 
Max Planck Institute for Demographic Research and University of Rostock 

kuhn@demogr.mpg.de 
 

Alexia Prskawetz 
Vienna Institute of Demography 

alexia.fuernkranz-prskawetz@oeaw.ac.at 
 

Stefan Wrzaczek 
Vienna University of Technology 

wrzaczek@server.eos.tuwien.ac.at 
 

Gustav Feichtinger 
Vienna University of Technology 

or@eos.tuwien.ac.at. 
 
 

ROSTOCKER ZENTRUM – DISKUSSIONSPAPIER 
ROSTOCK CENTER – DISCUSSION PAPER 

 
No. 16 

 
 

September 2007 
 
 

Rostocker Zentrum zur Erforschung des Demografischen Wandels 
Rostock Center for the Study of Demographic Change 

Konrad-Zuse-Strasse 1 · D-18057 Rostock · Germany 
Tel.: + 49 (0) 381 2081 – 0 · Fax: +49 (0) 381 2081 – 202 

www.rostockerzentrum.de 
 
 

Accepted by the ‘editorial board’* 
 

 
 
Any opinions expressed here are those of the author(s) and do not necessarily reflect those of the Institute. The 
Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a 
paper should account for its provisional character. A revised version may be available directly from the author. 
 
The Rostock Center for the Study of Demographic Change is a local and virtual research center and a place of 
communication between science and politics. The center is associated with the University of Rostock and the Max 
Planck Institute for Demographic Research  
 
*Members of the ‘editorial board’: Laura Bernardi, Gabriele Doblhammer, Michaela Kreyenfeld, Michael Kuhn, 
Marc Luy, Claudia Neu, Gerda Neyer, Steffen Schoon, Carsten Ochsen, Rembrandt Scholz, James W. Vaupel 



Health, Survival and Consumption over the Life
Cycle: Individual versus Social Optimum and the

Role of Externalities ∗†

Michael Kuhn‡, Alexia Prskawetz§, Stefan Wrzaczek¶, Gustav Feichtinger¶

1st October 2007

Abstract

This paper offers a framework that allows to compare the life-cycle alloca-

tion of consumption and health care that a social planner would choose when

maximising the welfare of an age-structured population with the allocation

that individuals would choose when maximising their own life-time utility.

By curbing mortality health care spending affects individual life expectancy

and population size. We derive the social versus private value of life and dis-

cuss how they can be used to identify inefficiencies in individual choice. The

model is applied to study the effects of spillovers, where individual mortality

is not only affected by individual health care expenditure but also by aggre-

gate expenditure, e.g. due to learning-by-doing effects (positive) or due to

congestion (negative). We derive the value of the externality and show how

individual incentives can be aligned with the planner’s by way of an optimal

transfer scheme. Numerical analysis illustrates the workings of our model.
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1 Introduction

In recent years most industrialized countries have allocated increasing shares of their
GDP to health. In the US the share of health expenditure in GDP increased from
5 % in 1970 to 15-16 % in 2000. Similar increases can be observed in Germany and
Japan, where in Germany health expenditure increased from 6 % of GDP in 1970
to 11 % in 2000 and in Japan from 3 % in 1950 to 7-8 % in 2000 (see Bergheim [2]).
At the same time life-expectancy has continued to increase. Whereas increasing
life-expectancy is more than welcome as such, a debate is continuing on whether
or not too much is being spent on health care. This begs two questions: (i) what
motivates individuals to invest in reductions in mortality and to what effect? (ii) Do
they get it right from a social welfare point of view? We seek to provide an answer
to these questions by combining two models:

1. an age structured optimal control model, where a social planner maximizes
welfare (i.e. individual utilities aggregated over time and age groups). This
model determines the socially optimal pattern of consumption and health in-
vestments.

2. a life-cycle model, where an individual maximizes life-time utility. This model
determines the individual pattern of consumption and health investment.

Solving and simulating models (1) and (2) and comparing the respective pat-
terns of consumption and health investment we can deduce conclusions about the
inefficiencies in individual behavior and where they arise.

Our model of individual behaviour (model 2) is closely related to the work of
Ehrlich and Chuma [10] and Ehrlich [9]. As argued in Ehrlich and Chuma [10] (p.
762) the observed diversity in age specific life expectancy over time and across differ-
ent population groups may be due not just to the influence of exogenous biological
or technological factors but also to systematic variations in individuals’ demand for
longevity. To determine the demand for longevity an intertemporal setting is needed
where the demand function for longevity can be modelled along with the demand
for health care and consumption goods.1 Similar to Ehrlich [9] we postulate that
individuals maximize the discounted stream of utility obtained from consumption
over their life cycle by choosing how much to spend on health care and consumption
subject to their individual budget constraint. We assume that health care affects

1The seminal work on the life-cycle demand for health and health care is Grossman [15].
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mortality but ignore the effect of health spending on the quality of life that also
enters the objective function in Ehrlich [9].

In our model of aggregate behaviour (model 1), we consider a social planner
who maximizes the discounted stream of utility of a population by choosing age
specific health care spending and consumption subject to an economy-wide budget
constraint. In this case we need to model the evolution of the total population.
We refer to the McKendrick equation in demography to model the evolution of
population size over time and age. Similar to the individual optimisation problem,
health spending enters negatively the age specific mortality function. Moreover, in
the social planner model we introduce age in addition to time as a second dynamic
variable. Health care spending is therefore age and time specific in model 1.2 By
applying the optimality conditions of age structured optimal control models (Fe-
ichtinger, Tragler and Veliov [11]) we can derive the socially optimal profiles (across
age and time) of consumption and health expenditure. The social optimum is de-
termined by equalizing the marginal consumption to the marginal social benefit of
an increase in the population by one member through a reduction in mortality.

A measure commonly applied in life-cycle models is the willingness to pay for a
small reduction in individual mortality (e.g. Shepard and Zeckhauser [34], Rosen [30],
Johansson [17]), termed the Value of Life (VOL). Our framework allows us to derive
the population equivalent, which we term the Social VOL (SVOL). The SVOL at
age a and time t can be understood as the willingness to pay for lowering mortality
(by a small amount) for all members of the population aged a at time t. It is thus
given by the social value (in money terms) of one more individual at age a and time
t multiplied by the size of this age group. We also offer an intuitive explanation
of the value of one more individual at age a and time t and relate it to the value
of population derived by Arrow et al. [1] within a macro-economic model. It goes
without saying here that in line with most of the literature we take an ex-ante per-
spective on the saving of lives. Thus, what we consider is the expense of resources
with a view to saving statistical lives.

For the individual choice model we can derive similar results. In the optimum the
marginal utility of consumption is set equal to the marginal private benefit of health,
i.e. the benefit from a decrease in mortality. Similar to the SVOL the private VOL
(PVOL) then measures individual willingness to pay for a reduction in mortality. In
optimum the PVOL equals the marginal costs (in terms of foregone consumption) of

2Hall and Jones [16] derive a life-cycle allocation from a social planner’s perspective in order
to simulate the development of health care-spending in the US. Our model differs in that (i) we
provide a continuous time formulation building on the McKendrick equation, and in that (ii) we
allow wealth to be transferred across time. This allows us to compare the (steady-state) outcomes
of the social planner model with those from a continuous time individual life-cycle model. Such
a comparison is not part of Hall and Jone’s [16] analysis. Neither do they assess the role of
externalities.
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life. By deriving SVOL and PVOL within two closely connected models of social and
individual behaviour we can thus bridge the gap between macro-economic models
of population size and micro-economic models of individual mortality.

Differences between the planner’s and an individual’s health spending and con-
sumption pattern indicate a potential need for policy intervention. Discrepancies
between individually and socially optimal behaviour may, of course, arise for many
reasons. For instance, the absence of life insurance typically leads to suboptimal in-
dividual behaviour (Ehrlich [9]). In this study we focus, however, on the inefficiency
that arises through spill-overs related to medical spending. More specifically, we
assume that individual mortality not only depends on the level of individual health
care expenditure but also on the average level of spending within the economy. The
particular nature of these externalities requires the integration of a social planner
and an individual life-cycle model as suggested in this paper. The spillovers we con-
sider imply economic effects across different age-groups (or, indeed, cohorts) at any
given point in time. By their very nature, the analysis and evaluation of such effects
requires a model of the full population, such as given by model (1), and therefore
stretches beyond what could be achieved within an individual life-cylce model alone.
The latter allows to analyse the behaviour of a given cohort along the time path. It
is thus fit to analyse the effects along the time path of imperfections in the insur-
ance market referred to in Ehrlich [9]. However, by construction individual life-cycle
models on their own are not amenable to an analysis of cross-cohort effects. Our
approach provides a consistent and tractable way of analysing such effects.

