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Summary. Bongaarts and Feeney offer alternatives to period life expectancy with
a set of demographic measures equivalent to each other under a Proportionality
Assumption. Under this assumption, we show that the measures are given by expo-
nentially weighted moving averages of earlier values of period life expectancy. They
are indices of mortality conditions in the recent past. The period life expectancy is an
index of current mortality conditions. The difference is a difference between past and
present, not a “tempo distortion” in the present. In contrast, the Bongaarts-Feeney
tempo-adjusted Total Fertility Rate is a measure of current fertility conditions,
which can be understood in terms of a process of birth-age standardization.

1 Tempo

In the study of fertility, a distinction between quantum and tempo in the
spirit of Norman Ryder (1964) is universally acknowledged. A woman may
have more or fewer children, and she may have them earlier or later in her
life. It makes sense to ask for period measures of total fertility which adjust
for changes in the timing of childbearing independent of changes in numbers
of children at the individual level. John Bongaarts and Griffeth Feeney (1998)
provided such a fertility measure which has gained many adherents, including
the present author.

In the study of mortality, no distinction between quantum and tempo
exists at the individual level. A person has one death, his or her own, and
mortality pertains to whether death comes early or late. It makes no obvi-
ous sense to adjust away the effects of changes in the timing of death, thus
adjusting away changes in mortality itself. New papers by Bongaarts and
Feeney (2002) and (in this volume p. 11) came as a surprise, offering a fam-
ily of measures put forward to adjust period life expectancy for effects which
they called tempo distortions. The different measures in the family coincide
with each other under a condition on the age and time-specific hazard rates
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called the “Proportionality Assumption” which the authors find to be approx-
imately satisfied by adult mortality schedules in various developed countries
over some recent decades.

Any measure measures something. The question is whether the something
being measured is a version of current period life expectancy freed from some
kind of distortion. This chapter puts the spotlight on a representation which
helps in visualizing what the new measures do measure. The new measures do
not measure current mortality conditions but rather the cumulative effects of
earlier mortality conditions. The period life expectancy does measure current
mortality conditions.

The words “current conditions” are used here in their ordinary English-
language sense. Current mortality is the mortality that can be currently ob-
served by counting deaths and counting person-years at risk. An alternative
usage introduced by Vaupel (2002) in which “current conditions” is used as
shorthand for “current latent conditions” in a latent-structure representation
is discussed in Section 6.

The representation of the Bongaarts-Feeney measures takes the form

M(t) ≈
∫ t

−∞
wt(τ)e0(τ) dτ (1)

Here e0(t) is period life expectancy at time t. (In applications, e0 is replaced
by e30 since the approach is intended solely for adult mortality.) M(t) is a
Bongaarts-Feeney measure of adjusted life expectancy. For each t, wt(τ) is
a probability distribution defining weights over a set of lagged time periods
τ < t. As functions of the lag s = t − τ , the weights are nearly exponential
and nearly independent of t.

The representation is an approximation which holds to first order in the
time derivative of M under the hypothesis that Bongaarts and Feeney’s Pro-
portionality Assumption is sufficiently nearly satisfied that the different mea-
sures in the family are equivalent to each other within the limits of the ap-
proximation. Details are spelled out in Section 3.

The representation shows that the Bongaarts-Feeney measure M is a
weighted average of period e0 values from the recent past. The period life
expectancy itself at time t depends only on current age-specific hazard rates
for time t. The Bongaarts-Feeney measure depends on past as well as current
age-specific hazard rates. When longevity has been increasing, past values of
e0 are lower than current values, and the Bongaarts-Feeney measure aver-
ages over these lower past values and produces a value below present-day e0.
When longevity has been decreasing, past values exceed current values, and
the Bongaarts-Feeney measure averages over these higher past values and
hovers above present-day e0.

The word “distortion” is out of place when contrasting M to e0. The
measures measure different things. If one cares about average mortality levels
in the recent past, one can use one of the Bongaarts-Feeney measures. If one
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cares about mortality levels under current conditions, one can use the period
life expectancy.

The representation (1) gives concrete form to the general observation that
the Bongaarts-Feeney mortality measures are functions not solely of current
mortality but also of the population age structure that would be produced by
past mortality conditions given a hypothetical constant stream of prior births.
This dependence was pointed out in their initial paper (2002 ,p. 23). Bongaarts
and Feeney noted that their adjusted measure could not be calculated directly
from period hazard rates “because μ∗(a, t) [their adjusted hazard rates] are
in general not observable”. They discussed a need for a century or more of
age-specific death rates for their calculations.

In this same early paper, Bongaarts and Feeney (2002, Eq. 12), intro-
duced a differential equation (originally under Gompertzian assumptions)
which agrees to first order with equation (7) of Section 3. They imposed a
boundary condition which allowed them to estimate values of their measure
at each time t from the sequence of prior values of period life expectancy,
in effect implementing a numerical calculation of the representation (1). The
equation for M(t) in terms of coefficient values for time t is a differential equa-
tion, not an algebraic equation. It is therefore not a recipe for calculating the
value of M at time t solely from period information for time t. The solution M
is only defined with respect to the boundary conditions and time trajectories
of the coefficients. This dependence on the past is the fundamental property
of the Bongaarts-Feeney mortality measures.

