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Phenotypic differences between populations often correlate with
climate variables, resulting from a combination of environment-
induced plasticity and local adaptation. Species comprising pop-
ulations that are genetically adapted to local climatic conditions
should bemore vulnerable to climate change than those comprising
phenotypically plastic populations. Assessment of local adaptation
generally requires logistically challenging experiments. Here, using
a unique approach and a large dataset (>50,000 observations from
across Britain), we compare the covariation in temperature andfirst
spawning dates of the common frog (Rana temporaria) across space
with that across time. We show that although all populations
exhibit a plastic response to temperature, spawning earlier in
warmer years, between-population differences in first spawning
dates are dominated by local adaptation. Given climate change pro-
jections for Britain in 2050–2070, we project that for populations to
remain as locally adapted as contemporary populationswill require
first spawning date to advance by ∼21–39 days but that plasticity
alone will only enable an advance of ∼5–9 days. Populations may
thus face a microevolutionary and gene flow challenge to advance
first spawningdate by a further∼16–30days over thenext 50 years.
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Many species show geographical variation, which often coin-
cides with aspects of climate, primarily temperature and

precipitation (1, 2). The basis of phenotypic differences between
populations is likely to be part environmental and part genetic.
Genetic differences can accrue through local adaptation when
natural selection favors those genotypes that are best suited to
their bearer’s local average environment. Environmental differ-
ences can arise when phenotypes are influenced by environmental
factors that vary across populations. We refer to this phenomenon
as “mean plasticity” to distinguish it from phenotypic plasticity
among individuals. Suchmean plasticitymay also have an adaptive
basis if it confers fitness advantages to individuals across a varying
local environment. The relative contribution of local adaptation
and phenotypic plasticity to geographical variation can affect each
population’s vulnerability to change in the underlying environ-
mental factor. For instance, if the climate changes, populations
adapted to the historic local climate may be required to evolve or
move elsewhere if they are not to incur fitness costs and possible
extirpation. Surprisingly, this observation has received relatively
little attention, perhaps because climate change-oriented studies
focusing on adaptation and tolerance tend to address species
(e.g., 3) rather than populations.
Identification of local adaptation among populations with respect

to an environmental gradient usually involves logistically challenging
reciprocal transplants of populations along the gradient (4, 5). Con-
sequently, the degree to which geographical variation reflects local
adaptation to climate is known only for a very limited number of
species representing a biased set of taxa. Here, we present a unique
test for local adaptation using existing spatiotemporal first spawning
date data for the common frog (Rana temporaria) in Britain.
R. temporaria generally produces and fertilizes eggs between

January and April in Britain. Female frogs appear to use temper-

ature as a cue to spawn (6) but face a tradeoff. Earlier spawning
provides a longer period for the offspring to develop, which
potentially reduces the competition for resources experienced by
the offspring (7) and may reduce predation from newts (8). How-
ever, it will generally cause the embryos to encounter colder tem-
peratures, which can increase mortality (7, 9). In Britain, R.
temporaria tends to spawn earlier during warmer winters (6, 10),
suggesting the presence of temperature-induced plasticity in their
phenology. Spawning dates also exhibit geographical variation,
being earlier in the warmer southwest and later in the colder north
and east (10). However, as discussed above. Conventional corre-
lative studies cannot distinguish the relative roles of plasticity and
adaptation (11) and transplant experiments are usually needed.
Common garden experiments conducted in Scandinavia reveal a
genetic basis to geographical variation in the developmental rates
ofR. temporaria tadpoles (12). Evidence that geographical variation
in development rates of this species has arisen via natural selection
comes from the observation that divergence in quantitative traits
relating to development rates exceeds that at neutral genetic loci
(13). The statistical test that we used to assess the extent of local
adaptation of spawning date to winter temperatures in Britain is
based on the quantitative genetics model developed below.
Several commonly used approaches for identifying a signature

of natural selection with respect to geographical variation involve
the comparison of divergence in quantitative traits with a null
expectation under randomgenetic drift (14–16).One suchmethod
is theQST versus FST comparison (16). In population genetics, FST
is routinely used to quantify the proportion of the total neutral
genetic variation (within and between populations) that is dis-
tributed between populations. QST (Eq. 1) is the quantitative trait
equivalent of FST (16):

