Mutation accumulation may only be a minor force in shaping life-history traits, even when reproduction is sexual

Dańko, M. J., Kozłowski, J.
PLOS One, 7:10, e48302 (2012)


In a previous theoretical study we investigated whether adaptive or non-adaptive processes are more important in the evolution of senescence. We built a model that combined both processes and found that mutation accumulation is important only at those ages where mortality has a negligible impact on fitness. This model, however, was limited to haploid organisms. Here we extend our model by introducing diploidy and sexual reproduction. We assume that only recessive (mutated) homozygotes experience detrimental effects. Our results corroborate our previous conclusions, confirming that life histories are largely determined by adaptive processes. We also found that the equilibrium frequencies of mutated alleles are at higher values than in haploid model, because mutations in heterozygotes are hidden for directional selection. Nevertheless, the equilibrium frequencies of recessive homozygotes that make mutations visible to selection are very similar to the equilibrium frequencies of these alleles in our haploid model. Diploidy and sexual reproduction with recombination slows down approaching selection-mutation balance.
Das Max-Planck-Institut für demografische Forschung (MPIDR) in Rostock ist eines der international führenden Zentren für Bevölkerungswissenschaft. Es gehört zur Max-Planck-Gesellschaft, einer der weltweit renommiertesten Forschungsgemeinschaften.