Definitions of the measures are given in Section 2. The representation is
presented in Section 3 with examples in Section 4 and discussion in Section
5. Proposals to relate the Bongaarts-Feeney measures to latent structure rep-
resentations of mortality are analyzed in Section 6. Unlike the adjusted life
expectancies, Bongaarts and Feeney’s adjusted total fertility measure at a time
t depends only on age-specific fertility rates in an arbitrarily small neighbor-
hood of t. It is independent of population age structure and independent of
past levels of fertility. This fundamental difference between the proposed mor-
tality adjustments and the fertility adjustments precludes any close analogy
between them. The difference is highlighted in Section 7, which presents an
interpretation of the fertility adjustments in terms of a process of birth-age
standardization.

2 Measures

Clarity is promoted by expressing the measures under discussion in standard
demographic notation.

μ(a, t) is the hazard rate at age a at time t;
N(a, t) = N(0, t) exp(− ∫ a

0
μ(x, t − a + x) dx) is the number of population

members aged a at time t expressed as a density with respect to da dt;



112 Kenneth W. Wachter

N(0, t) = 1 is a normalization on initial cohort size which keeps the number
of births per unit time constant at unity;

e0(t) =
∫

exp
(− ∫ a

0
μ(x, t) dx

)
da is the period expectation of life;

d(a, t) = N(a, t)μ(a, t) is the count of deaths at age a and time t;
D+(t) =

∫
N(a, t)μ(a, t)da =

∫
d(a, t)da is the period count of total deaths;

N+(t) =
∫
N(a, t) da is the period total population;

The basic condition on the population distribution N(a, t) is the normal-
ization which sets the size of every cohort at birth equal to unity, equivalent
to dividing the numbers aged a at time t by the numbers aged 0 at time
t− a for all a and t. Given this normalization, the measures M1 . . .M4 intro-
duced in the notation of their PNAS article (Bongaarts and Feeney 2003, also
published in this volume p. 11) correspond to familiar population quantities:

• M1 is the total population count N+(t), equal to the “Cross-Sectional
Average Length of Life” CAL(t) introduced by Nicolas Brouard (1986)
and Michel Guillot (2003);

• M2 is the period mean age at death, MAD(t) in the terminology of Bon-
gaarts and Feeney (in this volume p.29) , given by

∫
aN(a, t)μ(a, t) da/D+(t);

• M3 is the period life expectancy e0(t);
• M4 is an adjusted life expectancy defined by

M4(t) =
∫

exp

(
−

∫ a

0

μ(x, t)
1 − d

dtM1(t)
dx

)
da (2)

In Bongaarts and Feeney (in this volume p.29), the derivative of M1 in
(2) is replaced by the derivative of M2, producing a closely related measure
which might reasonably be called M5.

The total population count changes over time by the addition of births
and subtraction of deaths, so the time derivative of N+(t) = M1(t) = CAL(t)
is 1−D+(t). Dividing the hazard rates for time t at every age by the count of
total deaths, retaining an unchanged populationN(a, t) at risk, resets the total
deaths to unity. In other words, the rates inside the integral in the definition of
M4 are rates which, given the age structure, would make period deaths equal
normalized period births. Caution is advisable in interpreting these measures.
The measure CAL does not always correspond to the statistical expectation
of a waiting time, even though the formula might seem to suggest so. The
measure M4 employs a proportional adjustment to hazards, whether or not
hazards have been changing proportionally in the past.
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The “Proportionality Assumption” of Bongaarts and Feeney (in this vol-
ume p.11) is a condition on the partial derivatives of N(a, t) for all a and t in
terms of a function r(t) varying in a neighborhood of zero:

∂N(a, t)
∂t

= −r(t)∂N(a, t)
∂a

(3)

(This r(t) is the same as 1 − p(t) in Bongaarts and Feeney (in this volume
p.11, Eq. 6).) It should be borne in mind that the condition expressed in terms
of N for given a and t involves a whole family of constraints on the hazard
rates μ at earlier ages and earlier times which produce the value of N and its
rates of change with age and time. It is not a local condition confined to a
neighborhood of a and t.

Equation (3) determines a family of parallel curves giving contours of con-
stant N over time. The shape of the age distribution is preserved and shifted
up or down as shown in Bongaarts and Feeney (in this volume p.11). Specif-
ically, setting F (t) =

∫ t

0
r(τ) dτ , (3) provides for a vanishing time derivative

for N(a + F (t), t), allowing N(a, t) to be expressed in terms of N(a, 0). The
hazards μ(a, t), defined from the partial derivatives of the logarithm of N at
time t and hence from the partial derivatives at time zero, have to take the
form

μ(a, t) = (1 − F ′(t))ψ(a− F (t)) (4)

Here ψ is a non-negative function of age a vanishing for negative a, defined
from derivatives of the logarithm of N at time zero.