QST ¼ σ2GB

σ2GB þ 2σ2GW
[1]

Here, σ2GB is the additive genetic variance between populations,
which is usually estimated in a common garden environment (17),
and σ2GW is the additive genetic variance within populations, which
is estimated using information on relatedness of individuals. An
assumption of the method is that all genetic variance is attribut-
able to additive effects. QST = 0 corresponds to a situation in
which all the genetic variation is found within rather than between
populations. QST = 1 corresponds to a situation in which genetic
differences exist among populations but all individuals are genet-
ically identical with respect to the trait within a population.
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QST can be compared with FST estimates. If QST is significantly
greater than FST, a pure drift model of trait divergence is
rejected and a role for divergent selection is invoked (16). A
logistic challenge in estimating QST is the requirement for
common garden experiments and information on the relatedness
of individuals. In many instances, only phenotypic data are
available; in such case, an estimate of QST can be obtained using
its phenotypic equivalent, PST (18, Eq. 2):

PST ¼ σ2PB
σ2PB þ 2h2σ2PW

[2]

Here, h2 is the narrow-sense heritability and σ2PB and σ2PW are the
phenotypic variances across and within populations, respectively.
The degree to which PST provides a good estimate of QST
depends on (i) the accuracy of the heritability estimate and (ii)
the degree to which differences between populations are genetic.
Large PST values may arise if phenotypic differences between
populations are actually environmental in origin because σ2PB is
an upwardly biased estimator of σ2GB (19).
We have developed a technique that distinguishes between-

population genetic differences from environmental differences
using phenotypic and environmental (in the case considered here,
temperature) data that vary over time and space. Eq. 3 describes
variation in mean phenotype (in the case considered here, first
spawning date, y) measured for a set of individuals belonging to
year i in population j. In this case, aj and ej is the deviation of
population j from the grand mean attributable to additive effects
and differences in environment, respectively. αij and εij is the
deviation of a set of individuals belonging to year i from the mean
of population j attributable to the average annual breeding value
and the environment, respectively:

yij ¼ μþ aj þ αij þ ej þ εij [3]

The aim of QST is to compare variation in a with α. In the
absence of transplant experiments, a and e are confounded. The
paucity of prior information for many traits often leads studies to
make the assumption that e= 0. In the absence of pedigree
information, α and ε are confounded.
Here, we introduce the variables tj (indicating the mean tem-

perature experienced by population j) and τij (indicating the devi-
ation in temperature from themean of population j that individuals
in year i experience).We assume that the effect temperature has on
phenotype (β) is consistent for all individuals irrespective of the
population they belong to (Eq. 4), which is equivalent to assuming
that mean population plasticity with respect to temperature is
constant within and among populations. The environmental effects
(ej and εij) are now deviations after correcting for the effects
of temperature:

yij ¼ μþ β
�
tj þ τij

�þ aj þ αij þ ej þ εij [4]

LetG and E denote additive genetic effects and environmental
effects, respectively. Under this model, the expected variances
(σ2) and covariances (σ) between temperature (T) and phenotype
(Y) within (W) and between (B) populations are equal to:2
664

σ2TW 0 σTW ;YW 0
0 σ2TB 0 σTB;YB

σTW ;YW 0 σ2YW 0
0 σTB;YB 0 σ2YB

3
775

¼

2
664

σ2TW 0 σTW ;GW þ βσ2TW 0
0 σ2TB 0 σTB;GB þ βσ2TB

σTW ;GW þ βσ2TW 0 σ2GW þ σ2EW 0
0 σTB;GB þ βσ2TB 0 σ2GB þ σ2EB

3
775

[5]

Given Eq. 5, the difference between the between- and within-
population slopes is given by:

σTB;YB
σ2TB

−
σTW ;YW

σ2TW
¼ σTB;GB þ βσ2TB

σ2TB
−
σTW ;GW þ βσ2TW

σ2TW
¼ σTB;GB

σ2TB
−
σTW ;GW

σ2TW
[6]

Thus,Eq.6givesanestimateof thegeneticdifferentiationbetween
populations (i.e., local adaptation) compared with that within pop-
ulations (i.e., microevolution through time) with respect to temper-
ature.We propose that if the between- and within-population slopes
are not significantly different, this would be consistent with the
hypothesis that phenotypic differences between populations are the
result ofmeanplasticity alone (Fig. 1A).Alternatively, if the slopesdo
differ significantly, this suggests that population phenotypes show
local adaptation (Fig. 1 B–D depicts three such scenarios and their
biological interpretations).