We explicitly incorporate the scope for externalities, positive or negative, into our
model. This allows us to derive the optimal solution from the planner’s perspective
and to compare the outcome with that of individual behaviour.3 Generally, exter-
nalities, both positive and negative, will lead to different levels of mortality under
individual decision making than would be optimal from a social point of view. Here
the spending patterns diverge according to the nature of the externality. In the case
of positive spillovers too little is expended on health care and too much is consumed.
In the case of negative spillovers, too much is expended on care and consumption is
too low. Numerical analysis reveals a number of more subtle differences between the
forms of externality. In particular, while positive externalities allow for significant
increases in life expectancy, negative externalities mostly result in offsetting effects,
where individual health care efforts are neutralised by the negative spillovers. We
also derive a tax-transfer-scheme which leads to an internalisation of the spillovers

3Bolin et al. [4] consider a setting where both an employee and an employer invest into the
employee’s health, which in turn affects her productivity. The resulting Nash-equilibrium is also
plagued by externalities. Their set-up differs from ours for a number of reasons. First, they
consider only the interaction between a single employer and a single employee; thus population
structure plays no role. Second, they take a game theoretic approach. Third, they do not derive
an optimal policy.
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and an optimal expenditure pattern.
The remainder of the paper is organised as follows. Section 2 is devoted to

the Social Welfare Model. We derive necessary conditions under which the social
optimum is obtained and introduce the social value of life. The individual choice
model is briefly discussed in section 3 where we present the individual optimum
and review the private value of life. In section 4 we introduce spillover effects of
health related expenditures and consider the inefficiency introduced through such
an externality. We propose a tax-transfer-scheme that restores the first best solution
at the individual level. We present numerical simulations to support the analytical
results in section 5. The final section offers a discussion and outlook for further
research.

2 The Social Welfare Model

The dynamics of the population are described by the McKendrick equation (see
Keyfitz [19])

Na +Nt = −µ(a, h(a, t))N(a, t) N(0, t) = B(t), N(a, 0) = N0(a) (1)

The state variable N(a, t) represents the number of a-year old individuals at time
t. The age specific mortality rate µ(a, h(a, t)) trivially depends on age a and can
be reduced instantaneously by providing to the individual an age specific amount
h(a, t) of health care (or other health enhancing goods and services). Here, h(a, t) is
a distributed control variable in our model. We model the mortality rate according
to the proportional hazard model (see Kalbfleisch and Prentice [18])

µ(a, h(t, a)) = µ̃(a)φ(a, h(a, t)) (2)

where µ̃(a) denotes the base mortality rate (effective in the absence of any health
care) and φ(a, h(a, t)) describes the impact of health spending. We assume that
φ(a, h(a, t)) is a strictly decreasing concave function satisfying the Inada conditions,
i.e. φh < 0, φhh > 0, φha > 0, φ(a, 0) = 1 (∀ a) and φh(a, 0) = −∞ (∀ a).4 Note,
that the proportional hazard model implies that the effectiveness of health care in
reducing mortality increases in the hazard rate of mortality.

N0(a) describes the initial age distribution of the population and B(t) equals the
number of newborns at time t defined as

B(t) =

∫ ω

0

ν(a)N(a, t) da (3)

4Thus the usual assumption of nonnegative health investments is not necessary.
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where ν(a) denotes the age specific fertility rate.
The second control variable is consumption c(a, t). The nonnegativity assump-

tion is trivially fulfilled, as we assume limc→0+ uc(c) = +∞ for the utility function.
The objective of the social planner is to maximize social welfare, defined as the sum
of the instantaneous utilities of all individuals (total utilitarianism)

∫ T

0

∫ ω

0

e−ρtu(c(a, t))N(a, t) da dt (4)

where ω is the maximal age an individual can reach. This is no restriction to the
model if ω is chosen big enough. The function u(c(a, t)) represents the per capita
instantaneous utility, which depends only on consumption and is assumed to be
concave in its argument. The parameter ρ denotes the rate of time preference. Note
that we also allow for an infinite planning horizon T = +∞ at this stage.

Finally we assume a budget constraint that is balanced for each cohort. This
is expressed by the introduction of the total wealth A(a, t) held by age-group a at
time t and the following dynamics:

Aa + At = rA(a, t) + (y(a) − c(a, t) − h(a, t))N(a, t)

A(0, t) = A(ω, t) = 0 ∀ t

A(a, 0) = A0(a), A(a, T ) = AT (a) ∀ a (5)

r denotes the interest rate, assumed to be exogenous to the economy, and y(a)
denotes the income/output (net of the returns to capital) accruing to an a-year old
individual. We assume that health care is purchased at a relative price, which we
normalize to one. Each cohort is assumed to hold zero assets at the time of birth
and death.

We introduce a cohort specific budget constraint for two reasons. By guarantee-
ing that each cohort spends precisely its own production, the cohort specific budget
constraint allows us to compare steady-state allocations derived for the social plan-
ner model with allocations derived for the individual life-cycle model (see section 3).
We thus rule out differences in total spending across cohorts which are due to dis-
crepancies between the social rate of time preference and the interest rate. Consider
a situation where budgets are pooled across all cohorts. If ρ > r, for instance, the
social planner would then not only (i) shift consumption to the beginning of the
planning horizon for each individual cohort, but also (ii) shift consumption from
future cohorts to present cohorts. If ρ < r the opposite would be true. Intuitively,
we would like to account for shifts in consumption within cohorts (i) but not across
cohorts (ii). Such an allocation rule also bears some intuitive appeal on equity
grounds.

The formal problem of the social planner is then to choose the age specific sched-
ule of consumption and health expenditure (health care) to maximize the sum of
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instantaneous utility of all individuals. Discounting the future at the rate ρ we come
up with the following dynamic age-structured optimization problem with state vari-
ables A(a, t) and N(a, t) and control variables c(a, t) and h(a, t).

max
c,h

∫ T

0

∫ ω

0

e−ρtu(c(a, t))N(a, t) da dt

s.t. Na +Nt = −µ(a, h(a, t))N(a, t)

N(0, t) = B(t) =

∫ ω

0

ν(a)N(a, t) da

N(a, 0) = N0(a)

µ(a, h(a, t)) = µ̃(a)φ(a, h(a, t))

Aa + At = rA(a, t) + (y(a) − c(a, t) − h(a, t))N(a, t)

A(0, t) = A(ω, t) = 0 ∀ t

A(a, 0) = A0(a), A(a, T ) = AT (a) ∀ a (6)

Both parameters, time t and age a, are finite in our model, since in general no
transversality conditions are available for age-structured optimal control models for
infinite parameters. However, as discussed earlier this is no restriction to the model.

To clarify the domain for optimization we present a Lexis diagram in Figure 1.
The Lexis diagram depicts the life experience of cohorts in time versus age. The
45-degree line represents cohort lines (e.g. a cohort born at t− a is of age s at time
t− a+ s).

age

timeTt t-a+st-a

a

a+s

Figure 1: Lexis diagram
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In the following section we derive the necessary optimality conditions of the
above age specific control problem. Further we provide economic interpretations of
important expressions.

2.1 The social optimum

To obtain necessary optimality conditions we apply the maximum principle for age-
structured control models as recently derived in Feichtinger, Tragler and Veliov [11].

We define the Hamiltonian of the social welfare problem as follows:5

H = u(c)N − ξNµ(a, h)N + ξA(rA+ (y − c− h)N) + ηBνN, (7)

where we denote the adjoint variables that correspond to the state variables as
follows:

• ξN(a, t) . . . population

• ξA(a, t) . . . assets

• ηB(t) . . . newborns,

such that the following system is satisfied:

ξNa + ξNt = (ρ+ µ(a, h))ξN − u(c) − ξA(y − c− h) − ηBν

ξAa + ξAt = (ρ− r)ξA

ηB = ξN(0, t) (8)

together with

ξN(ω, t) = 0 (9)

From now on, we assume T < +∞, which further implies ξN(a, T ) = 0.
In order to obtain transversality conditions for ξA, we have to consider the

conditions A(a, 0) = A0(a), A(a, T ) = AT (a), A(0, t) = 0 and A(ω, t) = 0. For
age-specific optimal control models with initial and end state conditions there are
no transversality conditions. Thus we ignore A(ω, t) = 0 and A(a, T ) = AT (a)

and add the terms −λ
∫ T

0
e−rtA(ω, t)2 dt and −λ

∫ ω

0
e−rT (A(a, T ) − AT (a))2 da to

the objective function. Thus we obtain ξA(ω, t) = −2λA(ω, t) > 0 and ξA(a, T ) =
−2λ(A(a, T )−AT (a)) as transversality conditions (implying ξA(a, t) > 0 for ∀ (a, t)).

The necessary first order conditions are

5From now on we omit a and t if they are not of particular importance.
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Hc = uc(c)N − ξAN = 0 (10)

Hh = −ξNµh(a, h)N − ξAN = 0 (11)

Combining them we obtain

uc(c)N = −ξNµh(a, h)N (12)

This condition can be interpreted in a straightforward manner. The LHS corre-
sponds to the aggregate marginal utility of consumption for age-group a at time t
and gives the foregone welfare if health spending is increased by one unit for each
member of this age-group. As usual, ξN can be interpreted as a shadow price, indi-
cating the increase of the value function (i.e. social welfare) for a small (marginal)
increase of N(a, t). In other words, ξN gives the social value in utility terms of
an individual. The term −µh(a, h)N equals the number of lives saved through a
marginal increase of h(a, t). Therefore the RHS represents the increase of social
welfare if health expenditure is increased at the margin, which in optimum has to
equal the utility loss due to foregone consumption. Alternatively, we can write the
condition as −uc(c)

µh(a,h)
= ξN . Here, the marginal cost (in utility terms) of saving one

individual of age-group a at time t equals the social value of this individual.6

The change in consumption of a cohort born at t − a can be expressed by the
following formula (obtained by calculating the directional derivative of (12))

ca + ct =
uc(c)

ucc(c)
(ρ− r) (13)

If the discount rate, ρ, equals the interest rate, r, the right hand side (RHS) is
zero implying consumption smoothing over the whole life for each cohort. If ρ > r
the RHS has a negative sign, because of the concavity of the utility function. Thus,
for each cohort, consumption will decrease over the life-cycle, which reflects that
the impatience of the individuals is greater than the interest rate. In the case of
r > ρ the interpretation is the other way around, i.e. consumption increases over the
life cycle for each cohort. Therefore, in general consumption will not be smoothed
neither over the life-cycle of a cohort nor within one period across all ages.