Three other results proved in Bongaarts and Feeney (in this volume p.11)
follow readily from (3). Integrating both sides of (3) with respect to a shows
that the time derivative of M1(t), that is, of CAL(t), is given by M ′

1(t) =
1−D+(t) = r(t). Integrating

∫
ad(a, t)da =

∫
aN(a, t)μ(a, t)da by parts yields

the equality M2 = M1. Writing the hazard rate quotient μ(a, t)/(1 − r(t)) as
the partial derivative with respect to a of − log(N(a, t)) shows that M4 = M1.

3 Representation of M

When the Proportionality Assumption holds, the equality of M1, M2, and M4

allows us to set M = M1 = M4 in the equation defining M4 and obtain a
differential equation satisfied by the common values of M1, M2, and M4:

M(t) =
∫

exp

(
−

∫ a

0

μ(x, t)
1 − d

dtM(t)
dx

)
da (5)

When the Proportionality Assumption does not hold exactly, this equation
can also be regarded as defining a measure of interest in its own right, which
could take a place beside M1, M2, and M4 in the family of measures. Indeed,
the original measure introduced in (2002, 23) was a solution to a version of
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this equation. It is expected that all these measures will be close to each other
when the Proportionality Assumption is approximately valid. One could, for
example, stipulate that μ(a, t) agree to first order in some parameter ε with
the corresponding values for a set of hazard rates that do satisfy the Pro-
portionality Assumption. Weaker conditions might also suffice to guarantee
agreement to order O(ε) among the measures. All that is at stake here is ap-
proximate consistency among the different choices of measures in the family.
Once Equation (5) is in hand, the further arguments leading to our represen-
tation do not depend on the Proportionality Assumption.

We obtain our representation by expanding the right-hand side of (5) in
powers of r = M ′(t) for each t. The value of the right-hand side at r = 0 is the
period life expectancy. The inner integrand μ/(1−r) in (5), being proportional
to μ, brings into play the familiar machinery of proportional hazards. As in
(1985, 80), the derivative with respect to r is a multiple of “lifetable entropy”
given, at r = 0, by minus the quantity

g(t) =
∫ ∞

0

e−
∫ a
0 μ(x,t) dx

∫ a

0

μ(y, t) dy da (6)

The result is an equation which is a first-order approximation to (5) when
M ′(t) is uniformly small:

M(t) = e0(t) − g(t)M ′(t) (7)

Under appropriate regularity conditions mentioned below, the differential
equation (7) has a unique solution bounded at minus infinity given by the
integral already presented in Equation (1):

M(t) =
∫ t

−∞
wt(τ)e0(τ) dτ (8)

The time-dependent weights wt(τ) are given in terms of the reciprocals of g(τ)
by the expression

wt(τ) = g−1(τ) exp
(−

∫ t

τ

g−1(s) ds
)

(9)

For each t, these positive weights integrate up to unity over τ and define a
probability distribution. The inner integral in (9) can be used to define an
alternative time-like coordinate in terms of which the weights become expo-
nential functions.

It is easy to verify that (1) formally satisfies (7) by differentiating the
right-hand side of (1) with respect to the argument t which occurs both in
the limit of integration and in the function wt(τ). The derivative of wt(τ) with
respect to t is −wt(τ)/g(t) and wt(t) = 1/g(t).
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e0(t) − g(t)M ′(t) = e0(t) − g(t)
d

dt

∫ t

−∞
wt(τ)e0(τ) dτ

= e0(t) − g(t)wt(t)e0(t) − g(t)
∫ t

−∞

d

dt
wt(τ)e0(τ) dτ

= e0(t) − g(t)(1/g(t))e0(t) −
∫ t

−∞
−wt(τ)e0(τ) dτ

= M(t)

The function g(t) is strictly greater than zero, so long as lifetable deaths in the
period lifetable are not concentrated all at a single age, which is always true
if μ is finite. We assume further that 1/g(t) and e0(t)/g(t) are integrable on
bounded intervals and that g(t) is bounded, making the weights in (9) finite
and the solution in (8) the unique one bounded at minus infinity (1955, pp.
67,97).

In expanding the right-hand side of (5), we could have expressed the dif-
ference between the values at zero and at r using the derivative evaluated at
r instead of at zero. The answers would agree to first order. The derivative
at zero from (6) has the advantage of being a purely period measure. But the
derivative at r, obtained from (6) by substituting μ/(1−r) for μ, is also infor-
mative. It is exactly constant when the Proportionality Assumption is exactly
valid. It follows that g(t) must be nearly constant so long as the Proportion-
ality Assumption is nearly valid, making the weights wt(t − s) as a function
of the lag s nearly equal to a fixed exponential distribution (1/g) exp(−s/g).