Results and Discussion
We compared the within-population (across years) and between-
population slopes for temperature vs. R. temporaria first spawn-
ing dates using >50,000 observations from across Britain span-
ning the period 1998–2006. We used a bivariate mixed model
framework, wherein temperature and spawning date were both
response variables.
Across space and time, mean January temperature correlated

more strongly with spawning dates than did several other winter
temperature variables, as revealed by higher pseudo-R2 values
when comparing models that include comparable random effects
(Fig. 2 and Table S1). The bivariate mixed model with the lowest
deviance information criterion (DIC) included five random
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Fig. 1. Schematic of within- (dotted lines) and between- (solid lines) pop-
ulation temperature × first spawning date covariation. (A) Within- and
between-population slopes are the same. Negative covariation within pop-
ulations could arise via mean plasticity and/or microevolution (with mean
plasticity as the null hypothesis), and negative covariation between pop-
ulations could arise via mean plasticity and/or local adaptation (with mean
plasticity as the null hypothesis). (B) There is no covariationwithin populations
but negative covariation between populations; therefore, slopes differ. The
between-population covariation is consistent with local adaptation. (C) There
is negative covariation within populations and orthogonal positive cova-
riation between populations; therefore, slopes differ. The within-population
covariation is consistent with maladaptive mean plasticity, and the between-
population covariation is consistent with local adaptation. (D) There is neg-
ative covariationwithin populations but no covariation between populations;
therefore, slopes differ. This pattern would be consistent with maladaptive
mean plasticity within populations and local adaptation counteracting this
effect between populations [i.e., countergradient variation (45)].
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terms: year, 150-km grid-square, 50-km grid-square, and the two
interactions between these grid-squares and year. The space-by-
time interactions were fitted to allow for year-to-year variation
that was specific to spatial locations. For each random term, we
estimated a variance component for temperature, spawning date,
and the covariance between the two. Dividing the covariance by
the temperature variance component defines a regression slope
for each random effect (20).
In all cases, the slopes between temperature and first spawning

date were negative: 150-km slope (b) = −12.91, 95% highest
posterior density (HPD): −16.82 to −9.61; 50-km b = −5.10,
HPD: −6.91 to −2.92; year b = −3.25, HPD: −7.29–1.41; year/
150-km b = −3.44, HPD = −4.89 to −2.17; year/50-km b =
−2.61, HPD: −5.52–0.05; residual b = −1.67, HPD: −1.92 to
−1.43. We consider the contribution of microevolution to the
within-population temporal slope (σTW ;GW

σ2TW
in Eq. 6) to be minimal

because the directional temperature change over the 9-year
duration of this study was slight (January mean temperature b =
0.05 ± 0.02, February mean temperature b = −0.20 ± 0.02) (21)
and R. temporaria requires 2 or 3 years to reach sexual maturity
(22). Therefore, terms involving year reflect plastic responses to
temperature and are not significantly different from each other
(pooled mean = −2.98, HPD: −4.84 to −1.33).
Terms not involving year (including the residual) capture the

combined effects of mean population plasticity and local adap-
tation. The difference between the temporal slopes and the
spatial slopes therefore quantifies temperature-related local
adaptation. There is no evidence for local adaptation within 50-
km grid-squares (slope difference (Δb) = 1.26, HPD: −0.36–
3.22), weak evidence within 150-km grid-squares (Δb = −1.99,
HPD: −4.30–1.03), but strong evidence between 150-km grid-
squares (Δb = −10.03, HPD: −14.04 to −5.99) (Fig. 2). The
observed within 150-km and between 150-km population slopes
are intermediate between the relations depicted in Fig. 1 A and
B. We can also infer that the mean plasticity exhibited by pop-
ulations is adaptive on the grounds that the within-population
and between-population slopes are of the same sign. All the
main conclusions are consistent under alternative tests and
across different models that include minimum, mean, and max-
imum January and February temperatures, each of which is
considered in 10 mixed effects models with different random
effect combinations (total of 60 models; Table S1).
The number of spawning date observations is highly heteroge-