It can be shown that the system reaches a steady state under specific assumptions
on the birth trajectory and other parameters of the model.

Proposition: Assume B(t) = B and y(a), ρ, r are exogenous and constant with
respect to t. Then for any nonnegative initial data N(a, t), A(a, t) any optimal

6Note that the marginal cost of saving one individual is the higher the weaker the effect of
health spending on mortality, i.e. the lower the value of µh(a, h).
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solution of (6) corresponds to an optimal steady state within the time interval t ∈
[ω, T − ω].

The proof is delegated to appendix A. In case that B(t) is only exogenous and
not constant, the population level N(a, t) will not reach a steady state while the
consumption and health investments remain in their steady state (i.e. they only
change over the life-cycle but not across cohorts.) If, in addition ρ = r holds, the
social planner smoothes the consumption over the life cycle of each cohort and across
all cohorts within t ∈ [ω, T − ω].

Define

v(a, t) =
u(c(a, t))

uc(c(a, t))
+ (y(a) − c(a, t) − h(a, t)) +

ξN(0, t)ν(a)

uc(c(a, t))
(14)

as the net social value attached to an individual of age a in a year t. It consists
of (i) the individual’s monetary benefit of consumption u(c(a,t))

uc(c(a,t))
; (ii) the individual’s

net savings, y(a) − c(a, t) − h(a, t); and (iii) the monetary value of the individual’s

fertility, ξN (0,t)ν(a)
uc(c(a,t))

, where ξN (0,t)
uc(c(a,t))

is the monetary value of a newborn in time t. We
can then write the change of health investments over time and age for a cohort as

ha + ht = −
µh(a, h)

µhh(a, h)

[
r + µ(a, h) + µh(a, h)v(a, t)

]
−
µha(a, h)

µhh(a, h)
. (15)

Recall that µhh(a, h) = µ̃ (a)φhh > 0, implying decreasing returns to health
care spending at any given age. Furthermore, it appears plausible to assume that
µha(a, h) = µ̃ (a)φha + µ̃aφh > 0, at least for high ages, implying that health care
becomes less effective in curbing mortality as the individual ages. In this case,
−µha(a,h)
µhh(a,h)

< 0, implying that health expenditure tends to decrease at least for old
individuals. However, this purely technological effect is modified by a number of
economic effects which are summarised in the square brackets. Note that − µh(a,h)

µhh(a,h)
>

0. Hence, consider the first couple of terms, r+µ(a, h). The demand for health care,
h, tends to increase over time/age as it is easier to finance at a later stage, where
the stock of assets increases with an effective rate r + µ(a, h). Next, consider the
term µh(a, h)v(a, t), which is positive if and only if the net social value of an age-a
individual in year t is negative. Thus, health investments tend to decrease for age-
groups who have currently a positive net social value. For these individuals health
care should have been purchased earlier on, thus leading to a tendency towards lower
future spending.

2.2 The social value of life

Finally we calculate the willingness to pay for a small reduction of the mortality
rate for age a at time t. To our knowledge this concept was firstly developed in a

10



formal manner by Shepard and Zeckhauser [34] (see also Rosen [30] and Johansson
[17]) who apply the value of life (VOL) concept to a single individual in a life cycle
model. As our approach uses a macro economic setting we term it consequently
social value of life (SVOL). Before we discuss the differences between the VOL and
the SVOL we derive an analytic expression for the SVOL. Analogously to Rosen [30]
the SVOL, denoted by ΨS(a, t), equals

ΨS(a, t) = −
∂V/∂µ

∂V/∂A
(16)

where V denotes the value function, i.e. maximised social welfare (see (6)).
This formula expresses the marginal rate of substitution (MRS) between mortality
and social wealth, which describes the slope of the indifference curve including all
combinations of µ(a, h(a, t)) and A(t) yielding the same level of social welfare. The
denominator equals the shadow price of wealth ξA. For the numerator we obtain

∂V

∂µ
=
∂V

∂N

∂N

∂µ
= −ξN(a)N(a, t) (17)

The second equality can be verified by solving the partial differential equation
for N by the method of characteristics. Putting the above two expressions together
we obtain

ΨS(a, t) =
ξN(a, t)N(a, t)

ξA(a, t)
=
ξN(a, t)

uc(c)
N(a, t) (18)

Here, ξN (a,t)
uc(c)

denotes the monetary value of an individual aged a at time t. The

SVOL for age-group a at time t (i.e. the monetary value of a small reduction in the
mortality for this age group) then follows as the product of the monetary value of
an individual and the size of the age-group N (a, t). In the following, we will denote
the social value of an individual life (SVIL) by

ψS (a, t) :=
ξN(a, t)

uc(c)
. (19)

We can derive an explicit expression of the SVIL - again to be understood in
statistical terms - for a cohort born in t− a

ψS (a, t) =

∫ ω

a

v(s, t− a+ s)e−(s−a)r−
∫

s

a
µ(s′,h) ds′ds,

where v(s, t − a + s) as defined in (14) corresponds to the social evaluation of an
individual’s life year at time t−a+s, when the individual is aged s (see Appendix B
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for a derivation of the above result). Hence, ψS (a, t) gives the expected discounted
sum of the social value of the individual’s remaining life years.7

We can then decompose the change of the SVOL within one cohort born at time
t− a as follows

ΨS
a + ΨS

t =
(
ψSa + ψSt

)
N(a, t) − µ (a, t)N(a, t)ψ (a, t)

=
[(
ψSa + ψSt

)
− µ (a, t)ψS (a, t)

]
N(a, t). (20)

Hence, changes in the SVOL can be decomposed into the change of the SVIL of
each member of the cohort (the first term in the expression) and the loss of SVIL
due to mortality (the second term in the expression). For the time path of SVIL we
obtain

ψSa + ψSt = (r + µ(a, h))ψS − v(a, t) (21)

or

ψSa +ψSt = (r+µ(a, h))

∫ ω

a

(v(s, t−a+s)−v(a, t))e−(s−a)r−
∫

s

a
µ(s′,h) ds′ds+v(a, t)Ra(a)

(22)
with

R(a) =

∫ ω

a

e−(s−a)r−
∫

s

a
µ(s′,h) ds′ds

Ra(a) = (r + µ(a, h))R(a) − 1.

The first expression (21) corresponds to the typical time path for the value of
some asset, i.e. the value increases with the gross interest (here: including the
mortality) and decreases in the current return (i.e. the social value of the current
life year of an individual aged a). According to the second expression (22) the SVIL
for the cohort under examination develops (along the Lexis Diagram) under two
effects: SVIL tends to increase as long as the average social value of future life years
exceeds the social value of the current life year [the first summand on the RHS of
(22)]. Observing that R(a) is a (discounted) measure of remaining life expectancy
and noting that Ra(a) < 0 is generally true at least for high ages, it follows that
SVIL will eventually decrease with age due to a fall in the (expected) remaining life
span.

7Hall and Jones [16] [eq (21)] derive a similar expression in a discrete time context. Note,
however, that in their formulation the value of future births is not taken into account. This is
because they assume exogenous births.
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It is instructive to compare our SVIL to the value of population as derived by
Arrow et al. [1] within a neo-classical growth model. Expanding the RHS of (21) to

ψSa +ψSt = (r+ µ(a, h))ψS −

[
u(c (a, t))

uc(·)
+ y (a) − c (a, t) − h (a, t) +

ξN (0, t) ν (a)

uc(·)

]

and substituting 1
uc(c)

= ψS

ξN (a,t)
we obtain

ψSa+ψSt =

[
r + µ(a, h (a, t)) −

ξN (0, t)

ξN (a, t)
ν (a)

]
ψS−

[
u(c (a, t))

uc(·)
+ y (a) − c (a, t) − h (a, t)

]
,

where − ξN (0,t)
ξN (a,t)

ν (a) gives a weighted expression of fertility. Compare this to the

time derivative of the value of population in Arrow et al. ([1]), which in our notation
can be expressed as8

·

ψS = (r − ν)ψS −

[
u(c)

uc
+ y − c

]
.

Here, ν is the constant net growth rate of a population without age structure,
and p is the marginal product of (homogeneous) labour. The value of population
thus evolves more or less equivalently to our SVIL with the following distinctions:
(i) Arrow et al. [1] do not consider the scope for health care, h, to reduce mortality
(ii) Arrow et al. [1] measure the net growth rate, where we have distinct rates of
fertility and mortality; (iii) Arrow et al. [1] consider a homogeneous population; thus

in their model ξN (0,t)
ξN (a,t)

≡ 1. (iv) Arrow et al. [1] establish ψS + k as the discounted
value of the total value of life for the entire population, were k is the capital stock
per capita. Thus, in their model, in which capital acts as a factor of production, the
value of life at aggregate level is not only determined by the value of an individual
but also by the economy’s capital intensity. Finally, (v) a correspondence of our
SVIL with the value of population requires that the individual’s income y (a) equals
the age-dependent productivity p (a) .9

8Consider the equation following equation (24) in Arrow et al. ([1], p. 224)

·
q = (FK − φ′) q −

[
U (c)

U ′ (c)
+ FN − c

]
.

In our notation, q = ψS , U (c) = u(c) and FN = p. Furthermore, it is true that in equilibrium
the marginal product of capital FK equals the interest rate, r. Arrow et al. [1] model neither age
structure nor (explicitly) mortality. In their model the development of the homogeneous population

is thus described by the differential equation
·

N = φ (N) . If we posit φ (N) = ν (N)N (see their
equqation (11)) and assume ν (N) to be a constant, then we have φ′ = ν as the net growth rate.
The expression we report follows immediately.