A clear conclusion follows from this representation: This candidate for
a “tempo-adjusted expectation of life” is, to first order, an explicit moving
average of recent past values of the period expectation of life. When levels
of survival are increasing, current values of e0(t) exceed past values. What
Bongaarts and Feeney are interpreting as a “tempo distortion” is simply the
difference produced by focussing on the present instead of focussing on the
recent past.

Period life expectancy is sensitive to sudden changes affecting mortality
at many ages. It is meant to be so. That is an advantage, not a drawback.
When period life expectancy falls, deaths are surging. People are dying. It is
no mirage or distortion of reality.

A rise or fall in hazard rates concentrated in time but spread over many
ages will have effects spread over many cohorts, so a large temporary change in
period life expectancy should and does correspond to a suite of small changes
in cohort life expectancy for many cohorts. Averaging period measures over
a stretch of time that includes large parts of the lifespans of many cohorts
naturally leads to values in line with the average values of the corresponding
cohort measures. The retrospective averaging implemented by the Bongaarts-
Feeney measures has this kind of outcome. The period life expectancy, for its
part, is a faithful indicator of current conditions.
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4 The moving average

To see how the representation of the Bongaarts-Feeney measures works out
in practice, consider Swedish female adult mortality, example B of Bongaarts
and Feeney (in this volume p.11, Figure 6). The measures are only meant
to apply after about age 30, so we let age a = 0 correspond to age 30 and
condition on survival to that age. Single-year age-specific mortality rates from
1861 to 2001 are taken from the Human Mortality Database (2004) assembled
by John Wilmoth at Berkeley, allowing calculation of CAL and MAD for ages
above 30 from 1941 onwards.

In these Swedish data, the entropy measure g (for ages above 30) is close
to 9 back to about 1945, a level reached after a gradual long-term drop from
Nineteenth Century values around 13. The gradual changes in g imply slight
changes in exponential weights, but for measures after 1941 the moving av-
erage (8) with changing weights (9) is only slightly different from a moving
average with fixed exponential weights set with g = 9. (The mean difference
is 0.063 years and the maximum difference is 0.186 years.) Thus we are essen-
tially dealing with a simple exponential distribution with a nine-year mean.
The Bongaarts-Feeney measures CAL, MAD , and M4, where they agree with
each other, are given by a simple exponential weighted average of past values
of period life expectancy, with an average look-back time of 9 years.

For example, consider the calculation of M for t = 2001.0. The year from
December 2000 back to January 2000 is the first year back. The weight for this
year, applied to period life expectancy centered at mid-year, is the integral of
(1/9) exp(−s/9) between 0 and 1, or e−0/9− e−1/9. The weight for the second
year back (1999) is e−1/9 − e−2/9, etc. M is the weighted average, the sum of
weights times life expectancies back over time:

M = (e−0/9 − e−1/9)e30(2000) + (e−1/9 − e−2/9)e30(1999) . . .
= (0.10516)(52.587) + (0.09410)(52.451) . . .
= 51.55

For 2001, comparing M to values of CAL, MAD , and M4 calculated directly
from single-year mortality rates, we see that the weighted average M = 51.55
years falls a little above CAL = 51.43 years between M4 = 51.52 years and
MAD = 51.58 years. The period life expectancy e30 is a year higher, at 52.63
years.

It is instructive to see with formulas how the weighted average recovers
the values of CAL and MAD when the Proportionality Assumption holds. As
before, we let a = 0 correspond to human age 30. Thanks to (4), we have
μ(a, t) = (1 − F ′(t))ψ(a − F (t)) with a baseline age schedule ψ and a shift
function F (t) whose time derivative equals the proportionality factor r(t).
Values of CAL and MAD at time zero are given by η =

∫
exp(− ∫ a

0
ψ(x)dx)da

and the values at time t include the shift F (t):
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CAL(t) = MAD(t) = η + F (t) (10)

The same Taylor expansion as in (7) for life expectancies under proportional
hazards yields

e0(t) ≈ η + F (t) + gF ′(t) (11)

Here the coefficient g can be set equal to the rescaled entropy derived from
ψ which is constant over time. It is given by formula (6) with ψ(x− F (t)) in
place of μ(x, t). Since ψ vanishes for negative a and the outer integral runs
over all a, the formula is unchanged when F (t) is deleted from the arguments
of ψ, leaving an expression independent of t.

