Journal Article

Smooth hazards with multiple time scales

Carollo, A., Eilers, P. H. C., Putter, H., Gampe, J.
Statistics in Medicine, 1–15 (2024)
Open Access
Reproducible

Abstract

Hazard models are the most commonly used tool to analyze time-to-event data. If more than one time scale is relevant for the event under study, models are required that can incorporate the dependence of a hazard along two (or more) time scales. Such models should be flexible to capture the joint influence of several time scales, and nonparametric smoothing techniques are obvious candidates. 𝑃 -splines offer a flexible way to specify such hazard surfaces, and estimation is achieved by maximizing a penalized Poisson likelihood. Standard observation schemes, such as right-censoring and left-truncation, can be accommodated in a straightforward manner. Proportional hazards regression with a baseline hazard varying over two time scales is presented. Efficient computation is possible by generalized linear array model (GLAM) algorithms or by exploiting a sparse mixed model formulation. A companion R-package is provided.

Keywords: hazard rate, smoothing
The Max Planck Institute for Demographic Research (MPIDR) in Rostock is one of the leading demographic research centers in the world. It's part of the Max Planck Society, the internationally renowned German research society.