9While this last requirement is satisfied in a competitive labour market, we should take note that
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3 Individual Choice Model

In this section we provide a brief representation of the individual choice model over
the life-cycle, as we aim at a comparison between socially and individually optimal
paths of consumption and health care spending. Within the individual choice model
we only consider index a which stands for both age and time. All variables have the
analogous meaning as in the social welfare problem.

Each individual earns income y(a). Assets over time are allowed to be positive
and negative. We follow Yaari [37] and Ehrlich [9] in considering a set-up in which
fair life-insurance is available to the individuals. Thus, they can fully annuitise
their wealth by buying actuarial notes from an insurer, who in turn, pays them
an interest in excess of the market rate r. More specifically, the individual’s risk
of leaving positive wealth to the insurer due to mortality is compensated by the
insurer through payment of a risk premium equal to µ(a, h). Thus, gross interest is
given by r + µ(a, h). The same applies if an individual takes out a credit from the
insurer by selling actuarial notes. In this case, the risk is borne by the insurer that
an individual may die in debt. Again, the mortality risk is factored into the gross
interest rate.10 Hence, individual wealth develops according to

Ȧ(a) = (r + µ(a, h(a)))A(a) + y(a) − c(a) − h(a) A(0) = 0. (23)

Disregarding planned-for bequests, we obtain A(ω) = 0 The probability of
surviving to age a (modelled analogously to the social planner problem) equals

M (a) := exp
(
−

∫ a

0

µ(s, h) ds
)

(24)

with µ(a, h(a)) = µ̃(a)φ(a, h(a)). As in the social welfare model we assume Inada
conditions for φ(a, h) and u(c). The individual then maximizes utility by choice of
consumption and the procurement of health care according to

in such a case individuals are systematically valued by the planner according to their productivity.
In the presence of individual heterogeneity, it is obvious that this may lead to ethically unpalatable
solutions.

10Note that these arrangements correspond well to real world life-insurance contracts, typically
paying a return in excess of the market interest rate, as well as to real world credit contracts, with
banks typically requiring creditors to purchase life-insurance, the payment of which serving as a
collateral in the case of death.
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max
c,h

∫ ω

0

e−ρau(c(a))M(a) da

s.t. Ṁ(a) = −µ(a, h(a))M(a)

Ȧ(a) = (r + µ(a, h(a)))A(a) + y(a) − c(a) − h(a)

M(0) = 1, A(0) = 0, A(ω) = 0

µ(a, h) = µ̃(a)φ(a, h(a)) (25)

Note that in contrast to the work known to us, we have modelled the surival
probability as a state M(a). We can now derive the first-order conditions for opti-
mal individual choices (section 3.1) and develop the according private value of life
(section 3.2).

3.1 The individual optimum

The Hamiltonian of the individual problem reads (again omitting a if it is not of
particular importance)

H = u(c)M − λMµ(a, h)M + λA((r + µ(a, h))A+ y − c− h) (26)

where λM and λA denote the adjoint variables of the survival probability and
individual assets respectively. From the necessary optimality conditions we can
derive the following system of adjoint variables:

λ̇M = (ρ+ µ(a, h))λM − u(c)

λ̇A = (ρ− r − µ(a, h))λA (27)

with the transversality conditions λM(ω) = 0 and λA(ω) = −2λA(ω), since we
implement the terminal condition A = 0 in the same way as in the social welfare
problem. Thus both adjoint variables are always positive. The necessary first order
conditions are

Hc = uc(c)M − λA = 0

Hh = −λMMµh(a, h) + λAAµh(a, h) − λA = 0 (28)

We combine them and obtain

uc(c)M = −(λMM − λAA)µh(a, h) (29)
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The LHS gives marginal utility from consumption conditioned on the individual’s
survival. The RHS represents the increase in life-time utility if health investments
are increased marginally. While the overall effect turns on the reduction in mortality,
it now falls into two distinct sub-effects, one driven by the ’utility’ value fo the
individual’s survival and the other driven by the impact on the indivdiual’s wealth.
The first effect −λMMµh(a, h) is always positive and captures the expected flow
of future utility if the individual can survive. The second effect, λAAµh(a, h) is
negative if the individual holds positive wealth A > 0 and positive if the individual
is in debt, i.e. if A < 0. By curbing mortality, health expenditure lowers the
risk premium included in the gross interest rate. If the individual holds positive
wealth, this lowers it’s returns on assets and thus implies an indirect cost of health
expenditure. In contrast, if the individual is in debt, a reduction in the risk premium
constitutes an indirect return to health care expenditure. Note that the wealth and
’utility’ effects are complementary if A < 0 and offsetting each other if A > 0.11

Lemma 1: Assume B(t) = B and y(a), ρ, r are exogenous and constant with
respect to t. The steady-state of the individual choice model is then equal to that
of the social welfare model for t ∈ [ω, T − ω]. Thus the individual behaves socially
optimal if a ’perfect’ life-insurance is available12.

Proof: Referring to Appendix A, the optimization of the parametric family
J1[τ ](q[τ ], z[τ ]) results in an optimization problem for a cohort born at time τ . As
B(t) is exogenous, the objective function and system dynamics depend only mul-
tiplicatively on the the number of births. Hence we obtain B(τ) individual choice
models.

From the first order conditions we can derive the change in consumption over
the life cycle

ċ =
uc(c)

ucc(c)
(ρ− r) (30)

In case of ρ = r, the individual can smooth consumption over the life cycle
similarly to the planner in the social welfare model. This is because in the presence
of a fair life insurance (and credit market) the individual has complete control over
the interest payments on his assets even when facing a mortality risk. Define

ṽ(a) =
u(c)

uc(c)
+ (y − c− h) (31)

11Note that λMM − λAA is always non-negative. This can be seen by inserting A = 1
µh

+ λMM
λA

(obtained by the FOC for h), which yields λMM − λAA = −λA

µh
> 0 since λA is always positive.

12Due to the initial and boundary conditions this equivalence may not hold at the beginning
and end of the planning horizon.
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as the net private value attached to an individual at age a. Similar to the net social
value it consists of (i) the individual’s monetary benefit of consumption u(c)

uc(c)
and

(ii) the individual’s net contribution y − c − h. Compared to the net social value
the monetary value of a newborn is not included.

The change in the health expenditure over the life cycle is given by

ḣ = −
µh(a, h)

µhh(a, h)

[
r + µ(a, h) + µh(a, h)ṽ(a)

]
−
µha(a, h)

µhh(a, h)
(32)

As with consumption, the time path of h develops similarly as in the social
optimum. Thus, health expenditure tends to decrease if age reduces the productivity
of investments to a sufficient degree. In contrast, health expenditure tend to be
shifted to advanced ages in line with high risk adjusterd interest rates. Finally,
health expenditure tends to increase (decrease) when the current net value of an

individual life year, u(c)
uc(c)

+ y − c− h, is negative (positive).

By comparison with (15) we see that the only difference to the social welfare

model is that individuals do not consider the value of their own fertility, ξN (0,t)ν(a)
uc(c(a,t))

,
in their optimization. Of course this difference would be mitigated or vanish if
altruistic behaviour were to be included in the individual model.

3.2 The private value of life

Similar to Schelling [33], Shepard and Zeckhauser [34], Rosen [30], Johansson [17]
and Murphy and Topel [24] we can apply the value of life concept to the individual
choice model, which we now call the private value of life (PVOL). The derivation is
analogous to the SVOL and yields

ΨP =
1

uc

(
λM − λA

A

M

)
(33)

As in the first order condition we obtain an expression which hinges both on the
’utility’ and on the ’asset’ value of life. These values work in the opposite (A > 0) or
in the same direction (A < 0). The marginal utility in the denominator transforms
the PVOL into monetary terms. The time path of the PVOL equals

Ψ̇P = (r + µ(a, h))ΨP − ṽ(a) (34)

or alternatively

Ψ̇P = (r + µ(a, h))

∫ ω

a

(ṽ(s) − ṽ(a))e−(s−a)r−
∫

s

a
µ(s,h) ds′ + ṽ(a)Ra(a) (35)

with
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Ra(a) = (r + µ(a, h))

∫ ω

a

e−(s−a)r−
∫

s

a
µ(s,h) ds′ds− 1 (36)

and R(a) =
∫ ω

a
e−(s−a)r−

∫
s

a
µ(s,h) ds′ds. This corresponds exactly to the findings

by Murphy and Topel ([24], equation (10)). The interpretation is similar to the one
established for the SVIL. The PVOL tends to increase if the average net value of
future life years exceeds the value of the current life year ṽ(a). Any reduction in
remaining life-expectancy with age for Ra(a) < 0 will exert a negative impact on
PVOL. For high ages a, it is plausible that ṽ(s) < ṽ(a), for any future year s > a, in
particular if age is associated with low levels of income net of interest and/or high
levels of health expenditure. In this case, PVOL decreases unambiguously.

Lemma 2: Assume B(t) = B and y(a), ρ, r are exogenous and constant with
respect to t. Then the PVOL and the SVIL are equal within the steady state interval
[ω, T − ω].13

Proof: By applying the FOCs both the PVOL and the SVIL can be transformed
easily into − 1

µh(a,h)
, which is equal if B(t) is exogenous. Furthermore note, that

if B(t) is exogenous, the value of fertility ξN (0,t)ν(a)
uc(c(a,t))

drops out from the SVIL and
individual and social behaviour coincide.