neous over both space and time (Fig. S1), with there being many
more observations in southern Britain than further north. Our
slope estimates will be weighted toward those observed in south-
ern parts of Britain if heterogeneity exists. However, we think this
bias is unlikely to undermine the observed difference in slopes,
given that the results are qualitatively unchanged when each grid-

cell only contributes a single data point across multiple years for
the calculation of the between-population slope (Fig. 2A) and
when each year only contributes a single data point per grid-cell
for the calculation of the within-population slope (Fig. 2B).
Our model (Eq. 4) assumes that the slopes are constant across

different units within a random effect, but several studies have
reported heterogeneity of within-population slopes across dif-
ferent populations (23). Although we find a small but significant
degree of heterogeneity when comparing within 150-km pop-
ulation slopes, we are cautious as to whether this variance is real
or attributable to variation in the number of observations across
grid-cells and years (Methods).
The large effect size of local adaptation is best illustrated by

example. Consider the 150-km grid-squares covering southwest
Britain (mean January temperature=5.96 °C,meanfirst spawning
date = 37.1 Julian days) and northeast Britain (mean January
temperature = 3.16 °C, mean first spawning date = 78.9 Julian
days). If individuals from the northeast were translocated to the
southwest, we predict that their mean first spawning date would
advance by 8.3 days because of plasticity. However, this would still
leave them spawning 33.5 days later than the resident population,
which is locally adapted to the average temperature of its grid-
square. Although we find stronger evidence for local adaptation at
a large spatial scale (between 150-km grid-squares) thanwe do at a
smaller scale (between 50-km grid-squares), local adaptation is
unlikely to be a threshold process and presumably accumulates
over distance as the ameliorating effects of gene flow diminish.
One explanation for shallower within-population slopes than

between-population slopes relates to a combined effect of an indi-
vidual’s prediction and regression to the mean. If within-population
within-year temporal autocorrelation in temperatures is low, then
extremeJanuary temperaturesare less reliable thanwithin-population
multiyear averages at predicting the temperature in followingmonths.
Consequently, an adaptive response to temperature may be more
optimal if it tracks multiyear averages rather than transient temporal
fluctuations. This is consistent with the fact that southerly populations
spawn earlier than northern populations when they experience the
sameJanuary temperatures.Althoughsuchaprocesscouldgive rise to
differences in slope through local adaptation, it is possible that older
frogs use a cumulativemultiyear prediction of temperature to achieve
the same ends (24).
By combining our slope estimates with UK Climate Impacts

Programme January mean temperature change projections for
grid-squares in Britain across the period 2050–2070 (25), we can
map the projected advance in spawning date expected via plasti-
city alone (the product of the pooled mean temporal slope and
temperature increase; Fig. 3A) and the advance necessary for a
population to be as locally adapted as contemporary populations
(the product of the between 150-km population slope and tem-

A B 

Fig. 2. Relation between maximum January temperatures
and frog first spawning dates in Julian days across 150-km
population means, where each data point corresponds to a
single population mean (calculated as the mean of the yearly
means) (A), and within 150-km populations through time,
where each data point corresponds to an annual population
mean in a single grid-square (B). Lines correspond to least
squares regression estimates. Only populations with data for
at least 5 years were included. Green, northern populations
(UKCP09grid-square ID1–702); blue,midlatitudepopulations
(grid-square ID 703–1638); red, southern populations (grid-
square ID >1638).
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perature increase; Fig. 3B). Projected temperature increases for
the period 2050–2070 are highest in the southeast (up to 3.0 °C)
and considerably less in the far northwest (<1.7 °C). As a con-
sequence, population plasticity is projected to lead to the greatest
advances in southeast Britain and the smallest advances in the
northwest (Fig. 3A). The advance required for populations to
remain as locally adapted as contemporary populations shows the
same geographical pattern (Fig. 3B). We can map the shortfall
between the advance required for populations to remain locally
adapted and the advance expected via plasticity alone (Fig. 3C).
This shortfall could exceed 25 days in southeast Britain. However,
in light of evidence for nonlinearities in the temperature vs.
spawning date relation across Europe (26), there is a need for
caution in interpreting extrapolations beyond the range of the
current observations.
The fitness consequences of a shortfall in advance are not known