The weights are given by wt(t − s) = (1/g) exp(−s/g). The weighted av-
erage is an integral with respect to this exponential probability distribution
whose mean is g:

M =
∫ ∞

0

e0(t− s)(1/g)e−s/g ds

=
∫

(η + F (t− s) + gF ′(t− s)) (1/g)e−s/g ds

= η + F (t) −
∫

(F (t) − F (t− s))(1/g)e−s/g ds

+
∫
F ′(t− s)) e−s/g ds

Integrating the third term by parts yields − ∫
F ′(t− s)e−s/g ds, exactly can-

celling the fourth term, so that

M = η + F (t) = CAL(t) = MAD(t) (12)

When the proportionality factor r(t) = F ′(t) is constant, we have the case
of linear shifts analyzed by Goldstein (in this volume) and by Rodriguez (in
this volume). The graphs of e0(t) and CAL(t) = MAD(t) are parallel straight
lines with slope r. Lagged life expectancy is the linear function e0(t − s) =
e0(0) + r(t− s). Its average is e0(0) + r(t− g) since the average value for s is
g. Thus CAL(t) comes out to be the lagged value e0(t− g).

When g is calculated from a hazard function given by a Gompertz model
αeβa, we have g = (1/β) − (α/β)e0. The second term is usually two orders
of magnitude smaller than the first term, so g ≈ 1/β. Suppose that hazards
change over time according to a Gompertz model with constant β and more
or less exponentially declining α(t) approximated, say, by α(0) exp(−rβt).
Suppose also that α(0) is small enough that young mortality can be neglected
or set to zero. Then the Proportionality Assumption comes to be satisfied with
something close to a linear shift of slope r. In principle the Proportionality
Assumption could hold under different, non-Gompertzian conditions, but in
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the empirical examples known to the present author it seems to arise in this
way.

Since the weights in the moving average representation fall off exponen-
tially, the remote past has negligible impact, and the full moving average can
be replaced by an average reaching back over a finite span of years. The rep-
resentation is meant to hold to first order in M ′. In the Swedish data, M ′ is
on the order of 0.15 and second-order terms are on the order of 0.02. A span
of 6g years, or 54 years, includes all but exp(−6g/g) = exp(−6) = 0.002 of
the weight from the exponential distribution. Periods that represent the early
adult life experience of cohorts older than 30+54 = 84 years have only minor
impact on CAL and MAD .

Mathematically speaking, when the Proportionality Assumption is only
tenable for some limited span t > T , the solution (8) to the differential equa-
tion (7) (which is the solution vanishing at minus infinity) needs to be replaced
by the solution satisfying an appropriate boundary condition at t = T , that
is, one making M(T ) = CAL(T ). The moving average only reaches back to T
and the term introduced by the boundary condition tapers exponentially as
time goes by.

Figure 1 shows mortality measures for Swedish women from 1941 to 2001,
all calculated beyond age 30. The upper solid line is period life expectancy.
The lower solid line is CAL, trending steadily upward with an average slope
of 0.17 per year. The dashed line for MAD hugs CAL from 2001 back to 1975
but separates from it at earlier times just outside the range of years shown
in Bongaarts and Feeney (in this volume p.11, Figure 6B). The separation
signals failure of the Proportionality Assumption. The moving average M is
the dotted line. The measure M4, not shown in the plot, is close to M before
1970 and close to CAL after 1980. Where CAL and MAD diverge from each
other, the moving average M turns out to strike a balance between them.
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Fig. 1. Mortality measures for Swedish women 1941-2001.

5 Period counts of deaths

Period counts of deaths play an important role in the formulas for the mor-
tality measures and an important role in the analogies which Bongaarts and
Feeney (in this volume p.29) seek to develop. In their papers they give a new
name to the period count of deaths D+(t), calling it the “Total Mortality
Rate” or “TMR”. They liken this quantity to the Total Fertility Rate, Total
First Marriage Rate, and other indices for processes that, unlike mortality,
admit a distinction between quantum and tempo at the individual level.

Ordinarily, one would expect instead to define the “TMR” with a formula
parallel to the formula for the TFR:

TFR(t) =
∫
f(a, t) da (13)

TMR(t) =
∫
μ(a, t) da (14)
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The period count of deaths is a count, not a rate. Bongaarts and Feeney
defend their practice of calling it a rate by taking the usual denominator, those
at risk of the event, and adding on a set of “ghosts”, those who would have
been at risk had they not exited from the population by dying. The same
construction can be applied with fertility to obtain period counts of births
B+(t) from the fertility rates, albeit counts that need not agree with initial
cohort sizes:

B+(t) =
∫
N(a, t)f(a, t)/N(0, t− a) da (15)

D+(t) =
∫
N(a, t)μ(a, t)/N(0, t− a) da (16)

The tempo adjustment for fertility in (1998) is an adjustment to the TFR,
not B+(t), whereas the tempo adjustments for mortality in Bongaarts and
Feeney (in this volume p.11) involve adjustments to D+(t), not to the TMR,
which is generally infinite.

The normalization which enforces a constant unit stream of births into
the population means that the population is increasing when and only when
D+(t) is less than 1, that is, when births exceed deaths, and decreasing when
D+(t) > 1. This quantity D+(t), the period count of deaths per unit birth,
is less than 1 if mortality has been higher in the past than in the present.
The higher death rates of the past deplete the surviving population at risk of
dying and thus reduce current deaths. This outcome is not a tempo effect. It
can remain true even if current mortality is increasing rather than declining.