In the presence of a perfect capital market and fair life-insurance and in the ab-
sence of any relevant externalities the results in Lemma 1 and Lemma 2 are hardly
surprising. Nevertheless, they provide an important benchmark against which one
can model the effects of imperfections in the economy that would lead to discrep-
ancies between individual and social behaviour. Following on from this, the bench-
mark can also be used in the analysis of policy towards improving the outcomes
from suboptimal individual choices. Indeed, it would appear that one requirement
of first-best policy-making is that the PVOL after the policy measures have been
undertaken equals the SVIL. The following section illustrates the issue by providing
an analysis of spillovers related to the demand for health care.

4 Spillovers in the provision of health care

From now on we assume an exogenous number of newborns. Our base model is
then void of external effects and, unsurprisingly, individual choices lead to the first

13As in Lemma 1 this does not hold at the beginning and end of the planning horizon due to
the initial and boundary conditions.
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best outcome. In this section we sketch an extension where individual mortality
is not only affected by individual health care spending but also by the aggregate
health care activity, as measured by per capita spending averaged across the whole
population. In the Lexis-diagram in figure 1 individual mortality develops along one
of the 45 degree lines (e.g. the one for the cohort born at t− a) not only according
to individual health spending h (a) but also according to the health spending h (â) ,
â 6= a realised by other cohorts at each point in time, t. It is easy to see then that
the first best result cannot be attained by individuals without correcting policy-
measures. We analyse the discrepancies between individual and social choice in the
presence of spillovers and derive an age-specific tax/subsidy on health investments
by which the planner can induce individuals to behave in the first best way. Before
we present the formal models – at the aggregate (section 4.2) and individual (section
4.3) level – we provide some motivation of the externality in the next section (4.1).

4.1 Motivation

One could think of a number of ways in which aggregate health care activity (as
measured by health care expenditure per capita averaged across all age groups) may
affect individual mortality. First, medical research has identified a positive relation-
ship between volume of (surgical) activity and outcomes, frequently measured by
(lower) mortality (for an overview see Phillips and Luft [27]). This volume-outcome
relationship (VOR) reflects learning-by-doing effects, usually at physician and/or
hospital level.14 While, admittedly, it is unknown to us whether learning-by-doing
is also effective at the level of the health care system, we do not see why this should
not be the case, at least when care is provided locally in a large number of ’small’
hospitals. It is then plausible that learning-by-doing occurs in each individual hos-
pital and thus on aggregate.15

Second, higher levels of aggregate health care spending may translate into greater
scope for medical R&D or other quality enhancing activities that would not be
lucrative in ’low spending’ health care systems. Murphy and Topel [25], for instance,
model an R&D race for a pharmaceutical innovation and show that the overall
probability of innovation increases in the share of the social value that the winning
firm is able to capture. In our model the prize for innovation would correspond to
the winner’s share of aggregate health expenditure, thus establishing a link between

14One could object that the causality runs the other way: Hospitals with better outcomes attract
larger number of patients. Gaynor [14] report a number of recent studies that confirm VOR under
endogenous patient choice.

15As far as higher aggregate health expenditure merely reflects a larger population, one should,
of course, not expect VOR effects at health care system level. This is because greater total activity
is likely to be spread across a greater number of hospitals. By considering expenditure per capita
we provide a scale-independent measure of total activity which can be related to VOR.
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aggregate health expenditure and individual mortality.16 Third, higher aggregate
spending may lead to a denser spatial provision of medical capacity (e.g. a denser
net of hospitals, physician practices and ambulance services) or to the provision of a
capacity of higher quality, again translating into a lower mortality risk at individual
level.17

Fourth, spillovers may arise in the context of preventive activities. The most
obvious example relates to vaccination: A negative effect of aggregate activity on
individual mortality arises when individual mortality is negatively related to the
degree to which the population is vaccinated against an infectious disease (for an
overview see Philipson [28]).18 The same applies to antimicrobial treatment of infec-
tious disease. Fifth, one could think about the prevention of mortality in terms of
safety measures and public hygiene. For instance, adoption of the anti-lock breaking
system helps to reduce individual accidental mortality but also contributes to the
safety of other road-users. The same applies to the installation of smoke-detectors in
the individual flats of tenement buildings. Finally, we may think of measures related
to public health such as the cleaning of sewerage, proper disposal of household waste
or the reduction of air pollution. Cutler and Miller [6], for instance, show that in the
early 20th century nearly half of the total mortality reductions in major US cities
can be attributed to the introduction of clean-water technologies, i.e. the filtration
and chlorination of water supplies.19 ’Pure’ public health measures constitute a
polar case of our model, where there is no effect on mortality of individual health
care expenditure and all mortality reductions are due to cumulative expenditure.20

Our model is then equivalent to a public goods problem. But even in less extreme
cases, the problem of private underprovision arises as long as a part of private health
expenditure flows towards a public good (i.e. communal reductions in mortality).21

While all of the above examples suggest ’positive’ spillovers (i.e. higher to-

16Indeed, in this case proper scale effects may be relevant. As we take into account expenditure
per capita, this would give a conservative estimate of the degree of spillovers.

17Our model only partially captures this in that we do not model medical capacity as a stock
variable.

18In our model we do not measure the share of the population vaccinated (every one engages in
medical spending) but rather the degree of vaccination, perhaps as reflected by different quality
grades of vaccines where the more expensive ones are more effective or by the number of diseases
against which vaccination is obtained.

19Watson [36] studies the impact of public sanitation interventions in US Indian Reservations
on the child mortality of Native Americans in the US as opposed to White infants. She finds that
they were quite effective in reducing the mortality gap despite a seizable externality on the health
of neighbouring White children.

20Easterlin [8] argues that, indeed, most of the historical reductions in mortality due to preventive
measures, vaccination and antimicrobials are not attributable to the market for reason of various
forms of externalities.

21An alternative but analogous interpretation is one in which health care is a good with (positive)
network externalities.
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tal spending translating into lower mortality), we also envisage negative spillovers.
These could arise from congestion effects or from microbial resistance against an-
tibiotics. In as far as higher aggregate medical spending reflects greater demand for
health services, this would lead to congestion in the presence of capacity constraints.
Congestion could either lead to a direct reduction in the efficacy of medical care or
it could result in some form of rationing.22 A prominent example for a direct impact
of congestion on mortality relates to increased infection rates in over-crowded hospi-
tals. Furthermore, in the absence of an explicit rationing scheme providers may only
be able to cope with excess demand by reducing the quality of care across the board
(e.g. by providing less time-intensive care to everyone, or by reducing the effort
taken in the administration of care). Such quality reductions may well be implicit
when over-stretched staff are more likely to commit medical errors. At either rate,
if sufficiently severe these quality-reductions translate into higher mortality.

If a rationing scheme is in place, it very much depends on its nature as to whether
individual demand causes negative spillovers. Indeed, negative spillovers should not
arise when rationing is efficient, either through prices or through waiting times. The-
oretical and empirical studies suggest, however, that rationing is generally not fully
efficient. For instance, in a fundholding system, where a provider of care receives a
budget per period in order to allocate it to health care for a population, people who
require medical care at a late date (perhaps because they have contracted an ill-
ness late within a period) may find themselves unduly rationed (Glazer and Shmueli
[13]). First-comers then clearly impose a negative externality on late-comers. The
same goes if rationing is organised according to a lottery. In this case, too many
people are willing to sign-up, ignoring the worsening of the odds of obtaining care
for their fellow patients.23

Finally, it is well-known that microbes (bacteria and viruses) tend to develop
resistance against antimicrobial treatments. The probability that a resistant micro-
bial strain develops increases in the level of exposure. Thus, assuming that health
expenditure flows into the purchase of antimicrobial treatments, then individual use

22By considering health care activity per capita we assume that capacity is increased in line
with population size but not in line with per capita expenditure. Black and Pearson [3] discuss the
problems related with a recent bout in hospital congestion in the UK. Naylor et al [26] examine the
management of a spell of serious excess demand for coronary surgery in Ontario (1987-1988). They
find wide discrepancies in management processes across hospitals and identify large inefficiencies.
Koizumi et al [20] simulate congestion in a system of mental care.

23For a survey on waiting as a rationing device see Cullis et al. [5] who include a review of
empirical studies on the cost of waiting. While health policy-makers (at system level), hospitals
(at instiutional level) and physicians (at individual level) usually apply some form of prioritisation,
the problem is that there is no agreement on a best-rule for prioritisation (see Mooney [23] for
a discussion of rules and Ryynaenen et al [32] for empirical evidence on the attitudes towards
prioritisation). Prioritisation thus appears to follow an eclectic mix of evidence-based rules, rules
of thumb and individual incentives. This suggests the presence of inefficiencies as were, indeed,
identified by Naylor et al [26] in their case study of waiting for heart surgery in Ontario.
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of antibiotics tends to curb individual mortality but may, in aggregate, lead to an
increased mortality risk due to microbial resistance.24

4.2 Social optimum in the presence of spillovers

In the following, we assume that the mortality rate also depends on the average
health expenditure (across the full population) at time t, which we denote by H̄(t).
Hence, mortality is given by µ = µ(a, h(a, t), H̄(t)), implying spillover effects from
individual health expenditure. To fix ideas, consider learning by doing as an exam-
ple. In our model, private care is purchased at a price equal to unity. Thus, h and
H̄(t) are measures of individual consumption of health care and of aggregate health
care activity (per capita), respectively. Higher levels of aggregate activity per capita
imply that physicians become more effective in providing care and mortality rates
fall. This can be represented by a negative relation between the mortality rate and

per-capita total health expenditure, i.e. µH̄(a, h, H̄) := ∂µ(a,h(a,t),H̄(t))

∂H̄(t)
< 0.