and represent a priority for future experimental work. Laboratory
studies on the developmental times of amphibian embryos have
shown that high-latitude populations are sometimes adapted to
temperatures above those that they routinely encounter in the wild
(27). This is perhaps attributable to natural selection not keeping
pace with postglacial geographical expansion from lower latitudes.
If this were the case, it would represent the best case scenario for
British R. temporaria, meaning that local populationsmay not incur
direct fitness costs from the projected temperature increases.
However, an alternative explanation for these laboratory findings
may be that amphibians are prevented from developing at their
optimum temperature in the wild by other factors such as predation
pressure and competition.Assuming that a rise in temperature leads
to direct selection for earlier spawning inR. temporaria populations,
the short-term evolutionary response will largely depend on the
standing genetic variation for spawning date within current pop-
ulations (20) and the rate of northward gene flow from populations
adapted to higher average temperatures (24, 28).
A matter of concern is that local adaptation in spawning date

and other life history traits in R. temporaria (e.g., 12) implies that
levels of gene flow may be low. Strong selection pressures may
lead to population declines unless evolution can keep pace with
the rate of environmental change (24, 29) or efforts to reverse
habitat fragmentation and increase landscape permeability are
sufficient to increase the frequency of long-distance dispersal.

Within Britain, southeastern populations face the greatest
expected change in temperature and, therefore, the strongest
microevolutionary and gene flow challenge (Fig. 3C). This raises
two concerns. First, these populations are likely to have less
opportunity for natural immigration from further south, because of
the proximity of the English Channel, than are northern pop-
ulations. Second, the high levels of urbanization in southeastBritain
may further restrict gene flow in this species (30), although thismay
be countered by the abundance of small ponds in urban areas (31).
Amphibians are experiencing rapid global declines (32, 33).

Thermal tolerances of high-latitude amphibians are typically
broader than among their tropical counterparts, and it has been
suggested that they are likely to be less adversely affected by
climate change (3). Given that the common frog is a widespread
species, our data suggest that other amphibians at high latitudes
may also find rapid climate change challenging.
Our results raise issues about the validity of the “space-for-

time” substitution approach often employed in studies in which
spatial replication is possible but temporal replication is not (34–
36). If, in the absence of knowledge of the temporal relation
between temperature and phenology in R. temporaria, the spatial
relation was used to predict the temporal relation, the prediction
would have the correct sign but would lead to a substantial over-
estimate of the short-term temporal slope. If, however, the space-
for-time substitution was applied to a case in which the difference
between the spatial and temporal relations was more pronounced,
this could, in extreme cases (e.g., Fig. 1C), lead to the sign being
incorrectly predicted. Thus, we recommend exercising caution in
the application of space-for-time substitutions to intraspecific
phenotypic variation, especially if local adaptation is suspected.

Methods
Data. The UK Phenology Network (UKPN; www.naturescalender.org.uk) has
collated public observations of first spawning dates for R. temporaria across
Britain. Observations of spawning dates that occurred after 200 Julian days
(n = 108) and in Northern Ireland were excluded from the analysis, leaving
55,602 observations. We matched the remaining observations with January
and February minimum, mean, and maximum temperatures from 1998 to
2006, interpolated to the nearest 5-km square on a rotated latitudeprojection
(grid North Pole longitude = 198.0, grid North Pole latitude = 39.25) (37). The
raw monthly gridded climate data, which form part of the UK climate pro-
jections (UKCP09) data, were obtained from the UK Met Office (http://www.
metoffice.gov.uk/climatechange/science/monitoring/ukcp09/).
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Fig. 3. Map of geographical variation in projected advance of first spawning date via plasticity, temperature increase × within-population slope of 2.98 (A);
necessary advance for populations to be as locally adapted as contemporary populations, temperature increase × between 150-km population slope of 12.91
(B); and the microevolution and gene-flow challenge (C), the difference between the necessary advance for populations to be as locally adapted as con-
temporary populations (B) and advance expected via plasticity alone (A). Slope estimates come from the best model. Median January temperature increase
projections for the period 2050–2070 on a 25 × 25-km grid come from the UK Climate Impacts Programme (further details are provided in Methods).
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We divided the United Kingdom into grid-squares, or “populations,” at 50 ×
50-km, 100 × 100-km, and 150 × 150-km resolutions (mean spawning date per
25-km grid-cell per year, and the number of observations can be obtained at
http://www.naturescalendar.org.uk/findings/research_archive.htm).

