Arbeitsbereich
Bevölkerungsdynamik und Nachhaltiges Wohlbefinden
Auf einen Blick
Projekte
Publikationen
Team
Projekt
Forecasting Individual-Level Mortality
Ugofilippo Basellini, Emilio Zagheni, Monica Alexander (University of Toronto, Kanada), Luca Badolato (The Ohio State University, Columbus, Vereinigte Staaten), Ari Gabriel Decter-Frain (Cornell University, Ithaca, Vereinigte Staaten), Nicolas Irons (University of Washington, Seattle, Vereinigte Staaten), Maria Laura Miranda (MPIDR / Federal University of Minas Gerais, Belo Horizonte, Brasilien), Erin Walk (MPIDR / Massachusetts Institute of Technology, Cambridge, Vereinigte Staaten), Elnura Zhalieva (Mohamed bin Zayed University of Artificial Intelligence, Masdar City, Abu Dhabi, Vereinigte Arabische Emirate)
In this project, we provide novel insights into the predictability of individual lifespans, employing both classic statistical models and emerging machine-learning approaches. We focus on prediction accuracy and inequalities in predictability across socioeconomic groups. Ausführliche Beschreibung
Prediction accuracy of individual-level lifespan for different models by gender, race and ethnicity, and education

Integrated Brier Score and Mean Area Under the Curve by gender (panel a.), race and ethnicity (panel b.), and education (panel c.). Prediction accuracy across models is worse for Men, non-Hispanic Blacks and low-educated individuals as compared to other socioeconomic groups. © © Badolato et al. (2023)
Alterung, Sterblichkeit und Langlebigkeit, Projektionen und Vorhersagen, Statistik und Mathematik
Publikationen
Badolato, L.; Decter-Frain, A. G.; Irons, N.; Miranda, M. L.; Walk, E.; Zhalieva, E.; Alexander, M.; Basellini, U.; Zagheni, E.:
MPIDR Working Paper WP-2023-008. (2023)