We can write per capita health expenditure H̄(t) := H(t)

Ñ(t)
, with

H(t) =

∫ ω

0

h(a, t)N(a, t) da

Ñ(t) =

∫ ω

0

N(a, t) da (37)

denoting total health investments and total population at time t respectively. Aggre-
gate health expenditure for age-group a at time t is given by the sum of individual

expenditure, h(a, t)N(a, t) =
∫ N(a,t)

1
hi(a, t)di. The impact of individual spending

on average health expenditure is then given by ∂H̄(t)
∂hi(a,t)

= 1
Ñ(t)

which tends to zero

for large populations. Thus, individuals rationally anticipate that they are unable
to influence aggregate spending and an externality arises. For our example this ex-
ternality is positive, in the sense that, individual spending also raises the expected
life-time utility of the rest of the population.

Allowing for the spillovers implies that the social welfare model (6) has to be
augmented by the two integral states H(t) and Ñ(t) as defined in (37).

24Easterlin [8] discusses evidence on the excessive use of antimicrobial treatments in a number
of developing countries. Laxminarayan and Weitzman [22], Rudholm [31] and Lasserre et al [21]
provide economic models covering various aspects of microbial resistance. The first paper shows
that if the risk of resistance can be reduced by the prescription of a variety of drugs then this
provides a rationale for the inclusion of some cost-ineffective drugs in the prescription portfolio.
The second paper shows that the outcome of a dynamic treatment game between two countries
with negative spillovers in terms of resistance involves excessive use of antibiotics. It also derives
the Pigouvian tax as an optimal policy-response. The third paper studies optimal explorative use
of antiviral treatments in a sequential treatment game in the presence of learning and resistance
externalities (arising between the first and second period).
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Similar to section 2.1 we can obtain the necessary optimality conditions by ap-
plying the maximum principle for age-structured control models. The first order
conditions are similar, however the inclusion of two integral states implies that we
have to introduce the shadow price corresponding to total health expenditure and
total population, respectively:

ηH(t) = −

∫ ω

0

ξNµH̄(a, h, H̄)
N

Ñ
da

ηÑ(t) =

∫ ω

0

ξNµH̄(a, h, H̄)
HN

Ñ2
da (38)

For a positive externality (µH̄ (·) < 0), mortality is decreasing in the aggregate
health expenditure and increasing in the size of the total population. The shadow
price of health investments is then positive while the shadow price of total population
is negative. The opposite applies in case of a negative externality.

The necessary first order condition now reads

uc(c) = −ξNµh(a, h, H̄) + ηH (39)

Noting that ηH > 0 in case of a positive externality, the planner will expend addi-
tional resources on health care so that the individual benefit of care −ξNµh(a, h, H̄)
falls short of the marginal utility of consumption. Again, the converse is true for
negative externalities.

The time path of consumption is similar as in the social welfare model derived
in section 2. However, the positive externality has an effect on the time path of the
health investments, whose change over time and age for a cohort we shall investigate
numerically in section 5.

While the forms - but not values - for the SVOL and the SVIL remain unchanged,
we can derive an adjustment of the SVIL expression that takes into account the
externality. For this, we rewrite the first-order condition (39) as

−1

µh(a, h, H̄)
= ψS (a, t) −

ηH (t)

uc(c (a, t))µh(a, h (a, t) , H̄)

= ψS (a, t) + Θ (a, t)

Θ (a, t) : =

∫ ω

0

uc(c (â, t))

uc(c (a, t))
ψS (â, t)

N (â, t)

Ñ (t)

µH̄(â, h, H̄)

µh(a, h, H̄)
dâ. (40)

According to this reinterpretation of the first-order condition, the marginal cost
(in money) of saving the life of an individual aged a at time t has to equal the
SVIL plus the value of the externality, Θ (a, t), related to the provision of care to
an individual at age a and time t. The value of the externality is determined by
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the following factors: (i) the weighted sum across age-groups of the SVIL’s for (â, t)

individuals, where the population share N(â,t)

Ñ(t)
of these individuals is used as weight;

(ii) the relative effectiveness in reducing mortality of aggregate spending for (â, t)

individuals as given by µ
H̄

(â,h,H̄)

µh(a,h,H̄)
; and (iii) a conversion factor uc(c(â,t))

uc(c(a,t))
.25 Hence, the

value of a (positive) externality is large if the spillovers are particularly effective for
large age groups composed of members with a high SVIL.

Let us now turn to the individual choice model.

4.3 Individual choice and correcting policy

Using the identity t ≡ t0 + a, where t0 stands for the year of birth, we can express
the individual life-cycle problem in the presence of externalities as follows

max
c,h

∫ ω

0

e−ρau(c(a))M(a, t0 + a) da

s.t. Ṁ(a) = −µ(a, h(a))M(a, t0 + a)

Ȧ(a) = (r + µ(a, h(a)))A(a, t0 + a) + y(a) − c(a) − h(a)

M(0, t0) = 1, A(0, t0) = 0, A(ω, t0 + ω) = 0

µ(a, h) = µ̃(a)φ(a, h(a), H̄ (t0 + a))

We have shown in the previous section that individuals do not expect to affect
health care spending per capita (as averaged across each age-group) and therefore
take H̄(t0 + a) as given at each point in time. In the absence of any correcting
policies, the necessary FOCs are then similar to those derived in section 3.1, and
can be expressed by 1 = −ΨP (a)µh(a, h, H̄). The externality has a bearing on
the effectiveness of individual health care spending and is therefore prone to alter
individual spending patterns. However, individuals do not take into account the
benefit (or harm) they bestow on others in the case of positive (negative) spillovers.

In order to attain the first best result the social planner can introduce the fol-
lowing tax/subsidy scheme. Let τ (a, t0 + a) denote a (net) subsidy on each unit
of private health care spending or, equivalently, on each unit of private health care
consumed. Hence, for each unit of care, the individual only spends an amount
of 1 − τ (a, t0 + a). In order to balance the budget in expected terms and to de-
prive the individual from any transfer income in expected terms, the government
levies a (net) lump-sum tax equal to the amount τ (a, t0 + a)hS (a, t0 + a), where
hS (a, t0 + a) corresponds to the socially optimal level of health expenditure for an

25If consumption is fully smoothed across age-groups then the conversion factor equals one.
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individual aged a at time t0 + a. Note that the lump-sum transfer is entirely ex-
ogenous to individual decision making. The individual asset dynamics under the
transfer scheme can then be written as follows

Ȧ (a) = (r + µ(a, h, H̄ (t0 + a)))A (a, t0 + a) + y (a) − c (a) − h (a) +

τ (a, t0 + a)
(
h (a) − hS (a, t0 + a)

)
(41)

The transfer that leads to the first best result can then be derived as follows.
For the sake of simplifying notation, let us assume a steady state, where under our
assumption that B(t) = B, y(a), ρ and r are constant with respect to t, it follows
that the variables will solely depend on age a but not on the date of birth t0.

26 From
the FOCs of the social welfare problem (SW) and of the individual choice problem
(IC) we then obtain straightforwardly

SW: 1 = −ψS (a)µh(a, h
S (a) , H̄S) +

ηH

uc(cS (a))

IC: 1 = −ΨP (a)µh(a, h, H̄) + τ (a) , (42)

respectively. Here, variables superscribed with ’S’ correspond to the social planner’s
optimum. Combining the two first-order conditions yields27

τ ∗ (a) = ΨP (a)µh(a, h (a) , H̄) − ψS (a)µh(a, h
S (a) , H̄S) +

ηH

uc(cS (a))

=
ηH

uc(cS (a))
=

Θ (a)

ψS (a) + Θ (a)
(43)

When the transfer induces the individual of all ages to spend optimally on health
care, mortality rates and consumption levels correspond to the socially optimal levels
as well. It follows that SVIL and PVOL are equalised within each age-group. The
optimal transfer is then an increasing function of the value of the externality Θ (a) .
It is positive if and only if Θ (a) > 0. Hence, in the presence of positive externalities,
subsidies increase in the value of the externality. In the limiting case where mortality
can only be reduced through collective expenditure H̄, it is true that Θ (a) → ∞. In
this case, τ ∗ (a) = 1, implying that individuals receive health care free of charge at

26Obviously, outside a steady-state all of the relevant variables would also depend on t0.
27When the transfer induces the individual of all ages to spend optimally on health care, we

obtain h (a) − hS (a) = 0. In this case, µh(a, h, H̄) = µh(a, h
S , H̄S). As consumption lev-

els will all equal the socially optimal levels, it follows that ΨP (a) = ψS (a) for all age-groups.

Hence, τ∗ (a) = ηH

uc(cS(a))
. Substituting in turn from (40) and from IC in (42) we obtain τ∗ (a) =

−µh(a, h
S , H̄S)Θ (a) = (1 − τ∗ (a)) Θ(a)

ΨP (a)
. This solves to τ∗ (a) = Θ(a)

ΨP (a)+Θ(a)
= Θ(a)

ψs(a)+Θ(a) .
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the point of use but have to pay a lump-sum tax τ ∗ (a)hS (a) . Note that we can also
interpret the transfer scheme in the context of health insurance: insurance premia
amount to τ ∗ (a)hS (a) and care is then provided subject to a co-payment equal to
1− τ ∗ (a) . In the presence of negative externalities, the optimal transfer is negative.
Here, individual expenditure should be taxed.