Temperature Trend. We tested for directional temperature change over the 9
years of this study using a linear mixed effects model with population as a
random effect and year as a continuous fixed effect. Models were fitted using
the lme4 R library. We assumed that the January/February temperatures in a
location over the period 1998–2006 correlate with historic average January/
February temperatures [since the last glacial maxima, ≈20,000 years ago (38)].

Slope Test. We used a Markov chain Monte Carlo approach to fit Bayesian
generalized linear mixed models (39) to the entire dataset. Models were run
for 13,000 iterations with a burn-in of 3,000 iterations, a thinning interval of
10 and flat priors. We fitted temperature and first spawning date as a
bivariate normal response and population, year, and their interaction as
random effects. Some analyses included a nested sequence of population
level random effects (e.g., 50 × 50-km grid-squares within 150 × 150-km grid-
squares). For each random effect, the variance covariance matrix was esti-
mated (Eq. 7), where Y is first spawning date, T is temperature, and R
denotes the random effect:�

σ2YR σYR;TR
σYR;TR σ2TR

�
[7]

Slopes were estimated as σYR;TR=σ2TR. The 95% highest posterior densities of
the slopes and the difference between slopes (Δb) were estimated and used
to assess whether slopes differed from zero and from each
other, respectively.

In Eq. 8, we define a pseudo-R2 for the model across k random effects (R):

R2 ¼
∑

σ2YRk ;TRk
σ2TRk

∑σ2YRk

; [8]

which measures the expected proportion of variation explained rather than
the actual proportion explained. Model fit was assessed using the DIC
and pseudo-R2.

Being correlational, our approach is sensitive to the influence of third
variables. For example, a variable that correlates with temperature and
spawning date to a differing degree over space and time would generate a
difference in slopes that could be misinterpreted as evidence of local
adaptation. When such third variables are known, they can be included in the
statistical model either asfixed effects or as additional response variables. The
approach described here does not correct for spatial or temporal auto-
correlation, which may lead to underestimation of the true confidence
intervals for between-population and within-population slopes, respectively.

Recent studies have emphasized the importance of considering environ-
ment by phenology correlations at multiple trophic levels (40, 41). Our
statistical approach can be extended to include the phenology of multiple
species as separate response variables. For each random effect, this would
allow the estimation of a temperature-by-phenology slope for every species
plus the phenologyA-by-phenologyB slope between species A and B at dif-
ferent trophic levels.

Within-Population Slope Heterogeneity. To allow for within-population slope
heterogeneity, it would be necessary to let the covariance matrices within
each population vary as additional levels in the multilevel model, making this
very difficult to implement. Random regression is often used to test for
heterogeneity in slopes but cannot be applied in this case because of the
within-population and between-population slopes differing.

As shown in Eq. 9, if we only allow for populations defined by 150 × 150-
km grid-squares, then an appropriate model incorporating heterogeneous
within population slopes would be:

yij ¼ μþ μj þ βBtj þ βWτij þ βWj
τij þ eij; [9]

where μ is the intercept and μj is the deviation of the mean phenotype in pop-
ulation j from the grand mean. βBis the between-population slope, βW is the
expected within 150-km population slope, and βWj

is the deviation of the within-
population slope for population j from the expected within-population slope.