Replacement of the hazard rates μ(a, t) by rates μ(a, t)/D+(t) in the for-
mula for M4 does, as mentioned, bring total deaths into equality with normal-
ized total births so long as the population age structure is retained unaltered.
However, this transformation cannot be achieved by a systematic reassignment
of times of death, because any reassignment necessarily alters the population
age structure. The substitution underlying the M4 measure is a form of stan-
dardization for the total flow of deaths which is difficult to interpret in terms
of any assumptions about individual experience.

6 Current latent conditions

A question arises as to whether measures equivalent or similar to those of Bon-
gaarts and Feeney might be definable from some latent structure representa-
tion of mortality. Vaupel (in this volume p.93) writes about such possibilities.
An example predicated on the heterogeneous frailty model of Vaupel, Manton,
and Stallard (1979) is given by Vaupel (2002). Starting from any μ(x, t), for
each choice of a frailty dispersion parameter σ, one can define hypothetical
latent baseline hazards μo(x, t) by the equation
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μo(x, t) = μ(x, t) exp
(
σ2

∫ x

0

μ(a, t− x+ a) da
)

(17)

This formula is a representation. For any observed μ(x, t) it supplies a latent
μo(x, t) which will reproduce it. From μo, Vaupel defines a measure which he
calls a version of life-expectancy “under current conditions”, that is, under
current latent rather than current observed conditions.

Vaupel’s frailty-based measures are well defined but they are at a far re-
move from the Bongaarts-Feeney measures. They depend on population het-
erogeneity, whereas Bongaarts and Feeney’s arguments apply to wholly ho-
mogeneous populations. In empirical cases like the Swedish series, the frailty-
based measures fluctuate in tandem with period life expectancy, lack the
smoothing properties of CAL, MAD , andM4, and differ only by small amounts
from period life expectancy.

The interesting feature of the frailty-based measures is conceptual. Al-
though current μo is calculated from past values of μ, one can imagine an
experiment for measuring current μo from current observations. Take a ran-
dom sample of people who had lived in a country with negligible mortality up
to age x, transplant them to a country beset by μ, and identify μo with any
higher hazards that such higher-mean-frailty refugees experience. In practice,
debilitation probably dominates culling, and the experiment would founder,
but the concept is coherent.

Recognizing the absence of connection between his frailty-based measures
and the actual Bongaarts-Feeney measures, Vaupel (in this volume p.93) goes
on to sketch a different approach which might also come under the heading of
“mortality under current latent conditions”. The latent variables are tickets
associated with predestined ages of death. Life is like a pastiche of an old
Beatles song

“I have a ticket to die.”

Vaupel’s chapter presents examples rather than a general treatment. In
some examples, the proposal is to have ticket values that can change either
deterministically or stochastically over time, depending on the current ticket
value but not on the current age of the holder. When a person’s age catches
up with his or her current ticket value, the person dies.

We may write V (U, t) for a ticket process started at an initial state indexed
by U and varying over time t. U has some probability distribution across the
population. In versions with deterministic transitions, V (U, t) is a function of
U and t, usually a continuous function. In versions with stochastic transitions,
V (U, t) is a Markov process started at a state indexed by U unfolding either
with discrete time steps and discrete states corresponding to age groups, or
with continuous time and age. The distribution of ticket values at birth for a
cohort born at time τ is the marginal distribution of V (U, τ) generated by the
randomness in U and the randomness, if any, in V given U . The distribution
of ages at death for the cohort is the distribution of the random variable
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min{x : V (U, τ + x) ≤ x} (18)

A person dies when he or she first reaches an age coinciding with the age
currently on his or her ticket.

Detailed treatment is beyond the scope of this chapter, but we proffer
some reflections based on early analysis.

If V (U, t) can be specified, then a current measure can be defined to equal
the period mean of V . That part is easy. What is difficult is the representation
problem. No equation like (17) is at hand for taking observed μ(x, t) and writ-
ing down some specific V that generates it. Without a representation formula,
one has no well-defined measure and nothing to compare with Bongaarts and
Feeney’s proposed adjustments.

One can, of course, make up ticket models de novo and endeavor to test
their goodness of fit to μ values like the Swedish series. That may be interest-
ing, but testing goodness of fit is not what Bongaarts and Feeney are doing.
They are defining measures. From any μ, they obtain measures to contrast
with period life expectancy, and they argue for an automatic adjustment to
period life expectancy whenever observed past hazards differ from present
ones.

To make ticket models relevant to Bongaarts and Feeney’s proposals, one
needs, then, to focus on the representation problem. With deterministic tran-
sitions, the only apparent prospect is a version of Feeney’s (in this volume)
derivations. See also Wilmoth (2005). We can let U be a uniform random
variable marking a cohort member’s predestined proportional placement in a
rank ordering of the cohort from oldest to youngest by age at death. Define
the quantile function

Q(U, τ) = min{x :
∫ x

0

μ(a, τ + a) da = − log(U)} (19)

For each fixed U and t , the equation Q(U, t − v) = v may have a unique
solution v, and if it does, we can set V (U, t) = v. In such cases the measure,
the period mean of V , comes out to equal CAL.