Finally, note that when consumption is fully smoothed across all age groups for
ρ = r, the transfer becomes entirely independent from the individual’s age. This is

readily verified as ηH

uc(cS(a))
is then constant with respect to age. It follows that in

our setting the transfer is age-dependent only in as far as it adjusts for age-related
differences in the propensity to consume. On second thought this is not surprising
as the marginal contribution towards the externality (in terms of an additional unit
of health expenditure) is independent of the individual’s age. However, this also
suggests that transfers should be age-dependent - even in the presence of consump-
tion smoothing - whenever some age-groups are generating spillovers more effectively
than others.

5 Numerical Results

In this section we numerically illustrate the results derived in sections two through
four. We apply the following functional specification

u(c(a, t)) = b+
c(a, t)1−σ

1 − σ
(44)

where b = 5, σ = 2.5 and α = 0.5. For simplicity we assume that the time prefer-
ence rate equals the interest rate r = ρ = 0.03. The maximal life-span ω is set equal
to 110. Mortality data have been taken from the human mortality data base [7] for
the years 1990-2000. Furthermore, we assume that individual income (net of interest
payments) y (a) is proxied by individual wages which, in turn, are assumed to equal
the age-specific marginal product of labour. Data on age-specific productivity have
been taken from Skirbekk [35], who bases the productivity estimates on a weighted
average over 6 age-dependent abilities (numerical ability, managerial ability, clerical
perception, finger dexterity, manual dexterity, experience). Consequently the pro-
ductivity profile does not represent the productivity for a special profession, but the
average over (more or less) all of them. All our results are calculated for a steady
state with a stable population.

We distinguish between two functional forms for the effect of health spending on
mortality. In the first case we assume no externality of aggregate health expenditure
on mortality:

φ1(a, h(a, t)) = 1 −

√
h(a, t)

z

(
a

1 − d

1 − ω
+
d− ω

1 − ω

)
(45)
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where we set z = 3 and d = 0.The latter implies that health expenditure becomes
entirely ineffective for a = ω In the second case we assume that aggregate health
expenditure may positively or negatively affect mortality:.

φ2(a, h(a, t), H̄(t)) = 1 −

√
h(a, t)

z

(
a

1 − d

1 − ω
+
d− ω

1 − ω

)
±

√
H̄(t)

z′
(46)

with z = 3, z′ = 10 and d = 0.
In the first two figures we summarize the results obtained in the base model where

we assume no externality (i.e. where we apply the functional form φ1). Figure 2
(left panel) plots the consumption path together with the age-specific productivity
profile (the bell shaped curve) and the age specific health investment (right panel).
Obviously social choice and individual choice result in the same time paths. Since
we assume ρ = r it is optimal to smooth consumption over all ages for each cohort.
Health investments (right panel) are determined by the mortality rate and initially
increase over age. As health investments become less effective in curbing mortality
at higher ages, the optimal strategy is to reduce health investment in old age (cf. our
discussion in section 2.1). As Figure 3 indicates health investments reduce the base
mortality (left panel) over the whole age range while the value of life decreases over
age. Referring to our discussion in section 2.2 and 3.2 our numerical setting obviously
implies that the negative impact as caused by a fall in the expected remaining life
span dominates.
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Figure 2: Consumption (left) and health investments (right) in the base model

We can now turn to the impact of the spillover effects. Figure 4 plots individually
optimal consumption against the social optimum for the case of positive (left panel)
and negative (right panel) externalities, respectively. Figure 5 plots individually
optimal health expenditure against the social optimum for the same two cases. As
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Figure 3: mortality (left) and PVOL/SVIL (right) in the base model

we would expect, individual consumption is too high (low) in the case of positive
(negative) externalities. Correspondingly, too little (much) is spent on health care
in the case of positive (negative) spillovers. This is, indeed, what one would expect
given the nature of the externality.

Figure 6 plots the mortality levels corresponding to the individual and social
optimum, respectively, for the case of positive externalities (the left panel covering
ages 19-60 and the right panel ages 60+). As expected, mortality rates are higher
under individual choice than they should optimally be. Interestingly, however, this
applies mainly to ages up to 60, whereas for old ages the difference is smaller. This
corresponds with the observation that individually and socially optimal health care
spending converge over age. For young ages, the effect of own spending h on an
individual’s mortality is weak, thus, leading to low individual spending levels. From
a social point of view, however, there is a social interest in increasing individual
health care expenditure in particular for the young age-groups. As they are large in
number N (a, t), increases in individual spending within these groups has a strong
effect on aggregate expenditure and thus on external benefits.

Figure 7 depicts comparative mortality in the case of negative spillovers for the
ages 80+. We notice that the effects on mortality of health investments are very weak
- indeed for ages below 80, they are almost absent. This suggests that the impact on
mortality from indivdual health spending is neutralised by the negative impact on
mortality of aggregate expenditure. Whereas social and individual spending tends
to lower mortality (by modest amounts) below the baseline for ages up to 100,
mortality somewhat increases above the baseline for the highest ages. Compared
with the social optimum, mortality tends to be somewhat higher under individual
choice. While this reflects the problem of significant over-spending in all age-groups
(see figure 5 right panel), the small discrepancy between the mortality rates suggests

28



that the predominant effect of excessive individual health spending is to neutralise
the negative externality. This represents a form of tread-mill effect.

The differences in mortality patterns in the case of positive and negative ex-
ternalities are reflected in figure 8, which plots the net increase in remaining life-
expectancy at age a attainable if individuals were to spend optimally. For instance,
in the presence of positive externalities (the upper graph) the life expectancy at age
20 would increase by a little more than one year if it were possible to induce individ-
uals to spend optimally. This stands in contrast to the case of negative externalities,
where socially optimal behaviour leads to only modest increases in the remaining
life expectancy for ages above 40. 28 The impact of differential health spending on
mortality in the presence of positive externalities - and its absence under negative
externalities - is also evident in the resulting consumption patterns. Consulting fig-
ure 4, we see that the gap between socially and individually optimal consumption is
larger in the case of positive externality. Here, individually optimal consumption is
higher both due to under-investment in health and due to the fact that consumption
is spread across a significantly shorter length of life (thus allowing higher levels of
per-period consumption). In the presence of negative spillovers, the effect through
changes in life-expectancy is virtually absent, so that the gap in consumption levels
predominantly reflects excessive individual spending on health care.
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Figure 4: Consumption in the model positive (left) and negative (right) externalities

Figure 9 shows how the private value of life (PVOL) develops against the social
value of individual life (SVIL) again for the case of positive spillovers (left panel)

28Indeed, a scrutinous look at the data shows that for ages below 30, the remaining life ex-
pectancy in the social optimum lies (by a very small amount) below the life expectancy in the case
of individually optimal spending. This is the case because from a social point of view, it is optimal
to spend close to nothing for the very young ages. The resulting increase in mortality for these
age groups is more than compensated for by the reductions in mortality for the ages 30+.
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Figure 5: Health investments in the model positive (left) and negative (right) ex-
ternalities

and negative spillovers (right panel). PVOL exceeds SVIL in the case of positive
spillovers but falls short of it in the case of negative spillovers. Setting τ (a) ≡ 0
in the planner’s and the individual’s first-order condition as reported in (42) and
rearranging terms we obtain Θ (a) =

[
ΨP (a) − ψS (a)

]
− ε (a) ΨP (a) , with ε :=

1 − µh(a,h,H̄)

µh(a,hS ,H̄S)
. In the case of positive externalities h < hS for all ages. It follows

that µh(a, h, H̄) > µh(a, h
S, H̄S) for our model and therefore ε (a) < 0. The distance

ΨP (a) − ψS (a) > 0 therefore gives a lower bound on the value of the externality.
The same applies for negative externalities, where Θ (a) < 0 and ε (a) > 0. We
can also infer that the absolute value of the externality |Θ (a)| decreases with age.29

Apart from the highest ages, this is due to the fact that the relative effectiveness of

aggregate spending µ
H̄

(â,h,H̄)

µh(a,h,H̄)
tends to decrease with age a [see (40)].

29Consider the derivative Θa =
(
ΨP − ψS

)
a
−

(
εΨP

a − εaΨ
P

)
. For the case of positive external-

ities inspection of Figure 8 (left panel) shows that
(
ΨP − ψS

)
a
< 0 and ΨP

a < 0. Moreover, εa > 0

follows from the fact that in the case of positive spillovers h and hS converge with rising age (see
Figure 5, left panel). But then, εΨP

a − εaΨ
P > 0 implying that Θa < 0. In the case of negative

externalities, we see from Figure 8 (right panel) that
(
ΨP − ψS

)
a
> 0 and ΨP

a < 0. Furthermore,

inspection of Figure 5 (right panel) shows that h and hS diverge up to age 95, implying εa > 0.for
ages up to age 95. For ages 95+ Θa > 0 is likely to be true. While convergence of h and hS implies
εa < 0 for these ages, ΨP is already rather low. Therefore, εΨP

a − εaΨ
P < 0 is still likely to hold.