The problem is that neither t nor τ is known and so must be estimated, as
they are in the bivariate model. An alternative, which is shown in Eq. 10 but
which we are reluctant to advocate, is to decompose each temperature into
the observed mean and a deviation (42), essentially fitting the model:

yij ¼ bμþ bμj þ bβB�tj þ dj
�þ bβwj�τij − dj

�þ bβwj�τij − dj
�þ eij; [10]

where d is the deviation between the mean of the sample and the true
hypothetical mean. The hats on the model parameters indicate that they are
only identical to the original parameters when d = 0. In the extreme case,
when there is only a single datum within population j, then dj ¼ τij . Eq. 10
can be rearranged as shown in Eq. 11:

yij ¼ bμþ bμj þ bβBtj þ bβτij þ bβWjτij þ dj
�bβB −bβW −bβWj

�
þ eij; [11]

which makes it clear that variation in d could result in biased estimates of all
slope parameters. In this sense, the multivariate mixed model that we used is
to be preferred because it correctly weights random effects by the infor-
mation present within and between levels. Nonetheless, as a diagnostic test,
we estimated the parameters of the model using flat priors and the full (co)
variance matrix for the random intercepts and slopes. This model suggested
that slope variation did exist within populations 1.546 (0.884–4.206), but the
difference between within-population and between-population slopes
remained qualitatively unchanged Δb = −9.061 (−12.734 to −5.253).

When we fitted the interaction between the mean latitude of observa-
tions in a grid-cell and the within-population slope, there was a significant
tendency for more northerly populations to have shallower reaction norms
(posterior mode = 0.366, HPD: 0.109–0.635). This corresponds to the within-
population slope varying from −4.76 in the south to −0.995 in the north.
However, we are reluctant to ascribe biological significance to the observed
latitudinal variation in the within-population slope because the bias intro-
duced by dj is likely to increase with latitude (Fig. S1).

Measurement Error. Measurement error in temperature will reduce the
magnitude of the slope for those levels in which the measurement error is
introduced. In the context of this study, this would be a problem if meas-
urement error occurs within populations. We can adapt Eq. 6 to see how
much measurement error in temperature (σ2TM) would need to exist to
generate the slope difference (Δb) that we find, as shown in Eqs. 12–14:

Δb ¼ σTB;GB þ βσ2TB
σ2TB

−
σTW ;GW þ βσ2TW
σ2TW þ σ2TM

[12]

Δb ¼ σTB;GB

σ2TB
þ β−

σTW ;GW

σ2TW þ σ2TM
− βr2 [13]

Δb ¼ σTB;GB

σ2TB
−

σTW ;GW

σ2TW þ σ2TM
þ β

�
1− r2

�
[14]

If we assume an absence of microevolution, the covariance between tem-
perature and breeding value within populations is zero. However, the dif-
ference in slopes is still downwardly biased by β(1−r2) assuming that β is
negative. The repeatability of the temperatures is represented by r2. In Eq.
15 we assume that local adaptation is also absent, so:

Δb ¼ β
�
1− r2

�
[15]

Under this scenario, the between-population slope is an unbiased estimator
of β because measurement error in temperatures occurs within populations.
Because we found this slope to be −12.91 and the difference to be −10.03, as
shown in Eqs. 16 and 17, then:

− 10:03 ¼ − 12:91
�
1− r2

�
[16]

1−
− 10:03
− 12:91

¼ r2 ¼ 0:22 [17]

Therefore, the repeatabilitywould have to be unreasonably low (<0.23), for the
conclusions of this paper to be compromised. However, the low-slope estimate
within 50-km grid-squares may be attributable to measurement error in local
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interpolated temperature estimates, which will cause the temperature vs.
spawning date slope to be underestimated.

Projecting Spawning Advance.Weobtained 50%quantile projections ofmean
January temperature increase for 2050–2070 in 25 × 25-km grid-squares from
UKCP09 Bayesian posterior distributions (25) corresponding to the Inter-
governmental Panel for Climate Change Special Report on Emissions Sce-
narios A1F1 (fossil fuel intensive) scenario (43). These temperature projections
were combinedwith within- and between-population slope estimates tomap
the (i) projected advance attributable to plasticity, (ii) projected advance in
local optima, and (iii) projected shortfall between plastic advance and local
optima. All statistical analyses were conducted in R (44).
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