However, unique solutions do not always exist. The same cases that defeat
Feeney’s (in this volume) attempt at generality prevent this construction from
yielding a general representation of mortality schedules. Cases that fail occur
when the partial derivative of Q with respect to τ takes values less than or
equal to −1. These tickets are intrinsically cohort objects that resist alignment
by periods. A person’s U value is a cohort percentage. Today’s ticket values
only have meaning insofar as we match values for current survivors to values
for current decedents who share the same U , fixed by their cohort’s prior
history. Unlike Vaupel’s frailty-based μo values, the current values of these
latent variables have no independent reality in the present that can be easily
discerned. No experiment is on the table which would allow us to elicit present-
day ticket values from present-day observations alone.
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Turning to ticket models with stochastic transitions, we encounter the rep-
resentation problem in a different guise. Here the specification of V (U, t) is
drastically underdetermined. Analysis in continuous time is technically chal-
lenging, but the issues can be scrutinized in discrete time with Markov chains
with finitely many states corresponding to age groups numbered from 1 to k.
Each transition matrix at each time t contains k(k− 1) elements that need to
be determined. The observed distribution of deaths for each cohort, which the
model has to match, is specified by k− 1 quantities. Thus, ignoring endpoint
effects, T cohorts give (k − 1)T equations in k(k − 1)T unknowns. Already
with k = 3, a wide range of different solutions are allowed. Subject to some
messy inequalities, one can choose one’s solution at will to make the result-
ing period measure agree with any of a wide variety of arbitrary sequences.
Without some natural set of identifying restrictions, as yet to be discovered,
the ticket model framework with stochastic transitions gives nothing definite
to compare with Bongaarts and Feeney’s measures.

7 Total fertility

It would be an unhappy outcome if the limitations of the proposed measures
for adjusted life expectancies undermined confidence in the tempo-adjusted
measures for total fertility proposed earlier by Bongaarts and Feeney (1998).
Unlike the mortality measures, the fertility measures are standardized indica-
tors of current conditions. The adjusted total fertility rate at time t depends
only on age-specific fertility rates f(a, t) in an arbitrarily small neighborhood
of t. It does not depend on age structure and it does not depend on past fertil-
ity rates. It has a direct interpretation in terms of individual experience. This
section offers a formulation of the adjusted fertility measures which highlights
these attractive features.

Age-specific fertility rates f(a, t) are written here as a function of contin-
uous age a and continuous time t. As usual, the period Total Fertility Rate
TFR(t) and period mean age at childbearing A(t) are given by

TFR(t) =
∫
f(a, t) da (20)

and

A(t) =
∫
a f(a, t) da
TFR(t)

(21)

A simple procedure for producing an adjusted index is to define a coor-
dinate transformation which, in effect, reassigns the timing of births within
cohorts leaving numbers of births invariant within cohorts. The transforma-
tion is chosen so that, after reassignment has been carried out, a period com-
putation of mean age at childbearing would give a constant outcome, thus
erasing period variations in timing. The post-reassignment value for the mean
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age can be set arbitrarily to some standard value As, perhaps most sensibly
to a long-term average for cohort mean ages at childbearing conditional on
survival through childbearing years.

The transformation Ψ is given by

a → α = a−A(t) +As (22)
t → τ = t−A(t) +As (23)

We assume that A(t) is differentiable and we impose the reasonable assump-
tion that the period mean age at childbearing never increases by as much as
a full year per year, so that the time derivative A′(t) is always less than 1.
Then the transformation is invertible and has a finite Jacobian given by

∂ α, τ

∂ a, t
= 1 −A′(t) (24)

The inverse function t(α, τ) only depends on τ . Age-specific fertility rates after
reassignment are given by

f̃(α, τ) =
f(a(α, τ), t(τ))
1 −A′(t(τ))

(25)

This definition guarantees agreement between integrals over subsets S in the
Lexis plane: ∫ ∫

S

f̃ dα dτ =
∫ ∫

Ψ−1S

f da dt (26)

An adjusted or standardized Total Fertility Rate STFR can be defined
from f̃ :

STFR(τ) =
∫
f̃(α, τ) dα =

TFR(t(τ))
(1 −A′(t(τ))

(27)

These integrals are taken over α for fixed τ , unlike the double integrals of
Equation (26). It is readily verified that the period mean age of childbearing
defined from f̃ remains constant at a level As and that integrals of f̃ along
diagonals of the Lexis diagram are identical to integrals of f itself.

Kohler and Philipov (2001) introduce this Jacobian-based formulation for
tempo adjustments, although they deviate from it in the definition of their
own generalized measure. The transformation shifts fertility backwards or
forwards along cohort lifelines on the Lexis diagram. The cohort quantum of
fertility measured by a cohort TFR (conditional on survival) is unchanged.
The positioning of births along the lifelines of mothers in the cohort is adjusted
in such a way as to hold the transformed period mean age at birth constant
at the chosen standard value As.