Hence, Θa > 0 for the case of negative externality. It follows that in both cases the (absolute)
value of the externality decreases with age.
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Figure 6: Mortality in the model of positive externalities
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Figure 7: Mortality in the model of negative externalities

6 Conclusions

We provide a framework for assessing the efficiency of individual choices within a
continuous-time life-cycle framework by modelling and comparing the health ex-
penditure / consumption paths chosen by a social planner with those chosen by an
individual. The social planner has in mind a whole population and maximises over
two dimensions: age-structure and time. The individual, in contrast, has in mind its
own mortality and maximises over one dimension only, where time measures indi-
vidual age. We derive the optimal time paths and show how they can be compared.
A summary comparison is best based on the social value of an individual life (SVIL)
as compared to the private value of life (PVOL). The latter is well established in in-
dividual life-cycle modelling. We show that the former can be constructed from the
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Figure 8: Differences in life expectancy at age a (e(a))between social welfare and
individual choice model for positive and negative externalities.

planner’s problem in an analogous way. We also illustrate how the SVIL corresponds
to the value of population as derived in macro-economic models. We thus provide
a bridge between the hitherto unrelated micro-models with a focus on individual
mortality and macro-models with a focus on a population.

We apply our model to the examination of spillovers related to individual health
care spending - or equivalently: individual use of health care. Spillovers may arise
for a number of reasons. Positive spillovers may be due to learning-by-doing-effects
or due to the fact that higher aggregate spending levels boost R&D or the provision
of ’high quality’ capacities. They also arise, of course, in the context of vaccination
against infectious disease. Negative spillovers may arise due to congestion of the
health care system, resulting either in a reduction of the quality of care or in ineffi-
cient forms of rationing, such as medically undue waiting. We show analytically how
the planner (but not the individual) incorporates in her decision making the value
of the externality. Furthermore, we derive a transfer scheme that induces optimal
expenditure and consumption plans on the part of the individual. We illustrate
our model(s) by way of numerical analysis. The analysis of positive and negative
spillovers reveals the expected distortions from the optimum in individual consump-
tion and health care spending. More interestingly, the nature of the externality has
rather distinct consequences for the pattern of mortality. In the presence of positive
spillovers mortality can be reduced significantly below its baseline with correspond-
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Figure 9: PVOL compared to the SVIL in the model positive (left) and negative
(right) externalities

ing increases in life-expectancy. However, owing to their under-spending individuals
fail to realise a significant share of these gains in life-expectancy. In contrast, when
spillovers are negative, no substantial reductions in mortality below the baseline can
be attained. Here, the inefficiency of individual behaviour is manifest in a tread-
mill effect, where individuals over-spend on health care without great effect and,
thereby, forego consumption. Finally, we show how the value of the externality can
be inferred from a comparison between SVIL and PVOL.

It has been our main objective to provide a modelling framework to analyse the
efficiency of individual life-cycle behaviour, to present the critical elements of such an
analysis and to illustrate the channels of transmission by which direct period effects
and effects through changes in the life-expectancy impact on life-cycle choice. In
order to facilitate the representation as much as possible we have therefore adopted
a number of simplifying assumptions regarding the nature of the externalities. In
particular, by assuming that the spillovers flow through aggregate health care ex-
penditure, we assume that all age-groups contribute in a symmetric way. For our
numerical analysis, we impose additional assumptions, namely that the marginal
productivity of individual health expenditure is unaffected by the externality and
that the impact of the externaltity on mortality is independent of age. Clearly, these
assumptions are unrealistic and rule out an application of our results to the various
forms of real-world externalities that were discussed earlier. There is clear scope
for drawing up more realistic models of life-cycle externalities; but we leave this to
future research.

Finally, our model lends itself to the analysis of other imperfections in individual
behaviour. The cross-cohort spillovers that give rise to inefficiency are clearly not
only present in the health care sector but also - and perhaps more prominently -
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in the production and/or consumption of goods. Externalities in production arise
with regard to saving towards the accumulation of a (common) capital stock that
affects the productivity of (everyone’s) labour; and with regard to health or edu-
cational investments that increase individual productivity but also the productivity
of co-workers. Externalities with regard to consumption arise for many modes of
unhealthy consumption (see Forster [12] for a life-cycle-model of unhealthy con-
sumption without spillovers). Most prominently this relates to smoking which not
only raises individual mortality but also the mortality of others. Similar arguments
apply, however, to other consumption goods, such as cars, that directly or indirectly
lead to the emission of pollutants. As should have become evident from our analy-
sis, such externalities will lead to distortions both due to period effects and through
effects in overall life-expectancy. We would thus envisage a number of interesting
applications.
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A Appendix: Proof of steady state-relation in the

case of exogenous B(t)

Within this section we prove the existence of a steady state of the social planner
model in the time interval t ∈ [ω, T−ω] if the number of newborns B(t) is exogenous.
As major parts of the proof are analogous to the proof of proposition 2 of Prskawetz
and Veliov [29] we sketch the method and discuss only the differences in detail.

In order to write our social planner problem in a more compact form we write
our controls c(a, t) and h(a, t) and states N(a, t) and A(a, t) as column vectors

m(a, t) := (c(a, t), h(a, t))′

x(a, t) := (N(a, t), A(a, t))′. (47)

Then we can write (6) as

max

∫ T

0

∫ ω

0

e−ρtg(a, x(a, t),m(a, t)) da dt+

∫ T

0

e−ρtg′(ω, x(ω, t)) dt+

+

∫ ω

0

e−ρTg′′(a, x(a, T )) da

s.t. xa + xt = f(a, x,m)

x(a, 0) = x0(a)

x(0, t) = ϕ(t) (48)

where g(·) and f(·) denote the objective functional and the system dynamics
resp. g′(·) and g′′(·) denote the additional terms for the end state constraints. The
initial and boundary constraints are denoted by x0(a) and ϕ(t).

Then we define the following functions for a given control-trajectory pair30

z[κ](s) = x(s, κ+ s), q[κ](s) = m(s, κ+ s)

y[ζ](t) = x(ζ + t, t), p[ζ](t) = m(ζ + t, t)

v[θ](a) = x(a, θ + a), k[θ](a) = m(a, θ + a) (49)

where
κ ∈ [0, T −ω], s ∈ [0, ω], ζ ∈ [0, ω], t ∈ [0, ω−ζ], θ ∈ [T −ω, T ] and a ∈ [0, T −θ].

30y, z and v denote the state variables (population, cohort savings) and p, q and k denote
the controls (consumption, health expenditures) for cohorts that have been already alive at the
beginning of the planning horizon, for cohorts that are born and die within the planning horizon
and for cohorts that are still alive at the end of the planning horizon resp.

38



After changing the order of integration and changing the variables the above
optimization problem can be represented as

max

∫ ω

0

J0[ζ](p[ζ], y[ζ]) dζ +

∫ T−ω

0

e−ρκJ1[κ](q[κ], z[κ]) dκ+

+

∫ T

T−ω

e−ρθJ2[θ](k[θ], v[θ]) dθ (50)

with

J0[ζ](p[ζ], y[ζ]) =

∫ ω−ζ

0

e−ρtg(ζ + t, y[ζ](t), p[ζ](t)) dt+ e−ρ(ω−ζ)g′(ω, x(ω, ω − ζ))

J1[κ](q[κ], z[κ]) =

∫ ω

0

e−ρsg(s, z[κ](s), q[κ](s)) ds+ e−ρωg′(ω, x(ω, κ+ ω))

J2[θ](k[θ], v[θ]) =

∫ T−θ

0

e−ρag(a, v[θ](a), k[θ](a)) da+ e−ρ(T−θ)g′′(T − θ, x(T − θ, T ))(51)

and

dy[ζ](t)

dt
= f(ζ + t, y[ζ](t), p[ζ](t)), y[ζ](0) = x0(ζ)

dz[κ](s)

ds
= f(s, z[κ](s), q[κ](s)), z[κ](0) = ϕ(κ)

dv[θ](a)

da
= f(a, v[θ](a), k[θ](a)), v[θ](0) = ϕ(θ) (52)

Thus the parametric family J1[κ](q[κ], z[κ]) for κ ∈ [0, T − ω] reaches the same
results for all κ. Following the arguments in Prskawetz and Veliov [29] the system
reaches a steady state for31 [ω, T − ω].

Note that the optimization of the parametric family J0[·](·), J1[·](·) and J2[·](·)
results in an optimization over cohorts not influencing each other (further all cohorts
within the parametric family J1[·](·) have the identical conditions). Thus the proof
does not work when the number of newborns is endogenous, as then the boundary
condition changes and the cohorts may have different conditions.

B Appendix: Derivation of SVIL

From solving the adjoint equation for ξN(a, t) with the method of characteristics we
obtain

31More general, the system reaches a steady state in the parallelogram defined by the four corner
points (0, 0), (ω, ω), (ω, T ) and (0, T − ω) of the Lexis diagram.
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ξN(a, t) =

∫ ω

a

(u(c(s, t− a+ s)) + ξA(s, t− a+ s)(y(s) − c(s, t− a+ s) − h(s, t− a+ s)) +

+ξN(0, t− a+ s)ν(s))e−(s−a)ρ−
∫

s

a
µ(s′,h(s′,t−a+s′)) ds′ ds (53)

since ξN(ω, t) = 0 holds for every t. Inserting the above expression into (19) and
applying (14) yields

ψS(a, t) =

∫ ω

a

uc(c(s, t− a+ s))

uc(c(a, t))
v(s, t− a+ s)e−(s−a)ρ−

∫
s

a
µ(s′,h(s′,t−a+s′)) ds′ds (54)

As the marginal utility of consumption uc(c(a, t)) only depends on consumption
and not on t the total derivative with respect to time equals

( ∂

∂a
+
∂

∂t

)
uc(a, t) = ucc(ca + ct) (55)

Again applying the method of characteristics we obtain

c(a, t) = c(s, t− a+ s)e−(s−a)(ρ−r) (56)
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