The size of STFR defined by Equation (27) is the same as Bongaarts and
Feeney’s tempo-adjusted TFR. It is expressed as a function of the hypothetical
coordinate τ rather than the real time coordinate t, but, if desired, it can
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be attributed back to t, since the transformation is invertible. Although τ
depends on the choice of the standard age As, the measure itself does not
depend on it. The mathematics would be the same if we took As equal to
zero, but visualization is easier if we take it equal to some realistic benchmark
age.

The reassignment process expressed by our coordinate transformation can
be regarded as a kind of standardization. It differs from familiar kinds of
demographic standardization like the standardization of Crude Birth Rates
for effects of age distributions. But it serves a parallel purpose. Just as one
asks, “What would a Crude Birth Rate turn into if population age group sizes
were set to standard values?”, one can ask, “What would a Total Fertility Rate
turn into, if period mean ages at childbirth were set to a standard values?” In
this sense, the Bongaarts-Feeney tempo adjustment for fertility can be viewed
as a process of birth-age standardization.

This way of viewing the measure clarifies several issues. Bongaarts and
Feeney’s fertility measure does not depend on any behavioral assumptions
about fertility, any more than an age-standardized birth rate depends on be-
havioral assumptions. It does, however, suggest a thought experiment, because
one can imagine individuals changing the timing of their births in such a way
as to change the observed TFR into the adjusted or standardized one.

For applications of their measure, Bongaarts and Feeney recommend ap-
plying their adjustment separately parity-by-parity to birth-order-specific fre-
quencies. These are not the same as age and parity-specific rates. Each nu-
merator includes only births of a given parity while the corresponding denom-
inator includes person-years from women of all parities. These quantities sum
up to the overall age-specific fertility rates, so they comprise an additive de-
composition. Conceptual difficulties arising from reliance on such frequencies
or “rates of the second kind” in place of occurrence-exposure rates or “rates
of the first kind” have been pointed out by Van Imhoff and Keilman (2000).

As a formal procedure, nothing prevents the kind of standardization
achieved by Equation (22) from being applied separately to any additive de-
composition of age-specific fertility rates:

f(a, t) =
∑

i

fi(a, t) (28)

Any such decomposition in terms of some categorization of births can be ac-
commodated. Birth order is one option, but mother’s marital status, mother’s
education, region of birth, and sex of baby are among a host of others. When
a transformation is applied to each fi and the resulting STFRi are added to-
gether to produce an aggregate STFR, the result is an index which has been
standardized for changes in period mean ages at childbearing within each of
the subgroups. No behavioral claims need be at issue. It is probably a mistake
to make a fetish of the decomposition by parity. The fact that one particular
breakdown among many would allow a complicated re-expression in terms of
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occurrence-exposure rates need have no deep bearing on the nature of the
adjustment.

In summary, Bongaarts and Feeney’s tempo adjustment for the Total Fer-
tility Rate can be viewed as a process of standardization. It erases effects of
changes in period mean ages while preserving cohort quantum (conditional on
survival). There is a clear distinction at the individual level between something
that is being reset and something that is being left invariant. The adjustment
does not rely on any behavioral model or structural representation of fertility
processes. Like traditional standardized measures, it is a valuable device for
comparing cases, controlling for a particular source of variation.

No such process of standardization makes sense in the context of mortality,
because there is no distinction at the individual level between something to
reset and something to leave invariant. The timing of a person’s death is what
is being assessed when we assess mortality. Controlling for changes in the
timing of death is tantamount to controlling for mortality itself.

Discussions of quasi-behavioral models and structural representations in
the context of Bongaarts and Feeney’s proposed mortality measures serve
to highlight the gulf between these measures and their fertility measure. No
elaborate modeling is required with fertility.

Bongaarts and Feeney’s adjusted Total Fertility Rate is a current mea-
sure, whose value at a time t depends only on values and slopes of age-specific
fertility rates at time t. Altogether otherwise, the mortality measures they
propose as alternatives to period life expectancy are not current measures.
They average over mortality conditions observed in the past. Under the Pro-
portionality Assumption which makes the measures coincide with each other,
the measures average over conditions in the past in a particular simple way,
as a weighted moving average of prior period life expectancies, as shown in
this chapter.

Mortality measures like CAL and MAD are valuable for studying chang-
ing hazard schedules, smoothing as they do over sudden changes. Everyone
agrees that changing hazards make cohort life expectancies diverge from pe-
riod life expectancies and that the divergence is worthy of attention. But
measures that depend on past hazards serve different purposes from period
life expectancy, which depends on current hazards. The past may differ from
the present. This fact is not a “tempo” distortion. Adjustments for “tempo”
are only meaningful when there is a meaningful distinction between quantum
and tempo in individual experience.
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